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ABSTRACT b-Catenin (Ctnnb1) supports high levels of liver gene expression in he-
patocytes in proximity to the central vein functionally defining zone 3 of the liver
lobule. This region of the liver lobule supports the highest levels of viral biosynthesis
in wild-type hepatitis B virus (HBV) transgenic mice. Liver-specific b-catenin-null HBV
transgenic mice exhibit a stark loss of high levels of pericentral viral biosynthesis.
Additionally, viral replication that does not depend directly on b-catenin activity
appears to expand to include hepatocytes of zone 1 of the liver lobule in proximity
to the portal vein, a region of the liver that typically lacks significant HBV biosynthe-
sis in wild-type HBV transgenic mice. While the average amount of viral RNA tran-
scripts does not change, viral DNA replication is reduced approximately 3-fold.
Together, these observations demonstrate that b-catenin signaling represents a
major determinant of HBV biosynthesis governing the magnitude and distribution of
viral replication across the liver lobule in vivo. Additionally, these findings reveal a
novel mechanism for the regulation of HBV biosynthesis that is potentially relevant
to the expression of additional liver-specific genes.

IMPORTANCE Viral biosynthesis is highest around the central vein in the hepatitis B
virus (HBV) transgenic mouse model of chronic infection. The associated HBV biosyn-
thetic gradient across the liver lobule is primarily dependent upon b-catenin. In the
absence of b-catenin, the gradient of viral gene expression spanning the liver lobule
is absent, and HBV replication is reduced. Therefore, therapeutically manipulating
b-catenin activity in the livers of chronic HBV carriers may reduce circulating infec-
tious virions without greatly modulating viral protein production. Together, these
changes in viral biosynthesis might limit infection of additional hepatocytes while
permitting immunological clearance of previously infected cells, potentially limiting
disease persistence.
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Hepatitis B virus (HBV) infection is a major worldwide health problem lacking reli-
able curative therapies (1–4). Expanding our understanding of the in vivo regula-

tion of HBV biosynthesis may aid in the development of new treatment options, reduc-
ing the morbidity and mortality associated with this viral infection. HBV genomic DNA
replication occurs via the reverse transcription of the viral 3.5-kb pregenomic RNA
within the viral capsid (HBcAg) (5, 6). Liver-enriched nuclear receptors, including hepa-
tocyte nuclear factor 4-a (HNF4a), liver receptor homolog 1 (LRH1), retinoic acid recep-
tor-a (RXRa), peroxisome proliferator-activated receptor-a (PPARa), and farnesoid X re-
ceptor-a (FXRa) (7–11), and their associated coactivators, such as CBP, p300, steroid
receptor coactivator 1 to 3 (SRC1 to SRC3), and peroxisome proliferator-activated re-
ceptor coactivator-a/b (PGC1a/b) (12, 13), direct robust HBV 3.5-kb pregenomic RNA
synthesis and hence viral replication. In the transgenic mouse model of chronic HBV
infection, viral biosynthesis is highest in the hepatocytes adjacent to the central vein
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within zone 3 of the liver lobule (14). Genes with this pattern of zonal expression across
the liver lobule are often regulated by the transcriptional coactivator b-catenin
(Ctnnb1), which is activated by Wnt ligands synthesized by the endothelial cells of the
central vein (15). Therefore, the role of b-catenin in the distribution of viral biosynthe-
sis across the liver lobule was investigated in the HBV transgenic mouse model of
chronic infection.

b-catenin is a transcriptional coactivator that regulates the activity of a number of
transcription factors in a Wnt ligand-dependent manner (16, 17). In the absence of Wnt
ligand, b-catenin is constitutively bound by a cytoplasmic destruction complex (which
includes the adenomatous polyposis coli, Axin, glycogen synthase kinase 3b , casein ki-
nase 1, and protein phosphatase 2a proteins [18]), leading to its proteolytic degrada-
tion (16, 17). When Wnt ligand is present, the destruction complex disassociates, free-
ing b-catenin to translocate to the nucleus to act as a transcriptional coactivator (16,
17). During canonical Wnt/b-catenin signaling, b-catenin interacts with the transcrip-
tion factor T-cell factor/lymphocyte enhancer-binding factor (Tcf/Lef), which is primar-
ily associated with cellular proliferation (16, 17, 19, 20). However, it is also known to
coactivate transcription by interacting with several other transcription factors, includ-
ing LRH1 and forkhead box O1 (FOXO1) (16, 21, 22), which are reported activators of
HBV transcription (10, 23).

