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Summary

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few 

therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper 

exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an 

alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic 

target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring 

chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our 

data support complex regulation of metabolic pathways by crosstalk between post-translational 

modifications including ubiquitylation. Numerous immune-related proteogenomic observations 

suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations 

argue for more nuanced assessment of RB1 protein expression and phosphorylation before 

declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD and 

HNSCC identified both unique and common therapeutic vulnerabilities. These observations and 

proteogenomics data resources may guide research into the biology and treatment of LSCC.

In Brief

Comprehensive proteogenomic characterization of lung squamous cell carcinomas and paired 

normal adjacent tissues identifies taxonomic subclasses, alternative driver events and insights into 

immune modulation, as well as putative biomarkers and potential therapeutic targets.

Graphical Abstract
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Introduction

Lung cancer is the leading cause of cancer-associated mortality (Bray et al., 2018; Siegel 

et al., 2020). Unlike lung adenocarcinomas (LUAD), patients with lung squamous cell 

carcinoma (LSCC) have not benefited from targeted therapies (Hammerman et al., 2012; 

Paik et al., 2019). Potentially druggable genetic events in three primary pathways (FGFR1, 

PI3K, or G1/S checkpoint genes such as CDKN2A) are found in upwards of 60% but 

targeting these clinically has largely failed (Paik et al., 2019). While other therapeutic 

regimens are being explored as part of the LungMAP consortium (Ardini-Poleske et al., 

2017), to date only immunotherapy has evolved into a successful therapeutic strategy 

for patients with LSCC (Karachaliou et al., 2018; Paz-Ares et al., 2018). Given the 

lack of established actionable genomic targets, a comprehensive characterization of the 

proteogenomic landscape of LSCC, including the associated post-translational modifications 

(PTMs) that are key to protein activity and signaling, is a crucial step forward. Such studies 

will aid in connecting genomic aberrations to molecular and clinical phenotypes and in 

subsequently identifying therapeutic vulnerabilities and effective, biomarker-based patient 

stratification.
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We characterized 108 prospectively-collected, treatment-naïve, primary LSCC tumors and 

99 paired normal adjacent tissues (NATs), identifying actionable therapeutic protein targets 

and elucidating cellular signaling pathways and crosstalk between multiple PTMs. The 

dataset provides an exceptional resource to guide further research and support development 

of therapeutic modalities in LSCC.

Results

Proteogenomic landscape of LSCC

We performed deep-scale molecular analysis spanning nine different data types on LSCC 

tumors and NATs prospectively collected from 108 patients (Figure 1A, S1A, Table S1–3). 

Proteomics data were generated using TMT11-based multiplexing linked by a common 

reference (Figure S1A) and demonstrated high technical quality (Figure S1B–C). The cohort 

demographics are summarized in Figure 1B. Most self-reported never-smokers displayed 

high genomic smoking scores (Figure S1D), highlighting occasional discrepancy between 

self-reported smoking status and genomic evidence, as previously reported (Gillette et al., 

2020). The genomic landscape reaffirmed previously reported somatic alterations in LSCC 

(Hammerman et al., 2012) (Figure 1C). Principal component analysis (PCA) of global 

proteomic and PTM data showed clear separation of tumors and NATs (Figure S1E).

Proteogenomic data helped annotate the impact of copy number alteration (CNA) events 

(Figure 1D,E). Of 5,523 significant (FDR<0.01) cis CNA-mRNA events, 2,154 were 

concordantly correlated with protein expression, including 138 “cancer associated genes” 

(CAG) (Figure 1E, Table S1). We identified six amplified (including WHSC1L1, CCND1, 

and SOX2) and 29 deleted (including NCOR1, SETD2, and CBL) CAGs in significant 

focal events (Q<0.25) (Figure 1E, Table S4) (Mermel et al., 2011). Intriguingly, WHSC1L1 
(NSD3) is part of a recurrent focal amplicon (8p11.23) in LSCC that encompasses FGFR1. 

Therapies targeted against FGFR1 have been unsuccessful (Lim et al., 2016; Weeden et al., 

2015). Proteomics data suggested that NSD3, rather than FGFR1, could be the critical driver 

oncogene within this amplicon (Figure 1F), nominating it as a potential therapeutic target. 

While this paper was under review, NSD3 was demonstrated to be a key regulator of LSCC 

tumorigenesis, mediating oncogenic chromatin changes (Yuan et al., 2021).

To investigate the impact of CNAs on noncognate gene products, we matched patterns 

of these significant trans-effects (vertical stripes in Figure 1D) to perturbation profiles 

from the Connectivity Map (CMap) (https://clue.io/cmap). Six CNAs (IKBKAP, PIN1, 

DNAJB1, IL18, NR2F6, AKAP) (Table S4) were enriched for both amplification and 

deletion (FDR=0.06) and associated (Fisher’s exact p<0.01) with clinical metadata. IL-18 
deletion and amplification correlated with decreased and increased IL-18 protein expression 

and xCell immune score, respectively, (Figure S1F (upper panel)), consistent with its playing 

a key modulatory role in the tumor microenvironment of NSCLC (Timperi et al., 2017). 

NR2F6 amplification and deletion were correlated with NR2F6 protein expression and 

anticorrelated with xCell immune score (Figure S1F (lower panel)). NR2F6 acts as a non­

redundant immune checkpoint in cancer, and even partial knockdown works synergistically 

with PD-L1 blockade (Klepsch et al., 2018).
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LSCC tumor DNA showed overall hypermethylation relative to NATs (Figure S1G), 

with tumors separating into CIMP (CpG island methylator phenotype) clusters (Figure 

S1H). Multi-omic data allowed the identification of “cascading” promoter methylation cis­

effects across cognate mRNA, protein and PTM abundances, supporting their functional 

significance. Of 90 genes that showed such significant (FDR<0.1) cis-effects in tumors 

(Table S4), 20 were also differentially expressed (FDR<0.01) between tumors and NATs 

(Figure 1G). While most were newly associated with LSCC, methylation-driven expression 

of FAM110A, PTGES3, PLAU and SLC16A3 (Faubert et al., 2017; Gao et al., 2018; 

Kikuchi et al., 2012; Liang et al., 2013; Payen et al., 2020; Showe et al., 2009) has been 

implicated in lung and other cancers.

Multi-omic clustering identifies five LSCC molecular subtypes, including one that is EMT­
Enriched

We performed non-negative matrix factorization (NMF)-based single- and multi-omic 

unsupervised clustering on CNA, RNA, protein, phosphoprotein and acetylprotein datasets 

from 108 tumors, excluding ubiquitylprotein data as it was not available for the entire cohort 

(Figure 1A). The five resulting multi-omic subtypes (Figure 2A–B, Figure S2A) were named 

based on their predominant pathway associations and similarities to previously defined 

RNA clusters (Wilkerson et al., 2010). Significant associations between NMF subtypes and 

cohort metadata are presented in Table S1. Two NMF subtypes, “Basal-Inclusive” (B-I) 

and “Epithelial to Mesenchymal Transition-enriched” (EMT-E), emerged from partitioning 

of samples that showed similarity to the TCGA-derived RNA Basal cluster, although only 

B-I retained significant association after Bonferroni correction (Fisher’s p<0.01, Table S1). 

B-I tumors showed basaloid histology and upregulated metabolic, immune and estrogen 

receptor signaling (Figure 2B). EMT-E showed upregulation of EMT, Angiogenesis and 

Myogenesis (Figure 2B), with myxoid histologic features and fibroblast infiltration. A third 

subtype characterized by mutations in KEAP1, CUL3 and NFE2L2 genes and high-level 

amplification (GISTIC threshold value = 2) of SOX2 and TP63 (Figure 2A–B, Table 

S2) was labeled the “Classical” subtype, consistent with TCGA nomenclature and with 

a previous publication (Stewart et al., 2019). These showed classical histologic features, 

CIMP-high enrichment, upregulation of OxPhos- and proliferation-related pathways, and 

downregulation of immune signaling (Figure 2A–B). A fourth NMF subtype was designated 

“Inflamed-Secretory” (I-S) due to its alignment with the RNA-based Secretory cluster 

and strong upregulation of immune-related pathways. The fifth, “Proliferative-Primitive” 

(P-P) NMF subtype displayed upregulated proliferation-related pathways, downregulated 

immune signaling, and enrichment of CIMP-low samples. Within each of these five 

NMF clusters were samples with low NMF cluster membership scores, which could be 

considered as belonging to a “mixed” subgroup, since they showed features of more than 

one subtype. Mixed subgroup membership, a possible readout of tumor heterogeneity, 

conferred significantly worse survival (Figure 2C), an observation also made in a recent 

proteogenomic analysis of glioblastoma (Wang et al., 2021). The mixed class was associated 

in the current cohort with increased frequency of SOX2 amplifications (p = 0.0038) but not 

grade, mutation burden, stemness or other tested variables.
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We compared B-I (Figure S2B) and EMT-E (Figure S2C) to other subtypes to identify 

distinguishing features. B-I had hyperphosphorylated M phase Histone 1 T11 (Happel et 

al., 2009) and elevated expression of both TACSTD2 (TROP2), a cell-surface glycoprotein 

that drives growth and metastasis (Hsu et al., 2020), and MARK2, a kinase that regulates 

cell polarity and leads to cisplatin resistance (Hubaux et al., 2015; Lewandowski and 

Piwnica-Worms, 2014). Transcription activator PBX3, which is upregulated only at the 

protein level (Figure S2B), promotes invasion, proliferation, and chemoresistance and is 

associated with poor prognosis, (Lamprecht et al., 2018) including in laryngeal squamous 

cell carcinoma (Wu et al., 2020). Pathway analysis of proteins highly correlated with 

PBX3 highlighted neutrophil activation and degranulation (Figure S2D), consistent with 

the significant upregulation of neutrophilic granule proteins and chemotactic factors (Figure 

S2E) and with the xCell-based deconvolution signature (Figure S2F). This correlation was 

not observed in paired NATs, suggesting a tumor-specific role.

In addition to a strong EMT signature (Figure 2B), the EMT-E subtype showed upregulated 

VCAN (Figure S2C), a tumor-promoting target of SNAIL (Zhang et al., 2019a) expressed 

in cancer-associated fibroblasts (CAFs) (Chida et al., 2016), and FHL3, a protein that 

stabilizes EMT-associated transcription factors (Li et al., 2020) (Figure S2C). DVL3, FN1 

and FHL2, all Wnt pathway regulators, were upregulated in the proteomics dataset, and 

cell-cell signaling by Wnt was one of the significantly (FDR=0.04) enriched pathways 

in this subtype. As shown in Figure 2D–E, coordinated high expression of EMT and 

CAF proteins, xCell fibroblast scores, and a “fibroblast proliferation” signature suggested 

that CAFs and tumor epithelium might collaborate in the EMT-E phenotype. This was 

further supported by enrichment of EMT-related receptor tyrosine kinases (RTKs), as 

described below. Immunohistochemical co-staining of a small subset of tumors for the 

epithelial marker pan-cytokeratin (CK) and CAF marker α-smooth muscle actin (α-SMA) 

demonstrated the presence in EMT-E tumors of both CAFs and tumor cells undergoing 

EMT (Figure S2G), with significant enrichment of co-stained cells in the EMT-E subtype 

(Wilcoxon p=0.025), but not of cells showing single staining of either CK or α-SMA alone. 

TGFβ is a well-established and potent inducer of EMT (Su et al., 2020), and a Library 

of Integrated Network-Based Cellular Signatures-based (LINCS) query for compounds that 

reversed the EMT-E signature showed enrichment for TGFβ inhibitors (Figure S2H, Table 

S4H).

Integrating our global proteome data with a prior LSCC dataset (Stewart et al., 2019) 

resulted in six clusters largely recapitulating RNA, proteomic and multi-omic clusters 

defined in the current study (Figure S2I–J).

NMF EMT-E subtype tumors show phosphorylation-driven PDGFR and ROR2 signaling.

Though LSCC lacks the RTK mutations for which targeted inhibition has dramatically 

improved therapeutic options in LUAD, other modes of RTK activation, inferred from 

phosphoproteomic data, may nonetheless nominate targeted inhibition for some LSCC 

patients. Hence, we derived a serine/threonine-predominant correlation-based phosphosite 

enrichment score (CBPE score) for all RTKs in our tumor cohort. Of nine RTKs with high 

CBPE scores in LSCC tumors, seven were significantly associated with NMF subtypes 
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(Kruskal-Wallis p <0.01). Scores for PDGFRB and ROR2, markedly elevated in EMT-E 

(Figure 2F), were highly correlated with the loss of epithelial cell-cell junction markers 

and upregulation of mesenchymal proteins involved in remodeling of extracellular matrix, 

induction of EMT, and promotion of cell migration, which mark the transition from 

epithelial to mesenchymal state (Figure 2G) (Herreño et al., 2019; Niu et al., 2012). As 

summarized in Figure S2K, we found phosphosite-based evidence for upregulation of both 

the planar cell polarity and calcium-dependent branches of non-canonical Wnt signaling, 

initiated through ROR2 or PDGFR (Tam et al., 2013), both targetable (Roskoski 2018; 

Debebe and Rathmell 2015) and recently implicated in the progression from a hybrid E/M 

to a highly mesenchymal state (Kröger et al., 2019). Further functional characterization is 

warranted to confirm the contribution of these RTKs to the EMT-E phenotype and to test the 

impact of their modulation.

Loss of CDK4/6 pathway inhibitors is a universal feature of LSCC but Rb1 expression is 
variable

We investigated the impact of recurrent mutations on cognate RNA, proteins and PTMs 

(cis-effects) and on a set of cancer associated genes (trans-effects) (Bailey et al., 2018). 

Significant (FDR<0.05) Cis/Trans pairs are shown in Figure 3A–D. RB1 mutated tumors 

had upregulated cell cycle-related protein expression. NOTCH1 mutation led to elevated 

GSK3B protein and phosphorylation (T433), downregulation of inhibitory sites on GSK3A 

(S21) and upregulation of NLK. NLK (Ishitani et al., 2010) and GSK3B (Foltz et al., 

2002; Jin et al., 2009; Zheng and Conner, 2018) inhibit NOTCH1, recently described as a 

tumor suppressor in LSCC (Sinicropi-Yao et al., 2019), suggesting that both might inhibit 

NOTCH1 downstream signaling in tumors with NOTCH1 mutations. ARID1A is one of 

the most frequently mutated SWItch Sucrose Non-Fermentable (SWI/SNF) ATP-dependent 

chromatin remodeling complex members. Mutations were associated with higher tumor 

mutational burden (Shen et al., 2018) (Figure S3A) and led to protein downregulation, 

associated with worse overall survival in NSCLC (Hung et al., 2020).