These observations suggested that b-catenin might regulate HBV biosynthesis in
the liver and contribute to the high level of viral transcription and replication observed
in the hepatocytes adjacent to the central vein. This possibility was investigated by
determining if b-catenin can enhance HBV transcription in cell culture and by charac-
terizing viral biosynthesis in liver-specific b-catenin-null HBV transgenic mice. b-cate-
nin was able to enhance transcription from the HBV core promoter as determined by
reporter gene analysis. b-catenin was also essential for robust viral biosynthesis
around the central vein in HBV transgenic mice. Additionally, in the absence of b-cate-
nin expression, intermediate levels of HBV biosynthesis extended to the hepatocytes
closer to the portal tract in zone 1 of the liver lobule. Therefore, in the presence of
b-catenin, there is a gradient of HBV biosynthesis across the liver lobule with the high-
est level of expression localized to the central vein-proximal hepatocytes, but this gra-
dient is lost in the absence of b-catenin, leading to a more homogenous distribution
of viral biosynthesis across the liver lobule. Collectively, these observations indicate
that b-catenin regulates the magnitude and distribution of HBV biosynthesis across
the liver lobule, probably involving both direct and indirect mechanisms.

RESULTS

The transcriptional coactivator b-catenin has been shown to regulate the expres-
sion of multiple genes across the liver lobule, with direct targets of b-catenin activa-
tion displaying the highest levels of expression in zone 3 of the liver lobule adjacent to
the central vein (15–17). As this pattern of liver lobule zonal gene expression is similar
to the observed distribution of HBV biosynthesis in the HBV transgenic mouse model
of chronic infection, it was of interest to examine the potential role of b-catenin in the
regulation of viral transcription and replication in vivo.

Effects of b-catenin on the transcriptional activity of the four HBV promoters.
To determine if b-catenin regulates transcription from the HBV promoters, a dual-lucif-
erase reporter assay was performed using HEK293T cells. Expression vectors for a con-
stitutively active b-catenin (S33Y) mutant coactivator (24) and the liver receptor homo-
log 1 (Lrh1) (25) were cotransfected with firefly luciferase reporter gene constructs for
each of the four HBV promoters. As previously demonstrated (10, 26–28), Lrh1
enhanced transcription from the HBV nucleocapsid (core) promoter (Cp) approximately
2.7-fold (Fig. 1A). b-catenin enhanced transcription from the HBV core promoter
approximately 1.5-fold (Fig. 1A), whereas coexpression of Lrh1 and b-catenin
enhanced HBV core promoter activity about 8.5-fold, suggesting that they might act in
a synergistic manner (Fig. 1A). Lrh1 and b-catenin also enhanced transcription from
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the large surface antigen promoter approximately 2-fold when expressed individually
and 5.2-fold when coexpressed (Fig. 1C). These observations indicate that b-catenin
enhances the transcription of the HBV 3.5-kb pregenomic RNA from the core promoter
and thus likely increases subsequent viral biosynthesis. Notably, neither b-catenin nor
Lrh1 enhanced transcription from the HBV X gene or the major surface antigen pro-
moters (Fig. 1B and D).

Effects of b-catenin deletion on liver-specific gene expression. To determine
whether b-catenin enhances viral transcription and subsequent replication in vivo, constitu-
tive liver-specific b-catenin-null HBV transgenic mice (HBV1/2Ctnnb1flox/floxAlbCre1/2) were
generated and characterized, where Cre recombinase is expressed under the albumin (Alb)
promoter. As noted previously (29), the only gross phenotype observed was that both male
and female liver-specific b-catenin-null mice exhibited an approximately 20% decrease in
liver size relative to body weight compared with b-catenin wild-type mice (Cre-negative
males, 4.7% 6 0.4% [n=23] versus Cre-positive males, 3.8% 6 0.5% [n=28], P = 1.78E29,
Wilcoxon rank sum; Cre-negative females, 4.5% 6 0.4% [n=14] versus Cre-positive females
3.5%6 0.5% [n=13], P = 2.71E25, Wilcoxon rank sum).

b-catenin signaling was evaluated by NanoString gene expression analysis of liver RNA
from wild-type and constitutive liver-specific b-catenin-null HBV transgenic mice. b-cate-
nin-null mice, deleted for exons 2 to 6, showed a 4- to 5-fold decrease in Ctnnb1 transcripts
(Fig. 2A). Residual b-catenin transcripts are likely derived from nonparenchymal cells,

FIG 1 Effect of b-catenin on transcriptional activation of the HBV promoters. HEK293T cells were
transfected with a constitutively active b-catenin and/or an Lrh1 expression vector with a firefly
luciferase (LUC) reporter gene construct driven by one of the four HBV promoters, CpLUC (A), SpLUC
(B), PS(1)pLUC (C), and XpLUC (D), respectively. A CMV-driven Renilla luciferase reporter gene
construct (pRL-CMV) was used as an internal control for transfection efficiency. Means and standard
deviations from two replicates are shown. Abbreviations: Cp, nucleocapsid (core) promoter; Sp, major
surface antigen promoter; PS(1)p, large surface antigen promoter; Xp, X-gene promoter.
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FIG 2 Gene expression levels in control and liver-specific b-catenin-null HBV transgenic mice. (A) NanoString
gene expression analysis of b-catenin RNA and b-catenin target gene transcripts from total liver RNA.