Paradoxically, mutations in CDKN2A, proposed as a potential biomarker for CDK4/6 

inhibitors (Ahn et al., 2020; Middleton et al., 2020), resulted in increased RNA expression 

(Figure 3A). We analyzed the effects of genetic and epigenetic alterations of CDKN2A 
on both its major isoforms, p16INK4a (p16) and p14ARF (p14) (Table S4). As expected, 

its homozygous deletion resulted in the loss of expression of both isoforms (Figure 3E). 

However, only eight of the 58 CDKN2A wild-type (WT) samples showed p16 RNA 

expression levels that were comparable to samples with CDKN2A/p16 missense mutations 

(log2(FPKM+1)>2). Many of those CDKN2A/p16 mutations were unlikely to result in 

nonsense-mediated decay (Figure S3B), accounting for preserved expression in those 

samples. Notably, 28 WT tumors showed hypermethylation of the p16 but not the p14 

promoter and suppression of RNA and protein expression for CDKN2A/p16, while 18 

additional WT tumors had reduced expression despite having no clear genetic or epigenetic 

alteration. Furthermore, the WT samples with high CDKN2A/p16 expression had RB1 
mutations or deletions and/or low Rb protein levels, consistent with a recently published 

pan-cancer analysis of the CDK4/6 pathway that showed mutual exclusivity between 

mutations in these two genes (Knudsen et al., 2020). This suggests that loss of one of 
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these two key CDK4/6 pathway inhibitors is a universal feature of LSCC. Conversely, while 

amplification of Cyclin D - CDK4/6 complex genes is frequent in LSCC (Hammerman et 

al., 2012), there was no association between the amplification of CCND2, CCND3, CDK4, 

or CDK6 and either CDKN2A/p16 protein or Rb protein/phosphoprotein levels (Table 

S4). CCND1 amplification resulted in significantly higher mean levels of Rb protein and 

phosphoprotein compared to WT samples, though the distributions were overlapping (Figure 

S3C). Intriguingly, phospho-Rb levels, which reflect CDK4/6 activity, correlated with 

response to CDK4/6 inhibitors in LSCC cell lines despite the heterogeneous distribution 

in response for cells with mutations in CDKN2A and copy number alterations in CCND1 
and CDKN2A (Figure S3D). LSCC trial data have generally shown minimal efficacy of 

CDK4/6 inhibition, but outlier responses have been present in trials with abemaciclib 

(Patnaik et al., 2016) and palbociclib (Ahn et al., 2020; Edelman et al., 2019; Middleton 

et al., 2020). While we found that CCND1 amplification resulted in higher average levels of 

phosphorylated Rb, the heterogeneity of Rb expression and phosphorylation in samples with 

CCND1 amplification provides a potential explanation for some patients’ lack of response 

to CDK4/6 inhibitor therapies. Improved prediction based on a downstream functional 

assessment of G1/S checkpoint alterations (i.e. RB1 protein expression and phosphorylation) 

may identify a subset of tumors sensitive to CDK4/6 inhibition.

NRF2 pathway activation in tumors with and without NRF2 pathway mutations

LSCC showed mutations of three key genes in the NRF2 antioxidant response pathway, 

NFE2L2 (NRF2), CUL3 and KEAP1. NFE2L2 phosphorylation was observed in samples 

with any of these mutations (Figure S3E). LSCC tumors were annotated as “NRF2 pathway 

mutated” (n=33; with either one hit [n=28] or two hits [n=5] in NFE2L2, KEAP1, and 

CUL3), or “NRF2 WT” (n=68). Compared to WT, NRF2 pathway mutated tumors showed 

highly concordant differential expression of mRNA, protein and phosphoprotein levels 

of NRF2 pathway genes (Figure 3F, Figure S3F–G, Table S4), some with therapeutic 

implications. A subset of NRF2 gene products showed a dosage effect (SQSTM1, 

NR0B1, AKR1B10, CARD11, FFAR2) with the five cases harboring two hits (Table S4) 

demonstrating increased up-/down-regulation of NRF2 pathway genes relative to one-hit 

cases (Figure S3H). Using the proteogenomic signature (Table S4) that defined NFE2L2 
mutated tumors, we derived an ssGSEA-based NRF2 pathway score that was enriched 

not only in NRF2 pathway mutated tumors, but also in samples without NRF2 pathway 

mutations, especially in the NMF Classical subtype (Figure 3G). These samples showed 

increased NFE2L2 phosphorylation, indicative of NRF2 pathway activation. Although the 

kinase(s) responsible for phosphorylation of NRF2 in LSCC are unclear, CDK5 protein 

(Figure 3H) and PTM-SEA-derived activity (Krug et al., 2018) (Figure 3I) were significantly 

upregulated (FDR<0.05) in the Classical subtype. CDK5 phosphorylation of NFE2L2 S433 

mediates its activation in astrocytes (Jimenez-Blasco et al., 2015) and can likely play a role 

in CDK5-mediated NRF2 activation in LSCC tumors. Intriguingly, unlike LUAD (Gillette 

et al., 2020), KEAP1 mutations did not result in significantly reduced protein expression in 

LSCC, although missense mutations were mostly nonoverlapping, suggesting heterogeneity 

in NRF2 pathway dysregulation in NSCLC subtypes.
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Proteogenomic analysis of chromosome 3 prioritizes therapeutic targets in LSCC

Chromosome 3q, which harbors key squamous differentiation markers SOX2 and TP63 
(Qian and Massion, 2008), showed the most dramatic arm-level amplification in this cohort 

(Figure S4A). To assess potential drivers in the 3q amplicon, we identified 3q genes for 

which CNA correlated with RNA and protein and expression differed between tumors and 

NATs. TP63 showed the highest elevation in tumors (Figure 4A). LSCC cell lines amplified 

for TP63 and SOX2 were highly dependent upon them, supporting oncogene addiction 

(Figure S4B).

As previously reported (Campbell et al., 2018; Lo Iacono et al., 2011), ΔNp63α was the 

dominant TP63 isoform in this dataset (Figure S4C) and was highly correlated with TP63 

expression (Figure S4D). Its amplification was associated with improved survival in the 

TCGA dataset (Figure S4E). In contrast to the general elevation of TP63 copy number, 

transcript, and protein abundance in LSCC tumors compared to NATs, 10 “Np63-low” 

samples histologically confirmed to be LSCC showed no elevation at RNA or protein levels 

(Figure 4B). The apoptosis inhibitor survivin (BIRC5) was among the most overexpressed 

proteins in this Np63-low group (Figure 4C). Notably, a substantial number of LSCC cell 

lines also had low Np63 expression (Figure S4F), and those TP63-low cell lines were 

significantly more vulnerable to the survivin inhibitor YM-155 (Figure S4G). Survivin 

promotes cell proliferation and G2M checkpoints (Wheatley and Altieri, 2019), evident in 

Np63-low samples (Figure S4H). Small molecule inhibitors and inhibitory peptides targeting 

survivin are being explored as part of ongoing clinical trials including in NSCLC (Giaccone 

et al., 2009; Kelly et al., 2013; Li et al., 2019a), but have shown modest or no improvement 

(Kelly et al., 2013). Our data on the newly identified Np63-low LSCC tumors suggests that 

TP63 status may identify patients with potential response to survivin inhibition.

Overexpression of miR-205, a biomarker to distinguish LSCC from other NSCLC 

(Lebanony et al., 2009) (Figure S4I), was associated with decreased promoter DNA 

methylation (Figure S4J) and elevation of ΔNp63α, a transcriptional regulator of this 

miRNA (Tran et al., 2013). miR-205 showed high correlation with TP63 expression and 

its expression was markedly reduced in Np63-low samples (Figure 4D, Figure S4K). 

As expected, the abundance of most target gene products was negatively correlated with 

miR-205 expression, including ZEB1/2 and PTEN (Cai et al., 2013; Gregory et al., 2008; 

Tellez et al., 2011; Vosgha et al., 2018) (Figure 4E). TP73 positively correlated with 

miR-205 at the transcript (Figure 4E) and still more strongly at the protein level (Figure 4F) 

and with TP63 protein but not RNA (Figure S4L). TP73 overexpression mediates ΔNp63α­

dependent cell survival in squamous cell carcinoma (DeYoung et al., 2006), suggesting 

a mechanistic model in which functional and stoichiometric interaction between TP63 

and TP73 leads to miR-205 overexpression in LSCC (Natan and Joerger, 2012). Finally, 

consistent with the downregulation of key EMT-related proteins, the TP63 target miR-205 

showed significant negative correlation with EMT activity but positive correlation with DNA 

replication (Figure 4G). The seemingly paradoxical role of TP63 in repressing EMT has 

been confirmed in previous studies (Lindsay et al., 2011; Srivastava et al., 2018; Tran et al., 

2013). Of note, although ΔNp63α and miR-205 were consistently highly overexpressed in 

the B-I and Classical subtypes compared to NATs, their abundances were variable and not 
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particularly low in the EMT-E subtype. Thus, ΔNp63α, either via miR-205 or indirectly, 

may induce a strong squamous epithelial cell phenotype in the B-I and Classical tumors, 

with additional mechanisms leading to derepression and a metastatic phenotype (Vosgha et 

al., 2018), and other mechanisms beyond miR-205 may be involved in promoting the EMT 

phenotype in EMT-E samples.

SOX2, a recurrently amplified squamous cell marker often co-amplified with TP63, was 

also overexpressed in tumors (Figure 4A). SOX2 is considered undruggable, intensifying 

therapeutic interest in upstream or downstream targets. An unbiased search (Figure 4H) 

identified a significant correlation of LSD1 (KDM1A) with SOX2 protein. LSD1 regulates 

SOX2 expression (Zhang et al., 2013) and its inhibition in LSCC is currently being explored 

in a clinical setting in conjunction with immunotherapy (NCT04350463). Other identified 

chromatin regulators included KDM3A, known to regulate SOX2 expression in ovarian 

cancer (Ramadoss et al., 2017), and EZH2, whose inhibition in triple negative breast 

cancer leads to downregulation of SOX2 expression (Yomtoubian et al., 2020). EZH2 

dependency was observed in SOX2 amplified LSCC cell lines (Figure S4M). The positive 

correlations of SOX2 with ALDH1A1, ALDH3A1, and WNT5A (Figure 4H) suggest 

stemness-like features in these tumors (Keysar et al., 2017; Liu et al., 2016; Patel et al., 

2008). Interestingly, JAK1 was the protein most negatively correlated with SOX2 among 

other interferon-signaling proteins such as IRF3 and IFNGR1 (Figure 4H), and negative 

correlation was seen between SOX2 and JAK-STAT signaling (Figure 4I).

Crosstalk between lysine acetylation and ubiquitylation impacts cancer metabolism

Consensus clustering of K-GG peptide abundances after correcting for cognate protein 

abundance revealed two stable ubiquitylproteome clusters (Figure 5A, Table S5) associated 

with country of origin and ethnicity (Fisher’s exact p<0.01). Proteins in pathways such as 

glycolysis, JAK-STAT, MAPK, and immune signaling were differentially modified between 

these clusters (Figure 5A, Figure S5A–B, Table S5).

To identify candidate enzymes driving Ub and UbL modifications in LSCC, we correlated 

E3 ubiquitin ligases or deubiquitylases (DUBs) to KGG-sites (Table S5). Eighteen DUBs 

with at least one negatively correlated K-GG site and 35 E3 ligases with at least one 

positively correlated K-GG site were identified, with top sites shown in Figure 5B and 

Figure S5C. HERC5 is the major E3 ligase involved in conjugation of the UbL modification 

ISG15 in humans (Wong et al., 2006); hence the numerous positively correlated Ub/UbL 

sites (n=474; FDR<0.01) are likely ISG15 modifications. Consistent with this, we observed 

positive correlation between ISG15 and HERC5 abundance (Figure S5D). Positively­

correlating Ub/UbL sites were enriched for glycolysis and TCA cycle annotations (Figure 

S5E). We observed several positively-correlating K-GG sites in the key glycolytic enzymes 

PKM, PGK1, and ENO1 (Figure 5C, Figure S5F). No significant negative correlations 

were observed between total protein abundance and their respective K-GG sites or HERC5, 

suggesting a regulatory rather than degradative role, as expected for ISGylation (Figure 

S5G, Figure S5H). ISG15 modifications have been described in these glycolytic enzymes 

(Albert et al., 2018; Giannakopoulos et al., 2005; Wong et al., 2006), and ISG15 knockdown 

in pancreatic cancer cells reduced oxidative phosphorylation and glycolysis (Alcalá et al., 
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2020). ISGylation can be induced by interferon in cancer (Tecalco-Cruz and Cruz-Ramos, 

2018; Wong et al., 2006); accordingly, HERC5 and ISG15 were positively associated 

with proteome-derived IFN-G signaling scores (Figure S5I, Figure S5J), and HERC5 was 

increased in tumors of the IFN-gamma dominant subtype (Figure 5D). Recently, a direct 

link between immune signaling and glucose metabolism through ISGylation was shown in 

the context of pathogenic invasion (Zhang et al., 2019b). Collectively, our data supports a 

potential role for HERC5 as a bridge between immune signaling and metabolic regulation in 

LSCC.

This dataset allowed us to investigate crosstalk between lysine PTMs. We employed a 

modified version of CLUMPS (Kamburov et al., 2015) to detect clustering of either 

acetylation or ubiquitylation sites within protein 3D structures. Significant ubiquitylation 

clusters were detected in 33 proteins and significant acetylation clusters in 17 proteins 

(p<0.05) (Table S5). Top hits revealed enrichment of glycolysis, fatty acid metabolism and 

OxPhos (Table S5), supporting modulation of these metabolic pathways by ubiquitylation 

and acetylation. In tumor-NAT comparison, major glycolytic enzymes PGK1 and PKM 

showed reduced acetylation at multiple known inhibitory sites closely-positioned on the 3D 

structure, as well as on adjacent lysines surrounding the enzymatic pocket (Wang et al., 

2015; Zhao et al., 2014)(Xiong et al., 2011) (Figure 5E, Figure S5K). Tumors also had 

decreased ubiquitylation at closely-positioned K-GG-sites for TXN1, an important redox 

regulator (Figures 5F). PGK1 and PKM deacetylation suggests increased activity of these 

key glycolytic enzymes in tumors, a conclusion supported by increased phosphorylation 

on known activating sites of regulatory proteins (PFKFB3 pS461, PKM pS37) (Bando 

et al., 2005; Yang and Lu, 2013). Upregulation of a glycolytic metabolic phenotype 

confers selective advantage to cancer cells by supporting uninterrupted growth, dynamically 

modulated by PTMs (DeBerardinis and Chandel, 2016; Hitosugi and Chen, 2014). While 

site-level roles of most Ub/UbL modifications and acetylsites are unclear, our data on 

acetylation, phosphorylation, and HERC5-mediated ISGylation of glycolytic enzymes hints 

at the complexity of regulation of this cancer hallmark.

Rapid growth of cells often leads to oxidative stress within tumors, which adapt by 

upregulating redox systems. Although thioredoxin (TXN) did not show overall differential 

protein expression between tumors and NATs, we observed increased TXN1 protein 

combined with decreased Ub sites, particularly in the NMF Classical subtype (Kruskal 

Wallis FDR<0.01). The TXN1 activator TXNRD1 (Cadenas et al., 2010) was also 

increased in the Classical subtype, while TXNIP, which modulates cellular redox by 

binding and inhibiting TXN1 (Morrison et al., 2014), was decreased (Figure 5F). TXN and 

TXNRD1 were highly correlated with NRF2 score (TXN: R=0.85; TXNRD1: R=0.8, both 

p<2.2×10−16), consistent with their role in response to oxidative stress. Redox modulation 

through this pathway is associated with tumor proliferation, differentiation and prognosis 

in multiple epithelial cancers (Fu et al., 2017), including NSCLC (Fernandes et al., 2009). 

The small proportion of glucose directed to the tumor mitochondria (Fan et al., 2019) and 

subsequently to the TCA and OXPHOS cycles leads to increased acetyl CoA within the 

mitochondria and thence to non-enzymatic acetylation and inhibition of key enzymes in the 

fatty acid oxidation pathway such as ECH1 and ACADVL (also identified in the CLUMPS 

analysis) (Baeza et al., 2015; Gandhi and Das, 2019; Hebert et al., 2013). We recapitulate 
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the finding of increased ECH1 and ACADVL acetylation, including specific increase at the 

binding site of ACADVL in tumors (Figure 5E, Figure S5K). PTM-based modulation of 

these key metabolic and ROS pathways is summarized in Figure 5G.

As a complementary assessment of the crosstalk between lysine ubiquitylation and 

acetylation, we identified K-Ac or K-GG sites showing significant differential expression 

in tumors relative to NATs. Figure 5H shows 8 lysine sites where K-GG was upregulated 

and K-Ac downregulated in tumors (upper panel) and 36 sites demonstrating the opposite 

trend (lower panel). Among the latter was the GTP-binding nuclear protein RAN, involved 

in nucleocytoplasmic transport, mitotic progression and spindle assembly. Acetylation on 

multiple lysine residues can affect RAN localization, GTP/GDP cycle and import / export 

complex formation. Consistent with the role of RAN in mitosis, RAN K127-acK showed 

dramatic upregulation in the P-P subtype (Figure 5I), named in part for its generally 

high proliferation (Figure 2B). The specific functional relevance of K127-ac has not been 

previously demonstrated, but its selective upregulation suggests a functional role. While of 

great interest to the PTM community and potentially very powerful, such crosstalk analyses 

are nascent, and interpretations remain suitably cautious.

Immune landscape and regulation in LSCC

Consensus clustering based on the xCell (Aran et al., 2017) signatures (Table S6) identified 

three sets of tumors representing immunologically Hot, Warm, and Cold clusters (Figure 

6A–C), as well as an NAT-enriched cluster. The NMF I-S subtype was significantly 

associated with the immune Hot cluster (Fisher’s exact p=6.371×10−09) (Figure 6A). The 

Hot cluster was characterized by increased macrophages, CD4+, CD8+ and regulatory T 

cells, and dendritic cells in both deconvolution and immunohistochemistry (IHC) analyses 

(Figures 6A,C, S6C,D), and showed upregulation of immune-related pathways (Figure 6A–

B, Figure S6A, Table S6). Immunosuppressive mediators CTLA4, PD-1 (PDCD1), PD-L1 

(CD274) and IDO1 and the key Treg transcriptional regulator FOXP3 were upregulated in 

Hot compared to Cold tumors, suggesting immune checkpoint-related therapeutic options 

in these tumors. The Hot tumor acetylproteome was chiefly enriched for OXPHOS, 

Mitochondrial Complex and TCA Cycle pathways, consistent with increased metabolism or 

increased mitochondrial acetyl-CoA leading to non-enzymatic acetylation of mitochondrial 

proteins (Figure 6D). Notably, NATs did not display consonant immune signaling (Figure 

S6B). The intermediate, Warm cluster displayed upregulation of immune-related pathways 

such as PD-1 signaling, Interferon gamma (IFN-G) response, and Allograft rejection relative 

to Cold tumors, but did not show the downregulation of cell cycle-related pathways observed 

in Hot tumors (Figure 6A–B, Figure S6A). In addition, canonical Wnt Signaling, active in 

tumor proliferation and immune evasion, was comparably upregulated in the Warm and Cold 

tumor proteomes (Figure 6B). Fifteen pQTLs were also identified in proteins differentially 

abundant between Hot and Cold tumors (Table S6, Figure S6E)

Rho GTPase signaling was upregulated in Hot tumors (Figure 6A, Table S6). ARHGDIB 

(RhoGDIb), the central regulatory molecule in GTPase activation (Garcia-Mata et al., 

2011), was the most significantly acetylated protein in the Hot cluster, followed by 

metabolic mitochondrial enzymes (Figure 6D). Acetylation of its homolog RhoGDIa at 
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the conserved K135 site regulates F-actin assembly (Kuhlmann et al., 2016a) by activating 

RhoA (Kuhlmann et al., 2016b). In contrast to RhoGDIa, the affinity of RhoGDIb for 

RhoA is low (Gorvel et al., 1998), and the K135 acetylation of RhoGDIb may act as 

a positive regulator of Rac signaling via its interaction with Rac2 instead (Moissoglu et 

al., 2009). In support of this hypothesis, we found significant upregulation in the Hot 

cluster of Rho GTPase Rac2 and numerous Rac-specific regulators (Figures 6F, S6F, Table 

S6). Notably, these proteins are primarily immune-specific, indicating a possible role for 

lysine acetylation of RhoGDIb in promoting immune cell functions in the Hot cluster. 

Immunohistochemical staining for RhoGDIb (ARHGDIB) in the subset of immune Hot 

tumors confirmed strong signals in infiltrating immune cells and mesenchymal cells (Figure 

S6G), similar to dispersed RhoGDIb-expressing cells identified as lymphocytes seen in 

renal cell carcinomas (von Klot et al., 2017). Thus, we propose that K135 acetylation of 

RhoGDIb is a potential regulatory mechanism of immune cell functions that is in line with 

the inflammasome signature (Wang et al., 2012) and immune-enriched networks (Peters et 

al., 2017).

We explored the immunological associations of the RTK CBPE scores described 

above (Figure 2I,J) in LSCC tumors (Figure 6G). CSF1R, predominantly expressed in 

macrophages, showed the highest CBPE scores, and was positively associated with the 

Hot cluster (Figure 6H) and consequently with immune-related pathways and cell types 

(Figure 6G). CSF1R correlated with immunosuppressive chemokine CCL5, phosphorylation 

of PIK3R1 Y580, downstream regulators of the actin cytoskeleton including WAS and 

WASF2 S103 (Cammer et al., 2009; Dovas et al., 2009; Mouchemore et al., 2013), 

and upregulation of AKAP13, among other immune-related proteins (Figure 6I). Tumor­

associated macrophages ((Cassetta and Pollard, 2018), CSF1R signaling (Cannarile et al., 

2017), and AKAP13 (Diviani et al., 2016) have each been proposed as anti-cancer targets.

Proteomic Biomarker Candidates for Prognosis, Diagnosis, and Treatment

Tumors and paired NATs revealed remarkable differences in protein expression and pathway 

enrichment (Figure 7A, Table S7). The top 50 of 502 differential proteins are shown 

in Figure S7A. In addition to 206 upregulated oncogenic proteins (OncoKB, Table S7), 

several CT antigens, attractive targets of CT-antigen therapies, were overexpressed in 

tumors (Figure S7B), with the I-S samples showing the fewest CT antigens. As complete 

long-term follow-up was not yet available for this cohort, we leveraged the TCGA LSCC 

dataset (Hammerman et al., 2012) to examine the association of these 502 candidate tumor 

biomarkers with overall survival (OS) or disease-free survival (DFS). Expression of four 

of the most highly differential genes showed significant association with poor OS and 

another 15 genes with poor DFS (Figure 7B, Figure S7C). Furthermore, knockdown of these 

tumor biomarker proteins reduced fitness across 16 LSCC cell lines (https://depmap.org/), 

suggesting critical roles in key cellular transformation and proliferation processes (Figure 

7C, Table S7).

There is increasing interest in molecular taxonomies that help position cancer types in the 

context of related cancers. CNAs were more frequent in LSCC than in LUAD or head and 

neck squamous cell carcinoma (HNSCC), which respectively share tissue and cell type of 
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origin (Figure S7D). Widespread deletions of immune-related genes in LSCC correlated 

with ESTIMATE immune scores (Figure 7D). Immune-related deletions were less prominent 

in HNSCC and especially LUAD (Figure S7E), except for Chromosome 3p deletion, 

encompassing five chemokine receptors. Squamous cancers shared 3q amplification, JAK2 

deletion and skin-development proteins from across the genome. Finally, deletions of 

4p14 and 5q, including multiple Toll-like receptor and interleukin signaling genes, were 

unique to LSCC. Among key tumor-specific phosphorylation events in LSCC, we identified 

upregulation of activating sites on 27 kinases, including MAPK14 and three others (DCK, 

EGFR, SRC) targetable by FDA-approved drugs (Figure S7F), with several being shared 

by LUAD and HNSCC tumors. Notably, EGFR protein was significantly upregulated in 

the squamous cancers but not LUAD (Figure S7G), although LUAD had many activating 

EGFR mutations, and activating phosphorylation of EGFR was increased in both LUAD 

and LSCC. High EGFR amplification in the LSCC cohort did not correlate with EGFR 

pathway activity as assessed by mRNA-based PROGENy scoring (Figure 7E) (Schubert et 

al., 2018). Instead, this activity measurement was highly correlated to mRNA abundance 

of the five EGFR ligands that are prominent in tumors (Figure 7F). Furthermore, EGFR 
amplified samples displayed increased phosphorylation on proteins related to actin filament 

and cell junction organization as well as cell-substrate adhesion (Figure 7G). These findings 

and similar results recently reported in HNSCC (Huang et al., 2021) support a squamous cell 

cancer feature in which EGFR ligand abundance drives canonical EGFR pathway activity 

and tumors with very high levels of EGFR may no longer require the ligand to drive 

activity. EGFR inhibition guided by EGFR abundance has been unsuccessful in squamous 

tumors. Since EGFR inhibitors such as cetuximab affect ligand-induced EGFR activity, 

ligand abundance, rather than EGFR amplification, might better predict EGFR inhibitor 

response in this population. Figure 7H graphically represents these and other key findings 

presented in this manuscript, emphasizing translatable implications.

Discussion

In this study, we provide detailed proteogenomic profiles of treatment-naïve, primary LSCC 

tumors and paired NATs, with unprecedented coverage of post-translational modifications 

including phosphorylation, acetylation and for the first time, ubiquitylation. Unsupervised 

NMF-based multi-omic clustering suggested a refinement to prior RNA-based clustering, 

dividing basal tumors into Basal-inclusive and EMT-enriched subtypes with biological 

differences of potential therapeutic significance. Molecular events downstream of copy 

number alterations showed NSD3 rather than FGFR1 protein overexpression in tumors with 

8p11.23 amplification, providing both a potential explanation for the limited effectiveness 

of FGFR1-targeted treatment in this population and a potential alternative therapy. Parallel 

downstream analysis of DNA promoter methylation events provided insight into regulation 

of many proteins differential between cancer and NATs.

Comprehensive proteogenomic data provided a deeper exposition of established LSCC 

biology, often with potential therapeutic implications. We identified a subset of low-p63 

tumors that were characterized by high levels of the known therapeutic target survivin. 

SOX2 is considered undruggable, but our analyses provide rationale for exploring LSD1 

or other chromatin modifiers such as EZH2 to target SOX2 amplified / overexpressing 
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tumors. The importance of glycolysis and oxidative stress in LSCC are well-appreciated, 

but our data support complex regulation of these metabolic pathways by crosstalk 

between ubiquitylation (or ubiquitin-like modifications), phosphorylation and acetylation. 

Immunotherapy represents the greatest advance in LSCC therapy in decades, but outcomes 

lag behind those seen in patients with LUAD and still only a minority of patients 

exhibit long-term responses (Haslam and Prasad, 2019; Herbst et al., 2018); numerous 

immune-related proteogenomic observations suggest directions for further investigation. 

Proteogenomic dissection of the downstream effects of CDKN2A mutations had clinical 

implications related both to the interpretation of trials utilizing CDK4/6 inhibitors in 

LSCC patients and to biomarker selection for future studies: though CDK4/6 inhibition 

has shown limited efficacy in LSCC trials to date, our analysis suggested that a more 

nuanced assessment of RB1 protein expression and phosphorylation is required before 

declaring this approach unsuccessful. Finally, triangulation between LSCC, LUAD and 

HNSCC demonstrated the influence of both tissue and cell type of origin on cancer biology, 

with therapeutic vulnerabilities both unique and common across these cancer types.