(Continued on next page)
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including Kupffer, biliary epithelial, stellate, and endothelial cells. Expression of b-catenin
target genes, including Glul, Cyp2e1, Axin2, Oat, Slc1a2, Lhpp, and Lect2 (29–31), were sig-
nificantly decreased between 3.3- and 29.7-fold in the b-catenin-null HBV transgenic mice
(Fig. 2A). These observations indicate that b-catenin signaling is largely abrogated in the
hepatocytes of these mice.

Glutamate-ammonia ligase (Glul)/glutamine synthetase (GS) transcription is regu-
lated by b-catenin signaling in the liver (29, 30) and is highly expressed around the
central vein within zone 3 of the liver lobule. Therefore, immunohistochemical staining
of Glul is a reliable indicator of active b-catenin signaling (29). Loss of b-catenin
expression in liver tissues from constitutive liver-specific b-catenin-null HBV transgenic
mice results in essentially the complete loss of Glul staining (Fig. 2B), indicating effi-
cient Cre recombinase deletion of the b-catenin gene in hepatocytes with associated
loss of transcriptional coactivator function.

The expression levels of genes encoding the cytokines tumor necrosis factor-a
(Tnf), interferon-g (Ifng), interleukin-6 (Il6), transforming growth factor-b2 (Tgfb2), and
Tgfb3 did not statistically increase with the loss of b-catenin expression (Fig. 2C), indi-
cating that it is unlikely that these cytokines would contribute any modulatory effect
on HBV biosynthesis in these mice (32, 33). Oas2 transcription is very modestly
increased (Fig. 2C), but the levels expressed in these mice are not high enough to have
any appreciable effect on HBV biosynthesis (34, 35). Tgfb1 transcription is also very
modestly increased, but this cytokine is not known to affect HBV biosynthesis in vivo
(Fig. 2C) (36).

b-catenin regulates HBV biosynthesis across the liver lobule. HBV replication
occurs inside the viral capsid in the cytoplasm of hepatocytes (5, 6). High levels of
viral biosynthesis around the central vein are associated with both nuclear and
cytoplasmic HBcAg staining in wild-type b-catenin-expressing HBV transgenic mice
(HBV1/2Ctnnb1flox/floxAlbCre2/2) (Fig. 3). These mice also predominantly display nuclear
HBcAg staining in zone 2 (midzone) of the liver lobule and lack major HBcAg staining
in zone 1 of the liver lobule adjacent to the periportal tract. This pattern of HBcAg
staining correlates with the gradient of HBV biosynthesis across the liver lobule (14).

In both male and female constitutive liver-specific b-catenin-null mice
(HBV1/2Ctnnb1flox/floxAlbCre1/2), HBcAg staining around the central vein of the liver
lobule (zone 3) is drastically decreased (Fig. 3). This indicates that b-catenin signaling
is required for high-level viral replication around the central vein, where Wnt signaling
and associated b-catenin activity drive high levels of target gene expression (15).
Notably, viral replication is not eliminated, as HBV biosynthesis in the midzone of the
liver lobule (zone 2) appears largely unaffected by the loss of b-catenin activity.
However, in the livers of mice lacking b-catenin expression, modest levels of HBcAg
staining appear to persist across the majority of the liver lobule. This suggests that
b-catenin signaling is required for high-level HBV biosynthesis in pericentral hepato-
cytes but is dispensable for additional mechanism(s) that govern lower-level viral bio-
synthesis across the liver lobule.

Gene deletion mediated by the Cre recombinase expressed under the albumin pro-
moter in these mice occurs during late embryonic development (37). Consequently,
the observed phenotype in the constitutively deleted liver-specific b-catenin-null HBV
transgenic mice could result from the lack of b-catenin signaling during neonatal and
postnatal liver development. To test this possibility, inducible liver-specific b-catenin-
null HBV transgenic mice (HBV1/2Ctnnb1flox/floxSA-CRE-ERT21/2) were generated. In this

FIG 2 Legend (Continued)
(B) Representative immunohistochemical analysis of liver samples from HBV transgenic mice. Comparison of
control (HBV1/2Ctnnb1flox/floxAlbCre2/2) and constitutive liver-specific b-catenin-null HBV transgenic mice
(HBV1/2Ctnnb1flox/floxAlbCre1/2). Immunohistochemical staining indicates the presence of glutamate-ammonia
ligase (Glul)/glutamine synthetase (GS) (c, central vein; p, portal vein). (C) NanoString gene expression analysis of
cytokine gene transcripts from total liver RNA. Means and standard deviations are presented (n=9 per group).
Statistically significant differences between groups determined by Wilcoxon rank sum test are indicated; *, P ,
0.05; **, P , 0.01; ***, P , 0.001; ns, not significant.
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model, the Cre recombinase is still driven by the albumin promoter, but its nuclear en-
zymatic activity is tamoxifen dependent, permitting the restricted elimination of
b-catenin activity in the adult liver following tamoxifen treatment. Control mice
(HBV1/2Ctnnb1flox/floxSA-CRE-ERT22/2) with and without tamoxifen treatment plus
HBV1/2Ctnnb1flox/floxSA-CRE-ERT21/2 without tamoxifen treatment exhibit HBcAg
staining patterns indistinguishable from those of HBV1/2Ctnnb1flox/floxAlbCre2/2 mice
(Fig. 4). Similarly, inducible liver-specific b-catenin-null HBV transgenic mice
(HBV1/2Ctnnb1flox/floxSA-CRE-ERT21/2 with tamoxifen treatment as adults) exhibit
HBcAg staining patterns indistinguishable from constitutively deleted mice (HBV1/2