Limitations of the study

Many important clinical advances in NSCLC and other cancers have been driven by 

genomic profiling of bulk tumor material, and we anticipate that the same will prove true of 

bulk proteogenomic characterization, as performed here. Nevertheless, tumor heterogeneity 

is an important complication, and emerging methods for proteomics approaches to 

heterogeneity (Peng et al., 2020; Satpathy et al., 2020), such as pairing microdissection 

with mass spectrometry (Le Large et al., 2020) or using mass cytometry (Spitzer and 

Nolan, 2016) will be useful adjuncts. It is typically metastatic disease that proves lethal, 

and in-depth proteogenomic analysis of primary tumors paired with metastatic lesions will 

be needed to provide critical insights into metastatic biology. Importantly, the scope of a 

landscape study such as this necessitates that it be understood as hypothesis-generating, and 

a wider community effort will be required to validate biological observations and suggested 

therapeutic alternatives. Nevertheless, we hope this study will prove a valuable resource 

to the research and clinical communities, and advance the understanding and treatment of 

LSCC.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests should be directed to and will be fulfilled 

by the lead author Michael A. Gillette (gillette@broadinstitute.org)

Material availability—This study did not generate new unique reagents.

Data and Code Availability

CPTAC LSCC proteomics data:

• Proteomic Data Commons (PDC); https://pdc.cancer.gov/pdc/ with identifiers 

PDC000232, PDC000233, PDC000234 and PDC000237
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• CPTAC data portal LSCC: https://cptac-data-portal.georgetown.edu/study­

summary/S063

CPTAC HNSCC proteomics data:

• PDC: https://pdc.cancer.gov/pdc/ with identifiers PDC000221 and PDC000222

• https://cptac-data-portal.georgetown.edu/study-summary/S054

CPATC LUAD proteomics data:

• PDC: https://pdc.cancer.gov/pdc/ with identifiers PDC000153, PDC000149, 

PDC000224)

• https://cptac-data-portal.georgetown.edu/study-summary/S056

Genomic and transcriptomic data files can be accessed at the Genomic Data Commons 

(GDC); https://portal.gdc.cancer.gov/, via dbGaP Study Accession: phs001287.v10.p5

All histologic https://www.cancerimagingarchive.net/datascope/cptac/home/ and radiologic 

details can be accessed from the The Cancer Imaging Archive (TCIA) Public Access https://

wiki.cancerimagingarchive.net/display/Public/CPTAC-LSCC.

Sample annotation, processed and normalized data files are provided as Tables S1–S3.

Software and code used in this study are referenced in their corresponding STAR Method 

sections and also the Key Resource Table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—A total of 113 participants (90 males, 23 females, 40–88 years old) 

were collected for this study by 13 different tissue source sites from seven different countries 

between May 2016 and August 2018, with a median follow-up time of 2.5 years. Five (one 

female and four male) samples were excluded based on further pathological assessment 

and 108 tumors and 99 paired NATs were used in this study. Only histopathologically­

defined adult lung squamous tumors were considered for analysis, with an age range of 

40–88. Institutional review boards at tissue source sites reviewed protocols and consent 

documentation adhering to the Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

guidelines. Clinical data were obtained from tissue source sites and aggregated by an 

internal database called the CDR (Comprehensive Data Resource) that synchronizes with 

the CPTAC DCC (https://cptac-data-portal.georgetown.edu/). Clinical data can be accessed 

and downloaded from the DCC (Data Coordinating Center). Demographics, histopathologic 

information, and treatment details were collected. LSCC histopathology was confirmed for 

all cases by at least 2 expert pathologists based on high resolution images of H&E sections. 

For samples with low TP63 status, additional pathologic confirmation was performed. The 

histologic, genotypic, clinical, geographical and other associated metadata is summarized in 

Table S1.
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METHOD DETAILS

Specimen Acquisition—The tumor, normal adjacent tissue (NAT), and whole blood 

samples used in this manuscript were prospectively collected for the CPTAC project. 

Biospecimens were collected from newly diagnosed patients with LSCC who underwent 

surgical resection and had received no prior treatment for their disease, including 

chemotherapy or radiotherapy. All cases had to be of acceptable LSCC histology but were 

collected regardless of surgical stage or histologic grade. Cases were staged using the AJCC 

cancer staging system 7th edition and the 8th edition. The tumor specimen weights ranged 

from 125 to 1560 milligrams. The average tissue mass was 220 mg. For most cases, three 

to four tumor specimens were collected. Paired histologically-normal adjacent lung tissues 

(NATs) were collected from the same patient at tumor resection. Each tissue specimen 

endured cold ischemia for less than 40 minutes prior to freezing in liquid nitrogen; the 

average ischemic time was 16 minutes from resection/collection to freezing. Specimens 

were flash frozen in liquid nitrogen. Histologic sections obtained from top and bottom 

portions from each case were reviewed by a board-certified pathologist to confirm the 

assigned pathology. For samples to be deemed acceptable, the top and bottom sections had 

to contain an average of 50% tumor cell nuclei with less than 20% necrosis. Specimens 

were shipped overnight from the tissue source sites to the biospecimen core resource (BCR) 

located at Van Andel Research Institute, Grand Rapids, MI using a cryoport that maintained 

an average temperature of less than −140°C. At the biospecimen core resource, specimens 

were confirmed for pathology qualification and prepared for genomic, transcriptomic, and 

proteomic analyses. Selected specimens were cryopulverized using a Covaris CryoPREP 

instrument and material aliquoted for subsequent molecular characterization. Genomic DNA 

and total RNA were extracted and sent to the genome sequencing centers. The whole exome 

and whole genome DNA sequencing and methylation EPIC array analyses were performed 

at the Broad Institute, Cambridge, MA. TotalRNA and miRNA sequencing were performed 

at the University of North Carolina, Chapel Hill, NC. Material for proteomic analyses were 

sent to the Proteomic Characterization Center (PCC) at the Broad Institute, Cambridge, MA.

Sequencing sample preparation—Our study sampled a single site of the primary 

tumor from surgical resections, with an internal requirement to process a minimum of 

125mg of tumor issue and 50mg of NAT. DNA and RNA were extracted from tumor and 

NAT specimens in a co-isolation protocol using Qiagen’s QIAsymphony DNA Mini Kit and 

QIAsymphony RNA Kit. Genomic DNA was also isolated from peripheral blood (3–5mL) 

to serve as matched normal reference material. The Qubit™ dsDNA BR Assay Kit was used 

with the Qubit® 2.0 Fluorimeter to determine the concentration of dsDNA in an aqueous 

solution. Any sample that passed quality control and produced enough DNA yield to go 

through the multiple planned genomic assays was sent for genomic characterization. RNA 

quality was quantified using the NanoDrop 8000 and quality assessed using an Agilent 

Bioanalyzer. A sample of sufficient quantity that passed RNA quality control and had 

a minimum RIN (RNA integrity number) score of 7 was subjected to RNA sequencing. 

Identity matches for germline, normal adjacent tissue, and tumor tissue were confirmed at 

the BCR using the Illumina Infinium QC array. This beadchip contains 15,949 markers 

designed to prioritize sample tracking, quality control, and stratification.
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Whole exome Sequencing (WES)

Library construction and Hybrid Selection: Library construction was performed as 

described in (Fisher et al., 2011), with the following modifications: initial genomic 

DNA input into shearing was reduced from 3μg to 20–250ng in 50μL of solution. For 

adapter ligation, Illumina paired-end adapters were replaced with palindromic forked 

adapters, purchased from Integrated DNA Technologies (IDT), with unique dual-indexed 

molecular barcode sequences to facilitate downstream pooling. Kapa HyperPrep reagents 

in 96-reaction kit format were used for end repair/A-tailing, adapter ligation, and library 

enrichment PCR. In addition, during the post-enrichment SPRI cleanup, elution volume 

was reduced to 30μL to maximize library concentration, and a vortexing step was added 

to maximize the amount of template eluted. After library construction, libraries were 

pooled into groups of up to 96 samples. Hybridization and capture were performed 

using the relevant components of Illumina’s Nextera Exome Kit and following the 

manufacturer’s suggested protocol, with the following exceptions: First, all libraries within 

a library construction plate were pooled prior to hybridization. Second, the Midi plate 

from Illumina’s Nextera Exome Kit was replaced with a skirted PCR plate to facilitate 

automation. All hybridization and capture steps were automated on the Agilent Bravo liquid 

handling system.

Cluster Amplification and Sequencing: After post-capture enrichment, library pools were 

quantified using qPCR (KAPA Biosystems) using an automated assay on the Agilent Bravo 

with probes specific to the ends of the adapters. Based on qPCR quantification, libraries 

were normalized to 2nM. Cluster amplification of DNA libraries was performed following 

manufacturer’s protocol (Illumina) using exclusion amplification chemistry and flowcells. 

Flow cells were sequenced utilizing sequencing-by-synthesis chemistry. The flow cells were 

then analyzed using RTA v.2.7.3 or later. Each pool of whole exome libraries was sequenced 

on paired 76-cycle runs with two 8-cycle index reads across the number of lanes needed 

to meet coverage for all libraries in the pool. Pooled libraries were run on HiSeq4000 

paired-end runs to achieve a minimum of 150x on-target coverage per library. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files; adapter and 

low-quality sequences were trimmed. The raw reads were mapped to the GRCh38/hg38 

human reference genome and the validated BAMs were used for downstream analysis and 

variant calling.

Whole genome sequencing (WGS)

Cluster Amplification and Sequencing: An aliquot of genomic DNA (350ng in 50μL) 

was used as the input into DNA fragmentation (aka shearing). Shearing was performed 

acoustically using a Covaris focused-ultrasonicator, targeting 385bp fragments. Following 

fragmentation, additional size selection was performed using SPRI cleanup. Library 

preparation was performed using a commercially available KAPA Hyper Prep without 

amplification module kit (KAPA Biosystems) and with palindromic forked adapters with 

unique 8-base index sequences embedded within the adapter (IDT). Following sample 

preparation, libraries were quantified using quantitative PCR (KAPA Biosystems), with 

probes specific to the ends of the adapters using the automated Agilent’s Bravo liquid 
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handling platform. Based on qPCR quantification, libraries were normalized to 1.7nM and 

pooled into 24-plexes.

Sample pools were combined with HiSeqX Cluster Amp Reagents EPX1, EPX2, and EPX3 

into single wells on a strip tube using the Hamilton Starlet Liquid Handling system. Cluster 

amplification of the templates was performed according to the manufacturer’s protocol 

(Illumina) with the Illumina cBot. Flow cells were sequenced to a minimum of 15x on 

HiSeqX utilizing sequencing-by-synthesis kits to produce 151bp paired-end reads. Output 

from Illumina software was processed by the Picard data processing pipeline to yield BAM 

files containing demultiplexed, aggregated, aligned reads. All sample information tracking 

was performed by automated LIMS messaging.

Array Based Methylation Analysis—The Methylation EPIC array uses an 8-sample 

version of the Illumina Beadchip capturing >850,000 methylation sites per sample. Two 

hundred and fifty nanograms of DNA was used for the bisulfite conversion using Infinium 

MethylationEPIC BeadChip Kit (Illumina). The EPIC array includes sample plating, 

bisulfite conversion, and methylation array processing. After scanning, the data was 

processed through an automated genotype-calling pipeline. Data output consisted of raw 

idats and a sample sheet.

RNA and miRNA sequencing

Quality Assurance and Control of RNA Analytes: All RNA analytes were assayed for 

RNA integrity, concentration, and fragment size. Samples for total RNA-seq were quantified 

on a TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs >7.0 were 

considered high quality and were considered for sequencing. Total RNA-seq libraries were 

generated using 300 nanograms of total RNA using the TruSeq Stranded Total RNA 

Library Prep Kit with Ribo-Zero Gold and bar-coded with individual tags following the 

manufacturer’s instructions (Illumina). Total RNA Libraries were prepared on an Agilent 

Bravo automated liquid handling system. Quality control was performed at every step, and 

the libraries were quantified using a TapeStation system.

Total RNA Sequencing: Indexed libraries were prepared and run on HiSeq4000 paired-end 

75 base pairs to generate a minimum of 120 million reads per sample library with a target 

of greater than 90% mapped reads. The raw Illumina sequence data were demultiplexed and 

converted to FASTQ files, and adapter and low-quality sequences were trimmed. Samples 

were then assessed for quality by mapping reads to GRCh38/hg38, estimating the total 

number of mapped reads, amount of RNA mapping to coding regions, amount of rRNA 

in the sample, number of genes expressed, and relative expression of housekeeping genes. 

Samples passing this QA/QC were then clustered with other expression data from similar 

and distinct tumor types to confirm expected expression patterns. Atypical samples were 

then SNP typed from the RNA data to confirm source analyte. FASTQ files of all reads were 

then uploaded to the GDC repository.

miRNA-seq Library Construction: miRNA-seq library construction was performed from 

the RNA samples using the NEXTflex Small RNA-Seq Kit (v3, PerkinElmer, Waltham, 
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MA) and barcoded with individual tags following the manufacturer’s instructions. Libraries 

were prepared on a Sciclone Liquid Handling Workstation. Quality control was performed 

at every step, and the libraries were quantified using a TapeStation system and an Agilent 

Bioanalyzer using the Small RNA analysis kit. Pooled libraries were then size selected 

according to NEXTflex kit specifications using a Pippin Prep system (Sage Science, 

Beverly, MA).

miRNA Sequencing: Indexed libraries were loaded on the HiSeq4000 to generate a 

minimum of 10 million reads per library with a minimum of 90% reads mapped. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files for downstream 

analysis. Resultant data were analyzed using a variant of the small RNA quantification 

pipeline developed for TCGA (Chu et al., 2016). Data from samples were assessed for the 

number of miRNAs called, species diversity, and total abundance before uploading to the 

GDC repository.

Mass Spectrometry methods—The protocols below for protein extraction, tryptic 

digestion, TMT-11 labeling of peptides, peptide fractionation by basic reversed-phase 

liquid chromatography, phosphopeptide enrichment using immobilized metal affinity 

chromatography, and LC-MS/MS were performed as previously described in depth (Gillette 

et al., 2020). Acetyl-enrichment was performed as described before (Krug et al., 2020) with 

modifications as indicated below.