Ctnnb1flox/floxAlbCre1/2) (Fig. 4). This indicates that the loss of high levels of HBV biosynthesis
around the central vein of the liver lobule in b-catenin-null mice is not dependent on the
developmental timing of b-catenin deletion. Additionally, the change in the distribution of
viral replication within the liver lobule occurs within a few days after the loss of b-catenin ac-
tivity in these adult mice (Fig. 4).

Unexpectedly, both constitutive and inducible b-catenin-null mice appear to ex-
hibit increased HBcAg staining immediately surrounding the portal vein of the liver
lobule compared with b-catenin-expressing mice, as the moderate levels of staining
typically observed in zone 2 are also observed in zone 1 of b-catenin-null mice (Fig. 3
and 4). This observation suggests that loss of b-catenin signaling results in an expan-
sion of the distribution of b-catenin-independent viral biosynthesis. To demonstrate
the difference in the distribution of HBcAg staining between wild-type and b-catenin-
null mice, the staining intensity was measured across liver lobules. In wild-type mice
(Fig. 5A and B), the proportion of HBcAg staining across the liver lobule is heavily
weighted toward the central vein (bins 1 to 3). In contrast, the proportion of lobular

FIG 3 HBcAg immunohistochemical analysis of livers from constitutive liver-specific b-catenin-null HBV transgenic mice. Comparison
of control (HBV1/2Ctnnb1flox/floxAlbCre2/2) and liver-specific b-catenin-null HBV transgenic mice (HBV1/2Ctnnb1flox/floxAlbCre1/2).
Representative liver lobules are expanded below each section with central vein on the left and portal vein on the right.
Immunohistochemical staining indicates the presence of HBcAg.
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staining is more evenly distributed in both constitutive (Fig. 5A) and inducible (Fig. 5B)
b-catenin-null mice. Thus, in addition to driving high-level biosynthesis around the
central vein, b-catenin activity is responsible for the establishment and maintenance
of the gradient of HBV biosynthesis observed across the liver lobule, which can be rap-
idly altered in the adult liver following loss of b-catenin activity.

Effect of b-catenin deletion on HBV transcription. The expression of the prege-
nomic HBV 3.5-kb RNA in total liver RNA from constitutive liver-specific b-catenin-null
HBV transgenic mice was evaluated by NanoString gene expression analysis.
Interestingly, the level of HBV 3.5-kb transcripts decreased only modestly (10 to 30%)
in the liver-specific b-catenin knockout mice (Fig. 6A). This phenotype was recapitu-
lated by RNA filter hybridization analysis (Northern blotting) (Fig. 6B and C). The poten-
tial reduction in HBV transcription is consistent with the partial loss of pericentral
HBcAg expression. Additionally, the expansion of viral biosynthesis to periportal hepa-
tocytes suggests an increase in viral transcription in these cells, which may be partially
compensating for the loss of viral transcription around the central vein. A combination
of both mechanisms may be contributing to the altered distribution of HBV biosynthe-
sis across the liver lobule resulting from the loss of b-catenin activity.

Effect of b-catenin deletion on HBV DNA replication. The biosynthesis of HBV
DNA replication intermediates was evaluated by DNA filter hybridization analysis
(Southern). In contrast to the marginal decrease in viral RNA, viral DNA replication
intermediates were decreased approximately 3-fold in both male and female

FIG 4 HBcAg immunohistochemical analysis of livers from inducible liver-specific b-catenin-null HBV transgenic mice. Comparison
of control (HBV1/2Ctnnb1flox/floxSA-Cre-ERT22/2 with and without tamoxifen treatment plus HBV1/2Ctnnb1flox/floxSA-Cre-ERT21/2

without tamoxifen treatment) and inducible liver-specific b-catenin-null HBV transgenic mice (HBV1/2Ctnnb1flox/floxSA-Cre-ERT21/2