Protein Extraction and Tryptic Digestion: Approximately fifty milligrams (wet weight) of 

cryopulverized human LSCC and NAT samples were homogenized in the lysis buffer for 30 

minutes at a ratio of about 200 uL lysis buffer for every 50 mg wet weight tissue. The lysis 

buffer consisted of 8 M urea, 75 mM NaCl, 1 mM EDTA, 50 mM Tris HCl (pH 8), 10 mM 

NaF, phosphatase inhibitor cocktail 2 (1:100; Sigma, P5726) and cocktail 3 (1:100; Sigma, 

P0044), 2 μg/mL aprotinin (Sigma, A6103), 10 μg/mL leupeptin (Roche, 11017101001), 

and 1 mM PMSF (Sigma, 78830). Lysates were centrifuged at 20,000 g for 10 minutes 

and protein concentrations of the clarified lysates were measured by BCA assay (Pierce). 

Protein lysates were subsequently reduced with 5 mM dithiothreitol (Thermo Scientific, 

20291) for an hour at 37C and alkylated with 10 mM iodoacetamide (Sigma, A3221) for 

45 minutes in the dark at room temperature. Prior to digestion, samples were diluted 4-fold 

to achieve 2 M urea with 50mM Tris HCl (pH 8). Digestion was performed with LysC 

(Wako, 129–02541) for 2 hours and with trypsin (Promega, V511X) overnight, both at a 

1:50 enzyme-to-protein ratio and at room temperature. Digested samples were acidified with 

formic acid (FA; Sigma, F0507) to achieve a final volumetric concentration of 1% (final pH 

of ~3), and centrifuged at 1,500 g for 15 minutes to clear precipitated urea from peptide 

lysates. Samples were desalted on tC18 SepPak columns (Waters, 200mg, WAT054925) and 

dried down using a SpeedVac apparatus.

Common Reference (CR) Pool and Plex layout

Proteome, Phosphoproteome, and Acetyprotome: The proteomic, phosphoproteomic and 

acetylproteome analyses of LSCC samples consisted of 22 TMT-11 plex experiments. 

To facilitate quantitative comparison between all samples across experiments, a common 
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reference (CR) sample was included in each 11-plex. A common physical, rather than 

in silico reference was used for this purpose for optimal quantitative precision between 

TMT-11 experiments. Considerations prior to creating the reference sample were that this 

sample needed to be of adequate quantity to cover all planned experiments for both the 

discovery and future confirmatory sets (not part of this study) with overhead for additional 

possible experiments. The CR included all (212/212) of the samples analyzed in the 

discovery set TMT experiments, yielding a CR that was representative of all the samples 

in the study. Making the CR as representative of the study as a whole was particularly 

important since by definition only analytes represented in the reference sample would be 

included in the final ratio-based data analyses.

110 unique tumor samples with 102 paired NAT samples are distributed among 22 11-plex 

experiments, with 10 individual samples occupying the first 10 channels of each experiment 

and the 11th channel being reserved for the reference sample. All the tumors were in the 

C channels and all the normal samples were in the N channels. The first 8 channels of 

each experiment contained 4 tumor/normal pairs, with each pair of patient samples adjacent 

to each other. Channels 9 and 10 (130C and 131N) either contained a 5th tumor/normal 

pair, or an unpaired tumor sample in channel 9 and an alternate common reference sample 

in channel 10. These included 3 global LUAD common references, 3 HNSCC common 

references from the team at JHU, and 2 Tumor only common references from this LSCC 

discovery set.

To ensure capacity for additional samples or experiments given a target input of 300 μg 

peptide per channel per experiment, 18 mg total was targeted for reference material. To 

meet these collective requirements, all the samples in the discovery set that had enough 

material were included in the CR. After reserving a conservative 400 μg peptide / sample 

for individual sample analysis, an additional amount of 120 μg for each of the samples with 

adequate quantities were pooled. All 212 samples were selected for the combined tumor/

normal CR. To make the combined CR, tumor only and normal only CRs were first created 

separately, with 110 tumor samples and 102 normal samples. After creating tumor and NAT 

only CRs at 150 ug and 150ug amounts, a pool of combined CR was made, comprised of 8.6 

mg tumor only reference and 8.6 mg normal only reference. The 17.2 mg pooled reference 

material was divided into 55 300 μg aliquots, dried down, and frozen at −80°C until use.

Ubiquitylproteome: 750 ug of unlabeled peptides was required from each sample to 

ensure depth of coverage in the ubiquitylproteome, which restricted the number of 

samples available for profiling. 147/212 samples from the proteome, phosphoproteome, 

acetylproteome set were included in the ubiquitylproteome analysis. A separate 

ubiquitylproteome CR was constructed prior to KGG enrichment, due to limitations in 

sample material (both patient material and remaining CR aliquots to be used in future 

LSCC proteome, phosphoproteome, and acetylproteome processing.. In order to make TMT 

ratio-based quantitation comparable across omes, the ubiquitylproteome CR was constructed 

to be as similar as practically possible to the proteome, phosphoproteome, acetylproteome 

CR. The ubiquitylproteome CR contains all samples from the proteome, phosphoproteome, 

acetylproteome set with material remaining to contribute, 209/212. The ubiquitylproteome 

CR contributions were of 3 types:
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1. 104/147 samples included in ubiquitylproteome study and made full CR 

contribution, >1000ug available.

2. 42/147 samples included in ubiquitylproteome study and made partial CR 

contribution, 750ug −1000 ug available.

3. 63/65 samples from the proteome, phosphoproteome, acetylproteome set not 

included in ubiquitylproteome study, but made full CR contribution, <750 ug 

available.

CR tumor and normal peptides were combined at a ratio of 55:45 to reflect the 

higher proportion of tumor samples in the experimental design (as opposed to proteome, 

phosphoproteome, acetylproteome CR’s proportion of 50:50), and aliquoted into 750 ug 

aliquots.

In the ubiquitylproteome experimental design, 15 11-plex experiments contained 87 unique 

tumor samples in the C channels and 60 normal samples in the N channels, with the first 

8 channels of every 11-plex consisting of patient-paired tumor/normal samples adjacent to 

each other. The 11th channel was reserved for the ubiquitylproteome common reference 

sample. Channel 9 (130C) contained an unpaired tumor, while channel 10 (131N) contained 

either an unpaired tumor, or in 3 plexes, a LUAD ubiquitylproteome common reference 

(which was constructed similarly for that experiment, unpublished).

TMT-11 Labeling of Peptides

Proteome, Phosphoproteome, Acetylproteome: 300 μg of desalted peptides per sample 

(based on peptide-level BCA after digestion) were labeled with 11-plex TMT reagents and 

combined for multiplexed analysis using a “reduced labeling” approach (Zecha et al., 2019). 

To conservatively yield extra labeled peptide in case a given sample demonstrated unsuitably 

low TMT reporter ion intensity during channel mixing control LC-MS/MS runs, 400 ug 

peptides per sample were initially labeled, with only 300 ug combined per sample for the 

final multiplexed experiments upon successful quality control. For each 400 μg peptide 

aliquot of an individual sample, peptides were reconstituted to 5 mg/ml with 50 mM HEPES 

(pH 8.5) solution and 400 ug labeling reagent dissolved in 20 uL anhydrous acetonitrile was 

added. After 1 h incubation with shaking, samples were diluted 1:1 with a solution of 80% 

50 mM HEPES and 20% acetonitrile. After confirming good label incorporation, 5 μL of 5% 

hydroxylamine was added to quench the unreacted TMT reagents. Good label incorporation 

was defined as having less than 3% isobaric under-labeled MS/MS spectra in each sample, 

as measured by LC-MS/MS after taking out a 2 μg aliquot from each sample and analyzing 

0.25 μg. If a sample did not have sufficient label incorporation, additional TMT was added 

to the sample and another 1 h incubation was performed with shaking. At the time that the 

labeling efficiency quality control samples were taken out, an additional 4 μg of material 

from each sample was taken out and combined as a mixing control. After analyzing the 

mixing control sample by LC-MS/MS, intensity values of the individual TMT reporter ions 

were summed across all peptide spectrum matches and compared to ensure that the total 

reporter ion intensity of each sample met a threshold of +/− 15% of the internal reference. If 

necessary, adjustments were made by either using additional labeled material or reducing an 

individual sample’s contribution to the mixture, and analyzing a subsequent mixing control, 
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until all samples met the threshold and were thus approximately 1:1:1.... Differentially 

labeled peptides were then mixed (11 × 300 μg), dried down via vacuum centrifuge, and the 

quenched, combined sample was subsequently desalted on a 200 mg tC18 SepPak column. 

The same lot of TMT reagents was used for all samples (UA280170/TL272399).

Peptide Fractionation

For Proteome, Phosphoproteome, Acetylproteome: To reduce sample complexity, peptide 

samples were separated by high pH reversed phase (RP) separation as described previously 

(Mertins et al., 2018). A desalted 3.3 mg, 11-plex TMT-labeled experiment (based on 

peptide-level BCA after digestion) was reconstituted in 935 μL 4.5mM ammonium formate 

(pH 10) and 2% acetonitrile, centrifuged for 7 min at 20000 g to precipitate insoluble 

peptides, loaded on a 4.6 mm x 250 mm column RP Zorbax 300 A Extend-C18 column 

(Agilent, 3.5 μm bead size), and separated on an Agilent 1260 Series HPLC instrument 

using basic reversed-phase chromatography. Solvent A (2% acetonitrile, 4.5 mM ammonium 

formate, pH 10) and a nonlinear increasing concentration of solvent B (90% acetonitrile, 

4.5 mM ammonium formate, pH 10) were used to separate peptides. The 4.5 mM 

ammonium formate solvents were made by 40–fold dilution of a stock solution of 180 

mM ammonium formate, pH 10. To make 1L of stock solution, add 25 mL of 28% (wt/

vol) ammonium hydroxide (28%, density 0.9 g/ml, Sigma-Aldrich) to ~850ml of HPLC 

grade water, then add ~35 mL of 10 % (vol/vol) formic acid (>95% Sigma-Aldrich) to 

titrate the pH to 10.0; bring the final volume to 1 liter with HPLC grade water. The 96 

minute separation LC gradient followed this profile: (min: %B) 0:0; 7:0; 13:16; 73:40; 

77:44; 82:60; 96:60. The flow rate was 1 mL/min. Per 3.3 mg separation, 82 fractions 

were collected into a 96 deep-well x 2mL plate (Whatman, #7701–5200), with fractions 

combined in a step-wise concatenation strategy and acidified to a final concentration of 

0.1% FA as reported previously. An additional 14 fractions were collected from the 96 

deep-well plate for fraction A, which are the early eluting fractions that tend to contain 

multi-phosphorylated peptides. 5% of the volume of each of the 24+A proteome fractions 

was allocated for proteome analysis, dried down, and re-suspended in 3% MeCN/0.1% FA 

(MeCN; acetonitrile) to a peptide concentration of 0.25 μg/ μL for LC-MS/MS analysis. The 

remaining 95% of concatenated 24 fractions were further combined into 12 fractions, with 

fraction A as a separate fraction. These 13 fractions were then enriched for phosphopeptides 

as described below.

Phosphopeptide Enrichment: Ni-NTA agarose beads were used to prepare Fe3+-NTA 

agarose beads. In each phosphoproteome fraction, ~261.25 μg peptides (based on 

peptide-level BCA after digestion with uniformly-distributed fractionation presumed) were 

reconstituted in 522.5 μL 80% MeCN/0.1% TFA (trifluoroacetic acid) solvent and incubated 

with 10 μL of the IMAC beads for 30 minutes with end-over-end rotation at RT. After 

incubation, samples were briefly spun down on a tabletop centrifuge; clarified peptide 

flow-throughs were separated from the beads; and the beads were reconstituted in 200 μL 

IMAC binding/wash buffer (80 MeCN/0.1% TFA) and loaded onto equilibrated Empore C18 

silica-packed stage tips (3M, 2315). Samples were then washed twice with 50 μL of IMAC 

binding/wash buffer and once with 50 uL 1% FA, and were eluted from the IMAC beads to 

the stage tips with 3 × 70 uL washes of 500 mM dibasic sodium phosphate (pH 7.0, Sigma 
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S9763). Stage tips were then washed once with 100 μL 1% FA and phosphopeptides were 

eluted from the stage tips with 60 μL 50% MeCN/0.1% FA. Phosphopeptides were dried 

down and re-suspended in 9 μL 50% MeCN/0.1%FA for LC-MS/MS analysis, where 4 μL 

was injected per run.

Acetylpeptide Enrichment: Acetylated lysine peptides were enriched using an antibody 

against the acetyl-lysine motif (CST PTM-SCAN Catalogue No. 13416). IMAC eluents 

were concatenated into 4 fractions (~783.75 μg peptides per fraction) and dried down using 

a SpeedVac apparatus. Peptide fractions were reconstituted with 1.4ml of IAP buffer (5 mM 

MOPS pH 7.2, 1 mM Sodium Phosphate (dibasic), 5 mM NaCl) per fraction and incubated 

for 2 hours at 4oC with pre-washed (3 times with IAP buffer) agarose beads bound to 

acetyl-lysine motif antibody. Peptide-bound beads were washed 4 times with ice-cold PBS 

followed by elution with 2 × 100ul of 0.15% TFA. Eluents were desalted using C18 stage 

tips, eluted with 50% ACN and dried down. Acetylpeptides were suspended in 7ul of 0.1% 

FA and 3% ACN and 4ul were injected per run.

Ubiquitylpeptide Enrichment with on-bead TMT labeling: Ubiquitin enrichment was 

performed based on the recently published UbiFast protocol (Udeshi et al., 2020). Before 

enrichment, anti-K-ε-GG bead-bound antibodies from the PTM-Scan ubiquitin remnant 

motif kit (Cell Signaling Technologies, Kit #5562) were cross-linked. Beads were briefly 

washed 3X with 100 mM sodium borate (pH 9.0) and incubated with 20 mM DMP for 30 

min at RT. Beads were then washed 2X with 200 mM ethanolamine and incubated overnight 

at 4°C in 200 mM ethanolamine with end-over-end rotation. Following incubation, beads 

were washed 3X with immunoprecipitation (IAP) buffer (50 mM MOPS, pH 7.2, 10 mM 

sodium phosphate, 50 mM NaCl) and stored at 4°C at a concentration of 0.5 ug/uL.

For each 11-plex experiment, 31.25 ug of cross-linked anti-K-GG bead-bound antibody at 

0.5 ug/uL in IAP per channel was aliquoted into 1.5 mL Eppendorf tubes on ice. 750 ug 

peptide samples were reconstituted to 0.5 mg/mL concentration in IAP buffer and vortexed 

for 10 min. Peptides were then centrifuged for 5 min at 5,000g. Each peptide solution was 

added to a tube of antibody and gently rotated end-over-end at 4oC for 1 hour. Following 

enrichment, samples were spun at 2000 rcf for ~1 min to settle and the supernatant was 

removed and stored as flow-through, and from this point beads were kept on ice unless being 

handled. Antibody beads were washed with 1.5 mL ice cold IAP followed by 1.5 mL ice 

cold PBS. For all washes, after adding wash reagent each sample was inverted ~5 times, 

agitated by tapping pairs of tubes together, spun at 2000 rcf for about 30–40 s, left to settle 

on ice for 10–20 s, and supernatant was removed. Importantly, all washes were completed 

as quickly as possible. Pre-aliquoted TMT @ 40 ug/uL in 100% MeCN was retrieved and 

briefly equilibrated to RT while beads were reconstituted in 200 uL room temp. 100 mM 

HEPES buffer. For each sample, 400 ug of TMT labeling reagent in 10 uL acetonitrile was 

added. Samples were labeled on-antibody while shaking vigorously (1400 rpm) at 20°C 

for 10 minutes, then quenched with 8 uL 5% hydroxylamine and shaken vigorously for 

another 5 minutes. Labeled antibody-bound peptides were then put back on ice, washed once 

with 1.3 mL cold IAP, and again with 1.5 mL cold IAP. Each channel was resuspended 

and transferred to a combination tube with 130 uL cold IAP. Following combination, each 
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now-empty tube was serially washed with 1.5 mL cold IAP to remove remaining beads, and 

this 1.5 mL IAP was added to the combination tube and used to wash the combined beads. 

Combined beads were washed one final time with 1.5 mL ice cold PBS. Once the channels 

were combined and washed, peptides were eluted twice from the beads by resuspending 

with 150 uL room temp. 0.15% TFA and incubating 5 min at RT. Each round of acid-eluted 

KGG-modified peptides was desalted on an equilibrated two-punch C18 stage tip. Both 

elutions of KGG peptides were loaded sequentially, washed 2X with 100 uL 0.1% FA, and 

eluted into an MS vial with 50 uL 50% ACN/0.1% FA. The eluted peptides were frozen, 

lyophilized, and reconstituted in 9 uL 3% ACN/0.1% FA, with 4 uL injected twice for two 

LC-MS/MS runs on a Thermo Lumos instrument. While the same lot of TMT reagents was 

used for all ubiquitylproteome samples (TE270748-TD264064), it is a different lot than that 

used for Proteome, Phosphoproteome, and acetylproteome samples.

LC-MS/MS for Proteomics Analyses: Online separation was done with a nanoflow 

Proxeon EASY-nLC 1200 UHPLC system (Thermo Fisher Scientific). In this set up, the 

LC system, column, and platinum wire used to deliver electrospray source voltage were 

connected via a stainless steel cross (360μm, IDEX Health & Science, UH-906x). The 

column was heated to 50°C using a column heater sleeve (Phoenix-ST) to prevent over­

pressuring of columns during UHPLC separation. From each peptide fraction, ~1ug (based 

on protein-level BCA prior to digestion with uniformly-distributed fractionation presumed), 

the equivalent of 12% of each global proteome sample in a 2 ul injection volume or 50% 

of each phosphoproteome, acetylproteome, or ubiquitylproteome sample in a 4 ul injection 

volume, was injected onto an in-house packed 22cm x 75um internal diameter C18 silica 

picofrit capillary column (1.9 μm ReproSil-Pur C18-AQ beads, Dr. Maisch GmbH, r119.aq; 

Picofrit 10um tip opening, New Objective, PF360–75-10-N-5). Mobile phase flow rate 

was 200 nL/min, comprised of 3% acetonitrile/0.1% formic acid (Solvent A) and 90% 

acetonitrile /0.1% formic acid (Solvent B). The 110-minute LC-MS/MS method consisted 

of a 10-min column-equilibration procedure; a 20-min sample-loading procedure; and the 

following gradient profile: (min:%B) 0:2; 1:6; 85:30; 94:60; 95;90; 100:90; 101:50; 110:50 

(the last two steps at 500 nL/min flow rate). For acetylproteome analysis, the same LC and 

column setup was used, but the gradient was extended to 260 minutes with the following 

gradient profile: (min:%B) 0:2; 1:6; 235:30; 244:60; 245;90; 250:90; 251:50; 260:50 (the 

last two steps at 500 nL/min flow rate). For ubiquitylproteome analysis, the same LC 

and column setup was used, but the gradient was 154-minutes with the following gradient 

profile: (min:%B) 0:2; 2:6; 122:35; 130:60; 133;90; 143:90; 144:50; 154:50 (the last two 

steps at 500 nL/min flow rate).

For proteome and acetylproteome analysis, samples were analyzed with a benchtop Q 

Exactive HF-X mass spectrometer (Thermo Fisher Scientific) equipped with a nanoflow 

ionization source (James A. Hill Instrument Services, Arlington, MA). Data-dependent 

acquisition was performed using Q Exactive HF-X Orbitrap v 2.9 software in positive ion 

mode at a spray voltage of 1.5 kV. MS1 Spectra were measured with a resolution of 60,000, 

an AGC target of 3e6 and a mass range from 350 to 1800 m/z. The data-dependent mode 

cycle was set to trigger MS/MS on up to the top 20 most abundant precursors per cycle 

at an MS2 resolution of 45,000, an AGC target of 5e4, an isolation window of 0.7 m/z, 
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a maximum injection time of 105 msec, and an HCD collision energy of 31%. Peptides 

that triggered MS/MS scans were dynamically excluded from further MS/MS scans for 

45 sec for proteome or 30 sec for acetylproteome. Peptide match was set to preferred for 

monoisotopic peak determination, and charge state screening was enabled to only include 

precursor charge states 2–6, with an intensity threshold of 9.5e4 for proteome or 8e4 for 

acetylproteome. Advanced precursor determination feature (APD) (Myers et al., 2018) was 

turned off using a software patch provided to us by Thermo Fisher Scientific allowing us to 

turn APD off in the tune file, Tune version 2.9.0.2926 (later versions of Exactive Tune 2.9 

sp2 for the HFX have this option as standard).

For phosphoproteome and ubiquitylproteome analysis, samples were analyzed with a 

benchtop Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) equipped 

with a NanoSpray Flex NG ion source. Data-dependent acquisition was performed using 

Xcalibur Orbitrap Fusion Lumos v3.0 software in positive ion mode at a spray voltage of 

1.8 kV. MS1 Spectra were measured with a resolution of 60,000, an AGC target of 4e5 

and a mass range from 350 to 1800 m/z. The data-dependent mode cycle time was set at 2 

seconds with a MS2 resolution of 50,000, an AGC target of 6e4, an isolation window of 0.7 

m/z, a maximum injection time of 105 msec (125 msec for ubiquitylproteome), and an HCD 

collision energy of 36%. Peptide mode was selected for monoisotopic peak determination, 

and charge state screening was enabled to only include precursor charge states 2–6, with an 

intensity threshold of 1e4. Peptides that triggered MS/MS scans were dynamically excluded 

from further MS/MS scans for 45 sec (20 sec for ubiquitylproteome), with a +/− 10 ppm 

mass tolerance. “Perform dependent scan on single charge state per precursor only” was 

enabled for phosphoproteome analysis, but disabled for ubiquitylproteome analysis.

Immunohistochemistry (IHC) analysis.

TMA construction: Seventy-one LSCC paraffin tissue blocks were available for tissue 

microarray (TMA) construction and whole sections by immunohistochemistry (IHC) assay. 

TMAs were constructed in duplicate, and each included two (2) 1.0 mm cores providing up 

to four (4) cores per case for IHC analysis. Common control tissue on each TMA included 

patient-matched normal adjacent lung from 14 cases.

Immune cell marker, Immunohistochemistry (IHC): Seventeen (17) samples were scored 

for immune cell markers. Sequential TMA sections were obtained for immune marker 

assessment to best approximate native spatial relationships. Chromogenic (DAB) IHC by 

single marker analysis was performed on 5-micron thick sections on standard charged 

slides. Automated immunostaining was performed by Autostainer Link 48, Dako, Inc. Heat 

induced epitope retrieval (HIER) was performed and biomarker dilutions as follows: CD4 

clone 4B12, Bio-Rad 1:50; CD8 clone 4B11, Bio-Rad, 1:50; CD163, Abcam, 1:500 and 

ARHGDIB, HPA051235 Sigma-Aldrich, 1:50. IHC analysis was performed independently 

by three independent pathologists by staining intensity of 0–3 scale for each TMA core 

separately and then by average score / case for a total of 15 cases. Case scores compared 

across independent pathologists showed very good agreement. For evaluating statistical 

significance of IHC scores across the three immune clusters, ordinal regression was used, 
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implemented using the “ordinal” package in R. Random effects accounted for the correlation 

between multiple cores from each sample and multiple pathologists.

Multiplex Immunofluorescence (mIF) staining: Development and optimization of the mIF 

platform has been previously described (Parra et al., 2020). mIF staining was performed in 

a 4-μm-thick section obtained from a FFPE TMA block, using the Opal 7-Color Kit (Akoya 

Biosciences, Waltham, MA, USA) and scanned using a Vectra multispectral microscope 

(Akoya Biosciences). The IF markers used were pan-Cytokeratin (CK, clone AE1/AE3, 

(DAKO) and Alpha-SMA ab5694 (Abcam). Multiplexed stained sections were imaged 

using the VECTRA multispectral imaging system (Akoya Biosciences). TMA cores were 

annotated using InForm 2.4.8 image analysis software (Akoya Biosciences).

IHC based assessment of TP63 low samples (Figure 4): For samples with low TP63 status, 

additional pathologic confirmation was performed. Pathology reassessment confirmed 8/10 

samples to be unequivocal LSCC; one sample (C3N.00247) had adenosquamous but 

predominantly squamous histology; the remaining sample (C3N.02283) showed basaloid 

squamous cell features and despite some atypical characteristics retained its LSCC 

attribution after review by four separate pathologists - with histology very similar to a 

TP63-low TCGA tumor (TCGA-66–2754) deemed LSCC by TCGA pathology.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genomic Data Analysis

Copy Number Calling: Copy-number analysis was performed jointly leveraging both 

whole-genome sequencing (WGS) and whole-exome sequencing (WES) data of the tumor 

and germline DNA, using CNVEX (https://github.com/mctp/cnvex). CNVEX uses whole­

genome aligned reads to estimate coverage within fixed genomic intervals, and whole­

genome and whole-exome variant calls to compute B-allele frequencies at variable positions 

(we used TNScope germline calls). Coverages were computed in 10kb bins, and the 

resulting log coverage ratios between tumor and normal samples were adjusted for GC bias 

using weighted LOESS smoothing across mappable and non-blacklisted genomic intervals 

within the GC range 0.3–0.7, with a span of 0.5 (the target, blacklist, and configuration 

files are provided with CNVEX). The adjusted log coverage ratios (LR) and B-allele 

frequencies (BAF) were jointly segmented by custom algorithm based on Circular Binary 

Segmentation (CBS). Alternative probabilistic algorithms were implemented in CNVEX, 

including algorithms based on recursive binary segmentation (RBS) (Gey and Lebarbier, 

2008), and dynamic programming (Bellman, 1961), as implemented in the R-package 

jointseg. For the CBS-based algorithm, first LR and mirrored BAF were independently 

segmented using CBS (parameters alpha=0.01, trim=0.025) and all candidate breakpoints 

collected. The resulting segmentation track was iteratively “pruned” by merging segments 

that had similar LR, BAFs and short lengths. For the RBS- and DP-based algorithms, joint­

breakpoints were “pruned” using a statistical model selection method (Lebarbier, 2005). For 

the final set of CNA segments, we chose the CBS-based results as they did not require 

specifying a prior on the number of expected segments (K) per chromosome arm, were 

robust to unequal variances between the LR and BAF tracks, and provided empirically the 

best fit to the underlying data.
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Somatic Variant Calling: Somatic variant calling was performed on exome-capture BAM 

files aligned to the GDC GRCh38 reference. Following de-duplication and co-realignment 

around known indels “GATK bundle known” and “Mills 1000G” somatic variants were 

called using Sentieon TNScope with the following settings “--max_fisher_pv_active 

0.05 --min_tumor_allele_frac 0.0075 --min_init_tumor_lod 2.5 --assemble_mode 4 -­

SVIntrusionThres 5”, with a provided germline variants from dbSNP138. The resulting 

VCF files were annotated and filtered, in a series of post-processing steps which included: 

1) restriction of variants to the hybrid-capture target regions. 2) Phasing of adjacent and 

separated by 1bp SNVs into multi-nucleotide variants based on the haplotype information 

provided by TNScope. 3) Annotation using VEP with the following settings “--assembly 

GRCh38 --species homo_sapiens --cache_version 97 --format vcf --gene_phenotype -­

symbol --canonical --ccds --hgvs --biotype --tsl --uniprot --domains --appris --protein 

--variant_class --sift b, --polyphen b --no_stats --total_length --allele_number --no_escape 

--flag_pick_allele --pick_order canonical,tsl,biotype,rank,ccds,length --buffer_size 20000”. 

Additional annotations were attached to the variants using VcfAnno including allele 

frequencies in GNOMAD (v2.0.1), ClinVar (downloaded Dec. 2019), Cosmic (downloaded 

Dec. 2019), dbSNP (20180418). The resulting variants are annotated against both RefSeq 

and Ensembl transcripts and contain multiple predicted consequences per-variant. For most 

downstream applications these annotations were reduced to a single predicted consequence 

per-variant and converted into a MAF file using custom software. The choice of the 

most-relevant consequence was based on a number of features. In general, the most 

‘severe’ consequence occuring in a ‘reliable’ transcript was chosen. To accomplish this the 

computed consequences were ranked by ‘severity’ and ‘priority’ reflecting how deleterious/

impactful a variant consequence is and how well-supported the existence and biological 

relevance of an isoform is. The specific rules differed for RefSeq and Ensembl annotations. 

RefSeq transcripts were ranked higher if they were known to CCDS, LRG or ranked 

‘CANONICAL’ or ‘PICK’ by VEP. Ensembl transcripts were further prioritized by Basic, 

Appris and TSL annotations. Ensembl-based consequences were prefered in case of ties. 