with tamoxifen treatment). Mice were either tamoxifen or vehicle treated as indicated. Representative liver lobules are expanded
below each section with central vein on the left and portal vein on the right. Immunohistochemical staining indicates the
presence of HBcAg.
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constitutive liver-specific b-catenin-null HBV transgenic mice (Fig. 7A and B). This sug-
gests that the decrease in pericentral HBcAg staining (Fig. 3 and 5) is associated with a
decrease in viral replication, although overall HBV RNA abundance is not greatly
affected. These observations suggest that the levels of HBV pregenomic RNA in individ-
ual hepatocytes ultimately determines the total level of viral DNA synthesis observed.
Specifically, HBV pregenomic RNA abundance on a per cell basis must exceed a critical
concentration to permit core polypeptide synthesis levels high enough to support viral
capsid formation and hence for replication to occur (12). By altering the shape of the
viral transcript gradient across the liver lobule rather than the total amount of RNA syn-
thesized, the loss of b-catenin activity appears to have reduced the fraction of hepato-
cytes expressing the necessary level of HBV pregenomic RNA (encoding the core poly-
peptide) to support its encapsidation, reverse transcription, and DNA replication.
Consequently, limited alterations in viral transcript levels are associated with a signifi-
cant reduction in HBV replication in the absence of b-catenin activity in vivo.

DISCUSSION

HBV is a major worldwide health problem lacking curative therapies (1–4). While it
is known that liver-enriched nuclear receptors play a major role in regulating the tran-
scription of HBV genes (7–11), there is growing evidence indicating that specific coacti-
vators also play a critical role in regulating viral biosynthesis (12, 13). The HBV

FIG 5 Quantitation of immunohistochemical analysis of livers from wild-type plus constitutive and
inducible liver-specific b-catenin-null HBV transgenic mice. The intensity of HBcAg staining spanning 5
to 10 liver lobules from each mouse was measured and proportionally distributed into 9 bins, where
bins 1 and 9 were central vein (CV) and portal vein (PV) proximal, respectively. The means and standard
deviations of staining intensity are displayed. (A) Control and constitutive b-catenin-null mice: 2 male
and 2 female control [Cre(2)] HBV transgenic mice; 3 male and 3 female constitutive b-catenin-null
[Cre(1)] HBV transgenic mice. (B) Control and inducible b-catenin-null mice: 7 male and 7 female
control HBV transgenic mice comprising 2 Cre2 with vehicle treatment [Cre(2)1V], 2 Cre2 with
tamoxifen treatment [Cre(2)1T], and 3 Cre1 with vehicle treatment [Cre(1)1V]; 3 male and 3 female
inducible b-catenin-null HBV transgenic mice {Cre1 with tamoxifen treatment [Cre(1)1T]}.
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transgenic model of chronic HBV infection presents an opportunity to investigate the
regulation of viral biosynthesis in vivo. Based on the observation that high-level HBV
biosynthesis colocalizes with b-catenin signaling activity around the central vein of
the liver lobule in these mice, the role of b-catenin in regulating HBV biosynthesis was
investigated using liver-specific b-catenin-null HBV transgenic mice.

It was determined that b-catenin can upregulate the transcription of the HBV core
promoter, which drives the expression of the 3.5-kb RNA (Fig. 1). Regardless of whether
the b-catenin gene is deleted in late embryonic development or in adult mice, b-cate-
nin signaling activity and robust viral biosynthesis around the central vein of the liver
lobule are lost (Fig. 2B, 3, and 4). However, the dramatic loss of pericentral HBcAg is
associated with only a very modest reduction in total HBV 3.5-kb RNA (Fig. 6). This sug-
gests that either a small decrease in b-catenin-mediated HBV transcription in the hepa-
tocytes surrounding the central vein is responsible for the major decrease in core
polypeptide synthesis or a larger decrease in b-catenin-mediated HBV transcription in
pericentral hepatocytes is partially compensated for by an increase in viral gene
expression in midzone and periportal hepatocytes. Immunohistochemical analysis of
wild-type and b-catenin-null livers (Fig. 3–5) and the demonstrated ability for b-cate-
nin to regulate HBV transcription (Fig. 1) suggest the latter is more probable, although
both mechanisms could potentially play a role in contributing to the observed distribu-
tions of viral biosynthesis (Fig. 8). It seems less likely that the loss of b-catenin signal-
ing alters the regulation of capsid assembly and/or DNA synthesis, although this possi-
bility has not been specifically excluded.

A possible explanation for the elimination of high-level capsid synthesis and associ-
ated HBV replication around the central vein is the loss of viral RNA synthesis mediated
by b-catenin coactivation of transcription factors known to regulate HBV core

FIG 6 Analysis of HBV RNA expression in liver-specific b-catenin-null HBV transgenic mice. (A) Counts of HBV 3.5-kb transcripts in
total liver RNA from control (Cre2) and constitutive liver-specific b-catenin-null HBV transgenic mice (Cre1) by NanoString gene
expression analysis (n= 9 per group). (B) RNA filter hybridization analysis on total liver RNA from control (Cre2) and constitutive
liver-specific b-catenin-null HBV transgenic mice (Cre1). The glyceraldehyde 3-phosphate dehydrogenase (Gapdh) transcript was
used as an internal control for the quantitation of the HBV 3.5-kb RNA. Noncontiguous lanes from a single analysis are presented.
(C) Quantitation of viral 3.5-kb RNA from the RNA filter hybridization analysis. Means and standard deviations are presented (male
Cre2, n= 23; male Cre1, n= 28; female Cre2, n= 14; female Cre1, n=13). Statistically significant differences between HBV
transgenic mice by Wilcoxon rank sum test are indicated; *, P , 0.05; **, P , 0.01; ***, P , 0.001; ns, not significant.
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promoter activity. Specifically, Lrh1 and FoxO1 are DNA-binding proteins known to
activate HBV RNA synthesis and additionally can utilize b-catenin as a transcriptional
coactivator (10, 16, 21–23). Reporter gene analysis establishes that b-catenin can
enhance HBV core promoter activity (Fig. 1). It seems likely that the loss of b-catenin
activity adjacent to the central vein directly results in decreased viral transcription, as
observed for a number of cellular genes (Fig. 2A) (29), and consequently HBV replica-
tion is also reduced in pericentral hepatocytes (Fig. 8).

In contrast, the remaining transcription and replication observed across the liver lobule
must be independent of b-catenin activity. Furthermore, the dramatic loss of capsid biosyn-
thesis in the pericentral hepatocytes but minimal change in HBV RNA levels in liver-specific
b-catenin-null mice (Fig. 3–6) suggests that there must be a compensatory increase in viral
transcription in some or all hepatocytes across the liver lobule. Evidence for this compensa-
tory increase in viral transcription is most apparent in the periportal region of the liver lobule
where b-catenin-null mice display cytoplasmic accumulation of viral core particles while
wild-type mice typically do not (Fig. 3–5 and 8). Interestingly, sera and hepatic bile acid levels
are significantly increased in liver-specific b-catenin-null mice (38, 39). Bile acids are ligands
for the farnesoid X receptor (Fxr) (25, 40–42), a known activator of HBV transcription (10, 43).
Consequently, increased Fxr activity in b-catenin-null mice caused by elevated bile acid lev-
els may be increasing viral transcription, particularly around the portal vein where viral bio-
synthesis is minimal in wild-type HBV transgenic mice (14). This increase in transcription may

FIG 7 Analysis of viral DNA replication intermediates of liver-specific b-catenin-null HBV transgenic mice.
(A) DNA filter hybridization analysis on total liver DNA from control (Cre2) and constitutive liver-specific
b-catenin-null HBV transgenic mice (Cre1). The HBV transgene was used as an internal control for the
quantitation of the HBV replication intermediates. Abbreviations: Tg, transgene; RC, relaxed circular
replication intermediates; SS, single-stranded replication intermediates. Noncontiguous lanes from a single
analysis are presented. (B) Quantitation of viral DNA replication intermediates from the DNA filter
hybridization analysis. Means and standard deviations are presented (male Cre2, n=23; male Cre1, n=28;
female Cre2, n=14; female Cre1, n=13). Statistically significant differences between HBV transgenic mice
by Wilcoxon rank sum test are indicated; *, P , 0.05; **, P , 0.01; ***, P , 0.001; ns, not significant.
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partially compensate for the loss of b-catenin-dependent transcription around the central
vein, potentially explaining the limited change of HBV pregenomic 3.5-kb RNA expression
(Fig. 6).

Although Fxr-mediated HBV transcription might partially compensate for the re-
stricted loss of b-catenin-activated viral transcription in pericentral hepatocytes, it did
not restore the gradient of HBV biosynthesis across the liver lobule or total HBV replica-
tion (Fig. 7). Indeed, wild-type HBV transgenic mice display high levels of viral biosyn-
thesis in hepatocytes located in zone 3 of the liver lobule around the central vein and
negligible levels of viral biosynthesis in hepatocytes located in zone 1 proximal to the
portal vein (Fig. 3–5). In contrast, liver-specific b-catenin-null HBV transgenic mice dis-
play an approximately equivalent level of HBV biosynthesis across the liver lobule
(Fig. 3–5 and 8). Given that HBV pregenomic 3.5-kb RNA must exceed a threshold level
within an individual cell before capsid formation and HBV replication can occur (12),
the differences in the levels of replication between wild-type and liver-specific b-cate-
nin-null HBV transgenic mice can be explained by the difference in distribution of viral
transcripts across the liver lobule. The high levels of viral RNA and DNA in pericentral
hepatocytes of wild-type HBV transgenic mice are absent in b-catenin-null mice where
the more even distribution of transcript levels across the liver lobule results in the ab-
sence of any hepatocytes displaying abundant viral replication. This leads to similar
levels of HBV transcripts in these mice but lower overall levels of replication in b-cate-
nin-null mice (Fig. 6 and 7). These observations suggest that therapeutically manipulat-
ing b-catenin activity in the liver of chronic HBV carriers might represent an approach
to limiting viral replication and virion production while permitting viral polypeptide
synthesis, which might serve as a target for immunological clearance with associated
disease resolution.