The resulting variant sets were filtered to only include variants with a high likelihood of 

being somatic based on a set of probabilistic and heuristic thresholds. A reported variant 

had to pass all of the following filters: 5 or more variant reads, fewer than 2 variant reads 

in the germline allele frequency in the normal 0.005, allele frequency in the tumor greater 

than 0.025, TLOD > 5, NLOD > 6, Fisher’s test p-value < 0.05, NFLOD > 1.5. Additionally 

heuristic filters were implemented to remove strand-bias, variants with mapping quality bias, 

and variants with high population allele frequency in GNOMAD.

Germline Variant Calling: Germline variant calling and annotation was carried out 

analogously using DNAScope using the following settings “--emit_conf 10 --call_conf 10” 

to generate a VCF file and “--emit_mode GVCF” to generate a gVCF file. The variants were 

custom-filtered based on the specific applications.

GISTIC and MutSig analysis: The Genomic Identification of Significant Targets in Cancer 

(GISTIC2.0) algorithm (Mermel et al., 2011) was used to identify significantly amplified 

or deleted focal-level and arm-level events, with Q value <0.25 considered significant. The 

following parameters were used:
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• Amplification Threshold = 0.1

• Deletion Threshold = 0.1

• Cap Values = 1.5

• Broad Length Cutoff = 0.98

• Remove X-Chromosome = 0

• Confidence Level = 0.99

• Join Segment Size = 4

• Arm Level Peel Off = 1

• Maximum Sample Segments = 2000

• Gene GISTIC = 1

Each gene of every sample is assigned a thresholded copy number level that reflects the 

magnitude of its deletion or amplification. These are integer values ranging from −2 to 

2, where 0 means no amplification or deletion of magnitude greater than the threshold 

parameters described above. Amplifications are represented by positive numbers: 1 means 

amplification above the amplification threshold; 2 means amplification larger than the arm 

level amplifications observed in the sample. Deletions are represented by negative numbers: 

−1 means deletion beyond the threshold; −2 means deletions greater than the minimum 

arm-level copy number observed in the sample.

The somatic variants were filtered through a panel of normals to remove potential 

sequencing artifacts and undetected germline variants. MutSig2CV (Lawrence et al., 2014) 

was run on these filtered results to evaluate the significance of mutated genes and estimate 

mutation densities of samples. These results were constrained to genes in the Cancer Gene 

Census (Sondka et al., 2018), with false discovery rates (q values) recalculated. Genes of q 

value < 0.1 were declared significant.

RNAseq and miRNAseq Quantification

RNAseq Quantification: The readcount is generated by featureCounts (subread v1.6.4) 

under stranded mode with parameters: `-g gene_id -t exon -Q 10 -p -B -s 2`. 

Gene annotation in use is identical to GDC (`gencode.v22.annotation.gtf.gz`; md5: 

`291330bdcff1094bc4d5645de35e0871`), which is available on the GDC Reference 

Files page (https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-reference-files). The 

readcount is later converted to FPKM and FPKM-UQ using GDC’s formula (https://

docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/).

Isoform specific RNA quantification: For TP63 isoform centric analysis presented in 

Figure 4, the hg38 reference genome and RefSeq annotations were used for the RNAseq 

data analysis and were downloaded from the UCSC table browser. First, CIRI (v2.0.6) was 

used to call circular RNA with default parameters and BWA (version 0.7.17-r1188) was used 

as the mapping tool. The cutoff of supporting reads for circRNAs was set to 10. Then we 

used a pseudo-linear transcript strategy to quantify gene and circular RNA expression (Li et 
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al., 2017). In brief, for each sample, linear transcripts of circular RNAs were extracted and 

75bp (read length) from the 3’ end was copied to the 5’ end. The modified transcripts were 

called pseudo-linear transcripts. Transcripts of linear genes were also extracted and mixed 

with pseudo-linear transcripts. RSEM (version 1.3.1) with Bowtie2 (version 2.3.3) as the 

mapping tool was used to quantify gene, isoform, and circular RNA expression based on the 

mixed transcripts.

DNA methylation data preprocessing: Raw methylation image files were downloaded 

from the CPTAC DCC (See data availability). We calculated and analyzed methylated (M) 

and unmethylated (U) intensities for LSCC samples as described previously (Fortin et al., 

2014). We flagged locus as NA where probes did not meet a detection p-value of 0.01. 

Probes with MAF more than 0.1 were removed, and samples with more than 85% NA values 

were removed. Resulting beta values of methylation were utilized for subsequent analysis.

Gene-level methylation scores were generated by taking the mean beta values of probes 

in the CpG islands of promoters and 5’ UTR regions of the gene. Methylation profiles 

(i.e., density plots) of some samples had unexpectedly skewed distributions of methylation 

beta values, in addition to significantly more missing values. To systematically determine 

the subset of methylation samples with these evident data QC issues, we subjected all the 

samples to model-based clustering using the Mclust package (Fraley et al., 2016) in R, 

using the interquartile range over all the genes as the representative metric. The clustering 

automatically determined the optimal number of clusters, and identified 3 clusters. Two 

of these clusters (with centroids at 0.029 and 0.038) captured the bulk of the samples 

(202). The third cluster (centroid at 0.165, significantly higher than the other two clusters) 

consisted of 4 samples that belong to this cluster with high confidence (uncertainty < 5%), 

each of which had a skewed distribution of beta values with a mean of 4,407 missing values 

per sample (in contrast to 1.8 missing values per sample for clusters 1 and 2 combined). 

Based on this analysis, we concluded that the 4 samples in cluster 3 represent samples with 

poor data quality. These have been excluded from all methylation analysis.

miRNA-seq Data Analysis: miRNA-seq unaligned bam files were downloaded from the 

CPTAC GDC API (https://docs.gdc.cancer.gov). Unaligned bams were first converted to 

fastq.gz by samtools bam2fq (samtools version 1.9). TPM (Transcripts per million) values of 

mature miRNA and precursor miRNA were reported after adaptor trimming, quality check, 

alignment, annotation, and read counting (https://github.com/ding-lab/CPTAC_miRNA/

blob/master/cptac_mirna_analysis.md). The mature miRNA expression was calculated 

irrespective of its gene of origin by summing the expression.

Proteomics Data Analysis

Spectrum quality filtering and searching: All MS data were interpreted using the 

Spectrum Mill software package v7.0 pre-release (Agilent Technologies, Santa Clara, 

CA) co-developed by Karl Clauser of the Carr laboratory (https://www.broadinstitute.org/

proteomics). Similar MS/MS spectra acquired on the same precursor m/z within +/− 

45 sec were merged. MS/MS spectra were excluded from searching if they failed the 

quality filter by not having a sequence tag length > 0 (i.e., minimum of two masses 
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separated by the in-chain mass of an amino acid) or did not have a precursor MH+ in 

the range of 800–6000. MS/MS spectra were searched against a RefSeq-based sequence 

database containing 41,457 proteins mapped to the human reference genome (GRCh38/

hg38) obtained via the UCSC Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables) 

on June 29, 2018, with the addition of 13 proteins encoded in the human mitochondrial 

genome, 264 common laboratory contaminant proteins, and 553 non-canonical small 

open reading frames. Scoring parameters were ESI-QEXACTIVE-HCD-v2, for whole 

proteome datasets, and ESI-QEXACTIVE-HCD-v3, for phosphoproteome, acetylproteome, 

and ubiquitylproteome datasets. All spectra were allowed +/− 20 ppm mass tolerance for 

precursor and product ions, 30% minimum matched peak intensity, and “trypsin allow P” 

enzyme specificity with up to 4 missed cleavages. Allowed fixed modifications included 

carbamidomethylation of cysteine and selenocysteine. TMT labeling was required at lysine, 

but peptide N-termini were allowed to be either labeled or unlabeled. Allowed variable 

modifications for whole proteome datasets were acetylation of protein N-termini, oxidized 

methionine, deamidation of asparagine, hydroxylation of proline in PG motifs, pyroglutamic 

acid at peptide N-terminal glutamine, and pyro-carbamidomethylation at peptide N-terminal 

cysteine with a precursor MH+ shift range of −18 to 97 Da. For the phosphoproteome 

dataset the allowed variable modifications were revised to allow phosphorylation of serine, 

threonine, and tyrosine, allow deamidation only in NG motifs, and disallow hydroxylation 

of proline with a precursor MH+ shift range of −18 to 272 Da. For the acetylproteome 

dataset the allowed variable modifications were revised to allow acetylation of lysine, allow 

deamidation only in NG motifs, and disallow hydroxylation of proline with a precursor 

MH+ shift range of −400 to 70 Da. For the ubiquitylproteome dataset the allowed variable 

modifications were revised to allow diglycine modification of lysine, allow deamidation 

only in NG motifs, and disallow hydroxylation of proline with a precursor MH+ shift range 

of −690 to 70 Da.

Protein grouping, and localization of PTMs: Identities interpreted for individual 

spectra were automatically designated as confidently assigned using the Spectrum Mill 

autovalidation module to use target-decoy based false discovery rate (FDR) estimates to 

apply score threshold criteria. For the whole proteome dataset thresholding was done in 

3 steps: at the peptide spectrum match (PSM) level, the protein level for each TMT-plex, 

and the protein level for all 22 TMT-plexes. For the phosphoproteome, acetylproteome, and 

ubiquitylproteome datasets thresholding was done in two steps: at the PSM and variable 

modification (VM) site levels.

In step 1 for all datasets, PSM-level autovalidation was done first and separately for each 

TMT-plex experiment consisting of either 25 LC-MS/MS runs (whole proteome), 13 LC­

MS/MS runs (phosphoproteome), 4 LC-MS/MS runs (acetylproteome), or 2 LC-MS/MS 

runs (ubiquitylproteome) using an auto-thresholds strategy with a minimum sequence length 

of 7; automatic variable range precursor mass filtering; and score and delta Rank1 – Rank2 

score thresholds optimized to yield a PSM-level FDR estimate for precursor charges 2 

through 4 of <0.8% for each precursor charge state in each LC-MS/MS run. To achieve 

reasonable statistics for precursor charges 5–6, thresholds were optimized to yield a PSM­
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level FDR estimate of <0.4% across all runs per TMT-plex experiment (instead of per each 

run), since many fewer spectra are generated for the higher charge states.

In step 2 for the whole proteome dataset, protein-polishing autovalidation was applied 

separately to each TMTplex experiment to further filter the PSMs using a target protein­

level FDR threshold of zero. The primary goal of this step was to eliminate peptides 

identified with low scoring PSMs that represent proteins identified by a single peptide, 

so-called “one-hit wonders.” After assembling protein groups from the autovalidated PSMs, 

protein polishing determined the maximum protein level score of a protein group that 

consisted entirely of distinct peptides estimated to be false-positive identifications (PSMs 

with negative delta forward-reverse scores). PSMs were removed from the set obtained in 

the initial peptide-level autovalidation step if they contributed to protein groups that had 

protein scores below the maximum false-positive protein score. Step 3 was then applied, 

consisting of protein-polishing autovalidation across all TMT plexes together using the 

protein grouping method “expand subgroups, top uses shared” to retain protein subgroups 

with either a minimum protein score of 25 or observation in at least 4 TMT plexes. The 

primary goal of this step was to eliminate low scoring proteins that were infrequently 

detected in the sample cohort. As a consequence of these two protein-polishing steps, each 

identified protein reported in the study comprised multiple peptides, unless a single excellent 

scoring peptide was the sole match and that peptide was observed in at least 4 TMT-plexes. 

In calculating scores at the protein level and reporting the identified proteins, peptide 

redundancy was addressed in Spectrum Mill as follows: The protein score was the sum of 

the scores of distinct peptides. A distinct peptide was the single highest scoring instance of a 

peptide detected through an MS/MS spectrum. MS/MS spectra for a particular peptide may 

have been recorded multiple times (e.g. as different precursor charge states, in adjacent bRP 

fractions, modified by deamidation at Asn or oxidation of Met, or with different phosphosite 

localization), but were still counted as a single distinct peptide. When a peptide sequence of 

>8 residues was contained in multiple protein entries in the sequence database, the proteins 

were grouped together and the highest scoring one and its accession number were reported. 

In some cases when the protein sequences were grouped in this manner, there were distinct 

peptides that uniquely represent a lower scoring member of the group (isoforms, family 

members, and different species). Each of these instances spawned a subgroup. Multiple 

subgroups were reported, counted towards the total number of proteins, and given related 

protein subgroup numbers (e.g. 3.1 and 3.2 for group 3, subgroups 1 and 2). For the whole 

proteome datasets the above criteria yielded false discovery rates (FDR) for each TMT-plex 

experiment of <0.6% at the peptide-spectrum match level and <0.8% at the distinct peptide 

level. After assembling proteins with all the PSMs from all the TMT-plex experiments 

together, the aggregate FDR estimates were 0.58% at the peptide-spectrum match level, 

2.3% at the distinct peptide level, and <0.01% (1/11,029) at the protein group level. Since 

the protein level FDR estimate neither explicitly required a minimum number of distinct 

peptides per protein nor adjusted for the number of possible tryptic peptides per protein, it 

may underestimate false positive protein identifications for large proteins observed only on 

the basis of multiple low scoring PSMs.