FIG 8 Model for the role of b-catenin in regulating HBV biosynthesis in HBV transgenic mice. HBV
replication occurs within the assembling capsids in the cytoplasm of hepatocytes. Thus, cytoplasmic staining
of HBcAg serves as a readout of the lobular distribution of viral replication (14). b-Catenin activity directs
robust HBV transcription immediately proximal to the central vein via endothelial cell-derived Wnt signaling
(15). This poorly diffusible signal rapidly diminishes across the liver lobule (15). Lower levels of viral
replication present in midzone and periportal zone 1 hepatocytes appear to be supported by viral
transcription that is independent of direct b-catenin activity. In the absence of b-catenin activity, robust
HBV biosynthesis is lost from pericentral zone 3 hepatocytes with compensating viral transcription and
hence enhanced capsid biosynthesis expanding to include periportal zone 1 hepatocytes.
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MATERIALS ANDMETHODS
Cells, transfections, and dual-luciferase assay. The human embryonic kidney cell line HEK293T

was grown in RPMI 1640 medium supplemented with 10% fetal bovine serum at 37°C in 5% CO2.
Transfections of 5� 105 HEK293T cells were performed as previously described (44). The four HBV pro-
moter firefly luciferase (LUC) plasmid constructs CpLUC, SpLUC, PS(1)pLUC, and XpLUC and the promo-
terless firefly luciferase control construct p19DLUC have been described previously (45, 46). The trans-
fected DNA mixture consisted of 1mg of a LUC plasmid, 0.1mg of a constitutively active b-catenin
expression vector, pBabe-b-cat-S33Y (24), and/or an Lrh1 expression vector, pCMX-mLRH1 (25), and
0.1mg of a cytomegalovirus (CMV) immediate early promoter-driven Renilla luciferase expression vector
(pRL-CMV, Promega), which served as an internal control for transfection efficiency. Firefly and Renilla lu-
ciferase signals were obtained using the dual-luciferase reporter assay (Promega) according to the man-
ufacturer’s instructions 40 to 48 h after transfection.

Transgenic mice. The production and characterization of the HBV transgenic mouse lineage 1.3.32
has been described (14). These HBV transgenic mice contain a single copy of a terminally redundant, 1.3
genome-length copy of the HBVayw genome integrated into the mouse chromosomal DNA. High levels
of HBV replication occur in the livers of these mice (14, 47). The mice used in breeding were homozy-
gous for the HBV transgene and were maintained on the SV129 genetic background (48). The produc-
tion of the conditional b-catenin-null mice (B6.129-Ctnnb1tm2Kem/KnwJ; The Jackson Laboratory) has
been described (49). These mice have loxP sites flanking exons 2 to 6 and were maintained on a mixed
B6.129 background. The production of the constitutive (lineage B6.Cg-Tg[Alb-cre]21Mgn/J; Jackson
Laboratory, designated AlbCre) and inducible (lineage Albtm1[cre/ERT2]Mtz; Mouse Genome Informatics, des-
ignated SA-CRE-ERT2) liver-specific albumin Cre transgenic mice has been described previously, and mice
were maintained on the SV129 and C57BL/6 backgrounds, respectively (37, 50). Constitutive liver-specific
b-catenin-null HBV transgenic mice were sacrificed at 4 to 12weeks of age. For the inducible liver-spe-
cific b-catenin-null HBV transgenic mice, Cre recombinase was induced by three injections (intraperito-
neally) of 50mg/kg tamoxifen in corn oil on days 0, 2, and 4. Eight- to 12-week-old mice were sacrificed
14 days after the initial injection.

Mice were screened for the HBV transgene, b-catenin floxed allele, and Cre recombinase by PCR analysis
of tail DNA. Tail DNA was prepared by incubating 0.5 cm of tail in 500ml of 100mM Tris hydrochloride (pH 8.0),
200mM NaCl, 5mM EDTA, and 0.2% (wt/vol) SDS containing 100mg/ml proteinase K for 16 to 20h at 55°C.
Samples were centrifuged at 14,000 rpm in an Eppendorf 5417C microcentrifuge for 10 min, and the superna-
tant was precipitated with 500ml of isopropanol. DNA was pelleted by centrifugation at 14,000 rpm in an
Eppendorf 5417C microcentrifuge for 10 min and was subsequently dissolved in 100ml of 5mM Tris hydro-
chloride (pH 8.0) and 1mM EDTA. The HBV transgene was identified by PCR analysis using the oligonucleotides
59-TCGATACCTGAACCTTTACCCCGTTGCCCG-39 (oligonucleotide XpHNF4-1; HBV coordinates 1,133 to 1,159)
and 59-TCGAATTGCTGAGAGTCCAAGAGTCCTCTT-39 (oligonucleotide CpHNF4-2; HBV coordinates 1,683 to
1,658) and 1ml of tail DNA. A PCR product of 551bp indicated the presence of the HBV transgene. The b-cate-
nin wild-type and floxed alleles were identified by PCR analysis using the oligonucleotides 59-
AAGGTAGAGTGATGAAAGTTGTT-39 (oligonucleotide RM41) and 59-CACCATGTCCTCTGTCTATTC-39 (oligonu-
cleotide RM42) (49) and 1ml of tail DNA. A PCR product of 221bp indicated the wild-type allele, whereas a PCR
product of 324bp indicated the floxed allele. The AlbCre and SA-CRE-ERT2 transgenes were identified by PCR
analysis using the oligonucleotides 59-CCAGCTAAACATGCTTCATCGTCG-39 (oligonucleotide CRE-1) and 59-
ATTCTCCCACCGTCAGTACGTGAG-39 (oligonucleotide CRE-2) and 1ml of tail DNA. A PCR product of 300bp
indicated the presence of the Cre transgene. The samples were subjected to 42 amplification cycles involving
denaturation at 94°C for 1 min, annealing at 55°C for 1 min, and extension from the primers at 72°C for 2 min.
The 20ml reaction conditions were as described by the Taq 2� MeanGreen master mix (Empirical Biosciences).

HBV transgenic mice were fed normal rodent chow and water ad libitum. Mice were bled from the
retroorbital plexus and sacrificed. Liver tissue was frozen in liquid nitrogen and stored at 280°C prior to
DNA and RNA extraction.

Ethics statement. All animal experiments were IACUC approved and performed according to institu-
tional guidelines with University of Illinois at Chicago Institutional Biosafety and Animal Care Committee
(ACC) approval (ACC number 19-190). All animal procedures were performed in the College of Medicine
Research Building at the University of Illinois at Chicago and adhere to the policies of the NIH Office of
Laboratory Animal Welfare, the standards of the Animal Welfare Act, the Public Health Service Policy,
and the Guide for the Care and Use of Laboratory Animals.

Liver histology. Liver tissue samples were fixed in sodium phosphate-buffered formalin
(Fisher), embedded in paraffin, and sectioned (5mm). Immunohistochemical detection of HBcAg in
paraffin-embedded mouse liver sections was performed using a polyclonal rabbit anti-HBcAg pri-
mary antiserum (Dako, B0586). Glutamate-ammonia ligase (Glul)/glutamine synthetase (GS) was
detected with a monoclonal mouse anti-GS primary antibody (BD Biosciences, 610517).
Immunohistochemical slides were developed using the BOND polymer refine detection system
(Leica Biosystems).

HBcAg staining was quantitated using ImageJ software. 3,39-Diaminobenzidine (DAB) staining was
deconvoluted from brightfield images using the “Color Deconvolution 2” plugin for ImageJ (51, 52). For
each liver lobule, the DAB staining across the region spanning the central and portal veins was quanti-
fied and divided into 9 bins, and fractional staining per bin was determined.

HBV DNA and RNA analysis. Total DNA and RNA were isolated from the livers of HBV transgenic
mice as described (53, 54). DNA (Southern) filter hybridization analyses were performed using 20mg of
HindIII-digested total cellular DNA (54). Filters were probed with 32P-labeled HBVayw genomic DNA (55)
to detect HBV sequences. RNA (Northern) filter hybridization analyses were performed using 20mg of
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total cellular RNA as described (54). Filters were probed with 32P-labeled HBVayw genomic DNA to
detect HBV sequences and mouse glyceraldehyde 3-phosphate dehydrogenase (Gapdh) cDNA to detect
the Gapdh transcript used as an internal control (56). Filter hybridization analyses were quantified by
phosphor imaging using a Packard Cyclone storage phosphor system. Storage phosphor screens were
scanned using a Typhoon scanner (GE) and quantified using ImageJ.

Nanostring nCounter gene expression transcript counting was used to quantify the levels of Ctnnb1
(exon 3), Glul, Cyp2e1, Axin2, Oat, Slc1a2, Lhpp, Lect2, Tnf, Ifng, Il6, Oas2, Tgfb1, Tgfb2, Tgfb3, and HBV 3.5-
kb transcript levels in 50 ng of mouse liver RNA using a specifically designed CodeSet. RNA was analyzed
on a NanoString nCounter SPRINT profiler following the manufacturer’s instructions (NanoString
Technologies, Seattle, WA, USA). Data were quality controlled and normalized using the nSolver analysis
software 4.0 (NanoString Technologies) as recommended by the manufacturer. RNA expression levels
were normalized to mouse Cnot1, Rps29, Slc9a8, Mrps5, and Scarb1 RNA controls.

Statistical analysis and plotting. All statistical analyses and plotting were performed in R 4.0.5 (57)
with additional packages “tidyverse” (58), “ggbeeswarm” (59), “ggsignif” (60), and “cowplot” (61).
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