In step 2 for the phosphoproteome and acetylproteome datasets, variable modification (VM) 

site polishing autovalidation was applied across all 22 TMT plexes to retain all VM-site 
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identifications with either a minimum id score of 8.0 or observation in at least 4 TMT 

plexes. For the ubiquitylproteome datasets, it was applied across all 15 TMT plexes to retain 

all VM-site identifications with either a minimum id score of 8.0 or observation in at least 

3 TMT plexes. The intention of the VM site polishing step is to control FDR by eliminating 

unreliable VM site-level identifications, particularly low scoring VM sites that are only 

detected as low scoring peptides that are also infrequently detected across all of the TMT 

plexes in the study. In calculating scores at the VM-site level and reporting the identified 

VM sites, redundancy was addressed in Spectrum Mill as follows: A VM-site table was 

assembled with columns for individual TMT-plex experiments and rows for individual 

VM-sites. PSMs were combined into a single row for all non-conflicting observations of 

a particular VM-site (e.g. different missed cleavage forms, different precursor charges, 

confident and ambiguous localizations, and different sample-handling modifications). For 

related peptides, neither observations with a different number of VM-sites nor different 

confident localizations were allowed to be combined. Selecting the representative peptide 

from the combined observations was done such that once confident VM-site localization was 

established, higher identification scores and longer peptide lengths were preferred. While 

a Spectrum Mill identification score was based on the number of matching peaks, their 

ion type assignment, and the relative height of unmatched peaks, the VM site localization 

score was the difference in identification score between the top two localizations. The score 

threshold for confident localization, >1.1, essentially corresponded to at least 1 b or y ion 

located between two candidate sites that has a peak height >10% of the tallest fragment 

ion (neutral losses of phosphate from the precursor and related ions as well as immonium 

and TMT reporter ions were excluded from the relative height calculation). The ion type 

scores for b-H3PO4, y-H3PO4, b-H2O, and y-H2O ion types were all set to 0.5. This 

prevented inappropriate confident localization assignment when a spectrum lacked primary 

b or y ions between two possible sites but contained ions that could be assigned as either 

phosphate-loss ions for one localization or water loss ions for another localization. VM-site 

polishing yielded 68, 674 phosphosites with an aggregate FDR of 0.73% at the phosphosite 

level. In aggregate, 71% of the reported phosphosites in this study were fully localized to a 

particular serine, threonine, or tyrosine residue. VM-site polishing yielded 15,186 acetylsites 

with an aggregate FDR of 0.80% at the acetylsite level. In aggregate, 99% of the reported 

acetylsites in this study were fully localized to a particular lysine residue. VM-site polishing 

yielded 25,489 ubiquitylsites with an aggregate FDR of 0.40% at the ubiquitylsite level. 

In aggregate, >99% of the reported ubiquitylsites in this study were fully localized to a 

particular lysine residue.

Quantitation using TMT ratios: Using the Spectrum Mill Protein/Peptide Summary 

module, a protein comparison report was generated for the proteome dataset using 

the protein grouping method “expand subgroups, top uses shared” (SGT). For the 

phosphoproteome and acetylproteome datasets a Variable Modification site comparison 

report limited to either phospho or acetyl sites, respectively, was generated using the 

protein grouping method “unexpand subgroups”. Relative abundances of proteins and VM­

sites were determined in Spectrum Mill using TMT reporter ion intensity ratios from 

each PSM. TMT reporter ion intensities were corrected for isotopic impurities in the 

Spectrum Mill Protein/Peptide summary module using the afRICA correction method, 
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which implements determinant calculations according to Cramer’s Rule (Shadforth et 

al., 2005) and correction factors obtained from the reagent manufacturer’s certificate 

of analysis (https://www.thermofisher.com/order/catalog/product/90406) for TMT11_lot 

number UA280170/TL272399 (Proteome, Phosphoproteme, and Acetylproteome) and 

TE270748-TD264064 (Ubiquitylproteome). A protein-level, phosphosite-level, or acetylsite­

level TMT ratio is calculated as the median of all PSM-level ratios contributing to a protein 

subgroup, phosphosite, or acetylsite. PSMs were excluded from the calculation if they 

lacked a TMT label, had a precursor ion purity < 50% (MS/MS has significant precursor 

isolation contamination from co-eluting peptides), or had a negative delta forward-reverse 

identification score (half of all false-positive identifications). Lack of TMT label led to 

exclusion of PSMs per TMT plex with a range of 1.4 to 2.3% for the proteome, 1.8 to 

3.7% for the phosphoproteome, 1.0 to 3.5% for the acetylproteome, and 4.5 to 18.0% for 

the ubiquitylproteome datasets. Low precursor ion purity led to exclusion of PSMs per TMT 

plex with a range of 1.1 to 1.4% for the proteome, 1.7 to 2.8% for the phosphoproteome, 0.5 

to 1.7% for the acetylproteome, and 2.8 to 3.5% for the ubiquitylproteome datasets.

Two-component normalization of TMT ratios: It was assumed that for every sample there 

would be a set of unregulated proteins, phosphosites, acetylsites or ubiquitylsites that have 

abundance comparable to the common reference (CR) sample. In the normalized sample, 

these proteins, phosphosites, acetylsites or ubiquitylsites should have a log TMT ratio 

centered at zero. In addition, there were proteins, phosphosites, acetylsites and ubiquitylsites 

that were either up- or down-regulated compared to the CR. A normalization scheme was 

employed that attempted to identify the unregulated proteins, phosphosites, acetylsites or 

ubiquitylsites, and centered the distribution of these log-ratios around zero in order to nullify 

the effect of differential protein loading and/or systematic MS variation. A 2-component 

Gaussian mixture model-based normalization algorithm was used to achieve this effect. 

The two Gaussians N(μi1,σi1) and N(μi2,σi2) for a sample i were fitted and used in the 

normalization process as follows: the mode mi of the log-ratio distribution was determined 

for each sample using kernel density estimation with a Gaussian kernel and Shafer-Jones 

bandwidth. A two-component Gaussian mixture model was then fit with the mean of both 

Gaussians constrained to be mi, i.e., μi1=μi2=mi. The Gaussian with the smaller estimated 

standard deviation σi = min σi1, σi2  was assumed to represent the unregulated component 

of proteins/phosphosites/acetylsites/ubiquitylsites, and was used to normalize the sample. 

The sample was standardized using (mi,σi) by subtracting the mean mi from each protein/

phosphosite/acetylsite/ubiquitylsite and dividing by the standard deviation σi.

Normalization of acetyl- and ubiquitylproteome: To correct for differential underlying 

protein levels when performing certain acetylproteome- and ubiquitylproteome-based 

analyses, a global linear model approach was employed to produce protein-normalized 

versions of both of these PTM datasets. PTM sites were first matched to underlying proteins 

in the proteome dataset using RefSeq accession numbers. If a site’s main accession number 

did not yield a match in the proteome, all accession numbers associated with the site 

were then tried and the protein with the highest score was selected as a match. For the 

acetylproteome and ubiquitylproteome separately, a linear model was then fit (R function 
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lm, PTM ~ protein) to all matched PTM-protein data points in the dataset. The residuals of 

each model were then used as protein-normalized acetylsite or ubiquitylsite abundances.

Proteogenomic analysis

Quality control and Batch effect assessment: We used guided principal component 

analysis (gPCA) (Reese et al., 2013) to assess the presence of a batch effect in the 

sample/CR ratio data based on TMT-plex. There was no overall apparent batch effect (gPCA 

p-value=1) in the global proteome, phosphoproteome, acetylproteome or ubiquitylproteome 

datasets.

To assess composition similarities between CR used for proteome, phosphoproteome and 

acetylproteome analysis, and ubiquitylproteome, we performed label-free proteomic analysis 

of each CRs in triplicates. Both CRs showed excellent correlation with median pearson 

correlation > 0.85.

In addition, to assess data quality, we assessed the Pearson correlations of log TMT reporter 

ion intensities between all pairs of TMT plexes, separately for sample and CR channels. 

For each given pair of TMT plexes, correlations between CRs were consistently higher 

than correlations of respective sample channels enabling precise relative quantitation of 

proteins, phosphorylation and acetylation sites across 22 TMT plexes using the CR channels 

as common denominator (Figure S1C). In the ubiquitylproteome data we observed lower 

correlations of the CR channel (in comparison to samples channels) in three of the 18 TMT 

plexes analyzed (plexes 7, 8, 10). Clustering of the CR channels using pairwise correlations 

as a similarity metric pointed to a batch effect in the CR channels (but not in the sample 

channels) in these plexes. The presence of a batch effect was further confirmed by applying 

the gPCA test described above to only the reporter intensities of the CR channels (gPCA 

p-value < 0.001). Even though undetectable with a global test, we observed this CR batch 

effect propagate to the sample/CR ratio data in preliminary analyses (data not shown). 

To counter the propagation of this CR batch effect to the sample/CR ratio for samples 

in these plexes, batch correction was applied to the sample/CR ratio data for plexes 7, 8, 

10 (batch 1) and all other plexes (batch 2) using limma’s removeBatchEffect (https://rdrr.io/

bioc/limma/man/removeBatchEffect.html) on the sample/CR ratio data including the sample 

type (tumor, NAT) as a covariate.

Dataset filtering: Genes (RNA-seq), proteins (global proteome), phosphosites, acetylsites 

and ubiquitin sites present in fewer than 30% of samples (i.e., missing in >70% of samples) 

were removed from the respective datasets. Furthermore, proteins were required to have at 

least two observed TMT ratios in >25% of samples in order to be included in the proteome 

dataset. Phosphosites, acetylsites and ubiquitin sites were required to have at least one 

observed TMT ratio in >25% of samples.

Some of the filtering steps were modified for specific analyses in the study. For many of the 

marker selection and gene set enrichment analyses, at least 50% of samples were required 

to have non-missing values for proteins/phosphosites/acetyl/ubiquitin sites, since missing 

values were imputed, and excessive missing values can result in poor imputation. Alternate 

filtering has been noted in descriptions of the relevant methods.
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Unsupervised multi-omic clustering using NMF: We used non-negative matrix 

factorization (NMF)-based multi-omic clustering using protein, phosphosite, acetylsite, 

RNA transcript and gene copy number variants (CNV) as previously described ((Gillette 

et al., 2020). Briefly, given a factorization rank k (where k is the number of clusters), NMF 

decomposes a p x n data matrix V into two matrices W and H such that multiplication of W 
and H approximates V. Matrix H is a k x n matrix whose entries represent weights for each 

sample (1 to N) to contribute to each cluster (1 to k), whereas matrix W is a p x k matrix 

representing weights for each feature (1 to p) to contribute to each cluster (1 to k). Matrix 

H was used to assign samples to clusters by choosing the k with maximum score in each 

column of H. For each sample we calculated a cluster membership score as the maximal 

fractional score of the corresponding column in matrix H. We defined a ”cluster core” as the 

set of samples with cluster membership score > 0.5.

To enable integrative multi-omic clustering we enforced all data types (and converted if 

necessary) to represent ratios to: (i) a common reference measured in each TMT plex 

(proteome, phosphoproteome, acetylproteome), (ii) an in silico common reference calculated 

as the median abundance across all samples (RNA expression) or (iii) to matching blood 

normal for CNA data. The CNA data was further filtered to only retain genes significantly 

altered (GISTIC2 thresholded of +2 or −2) in at least 5% of all tumors. All data tables were 

then concatenated and all rows with missing values were removed. To remove uninformative 

features from the dataset prior to NMF clustering we removed features with the lowest 

standard deviation (bottom 5th percentile) across all samples. Each column in the data 

matrix was further scaled and standardized such that all features from different data types 

were represented as z-scores. The resulting data matrix of z-scores into was converted to a 

non-negative input matrix required by NMF as follows:

1. Create one data matrix with all negative numbers zeroed.

2. Create another data matrix with all positive numbers zeroed and the signs of all 

negative numbers removed.

3. Concatenate both matrices resulting in a data matrix twice as large as the 

original, but containing only positive values and zeros and hence appropriate 

for NMF.

The resulting matrix was then subjected to NMF analysis leveraging the NMF R-package 

(Gaujoux and Seoighe, 2010) and using the factorization method described in (Brunet et al., 

2004). To determine the optimal factorization rank k (number of clusters) for the multi-omic 

data matrix we tested a range of clusters between k=2 and 8. For each k we factorized 

matrix V using 50 iterations with random initializations of W and H. To determine the 

optimal factorization rank we calculated two metrics for each k: 1) cophenetic correlation 

coefficient measuring how well the intrinsic structure of the data was recapitulated after 

clustering and 2) the dispersion coefficient of the consensus matrix as defined in (Kim and 

Park, 2007) measuring the reproducibility of the clustering across 50 iterations. The optimal 

k was defined as the maximum of the product of both metrics for cluster numbers between 

k=3 and 8
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Having determined the optimal factorization rank k, in order to achieve robust factorization 

of the multi-omic data matrix V, we repeated the NMF analysis using 500 iterations with 

random initializations of W and H and performed the partitioning of samples into clusters 

as described above. Due to the non-negative transformation applied to the z-scored data 

matrix as described above, matrix W of feature weights contained two separate weights 

for positive and negative z-scores of each feature, respectively. In order to revert the non­

negative transformation and to derive a single signed weight for each feature, we first 

normalized each row in matrix W by dividing by the sum of feature weights in each row, 

aggregated both weights per feature and cluster by keeping the maximal normalized weight 

and multiplication with the sign of the z-score in the initial data matrix. Thus, the resulting 

transformed version of matrix Wsigned contained signed cluster weights for each feature in 

the input matrix.

For functional characterization of clustering results by single sample Gene Set Enrichment 

Analysis (ssGSEA), we calculated normalized enrichment scores (NES) of cancer-relevant 

gene sets by projecting the matrix of signed multi-omic feature weights (Wsigned) onto 

Hallmark pathway gene sets (Liberzon et al., 2015) using ssGSEA (Barbie et al., 2009). To 

derive a single weight for each gene measured across multiple omics data types (protein, 

RNA, phosphorylation site, acetylation site, CNA) we retained the weight with maximal 

absolute amplitude. We used the ssGSEA implementation available on https://github.com/

broadinstitute/ssGSEA2.0 using the following parameters:

• gene.set.database=“h.all.v6.2.symbols.gmt”

• sample.norm.type=“rank”

• weight=1

• statistic=”area.under.RES”

• output.score.type=“NES”

• nperm=1000

• global.fdr=TRUE

• min.overlap=5

• correl.type=”z.score”

To test the association of the resulting clusters to clinical variables we used Fisher’s exact 

test (R function fisher.test) to test for overrepresentation in the set of samples defining the 

cluster core as described above.

The entire workflow described above has been implemented as a module for PANOPLY 

(Mani et al., 2020) which runs on Broad’s Cloud platform Terra (https://app.terra.bio/). 

The docker containers encapsulating the source code and required R-packages for 

NMF clustering and ssGSEA have been submitted to Dockerhub (broadcptacdev/

pgdac_mo_nmf:15, broadcptac/pgdac_ssgsea:5). The source code for ssGSEA is available 

on GitHub: https://github.com/broadinstitute/ssGSEA2.0.
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Integrative analysis with Stewart et al.: To enable integrative analysis of our protein 

data with the protein data in Stewart et al.(Stewart et al., 2019) we first aggregated the 

protein-level data to gene-level data matrices by retaining the dominant isoform (identified 

by the lowest protein subgroup number) associated with each gene symbol. To aggregate the 

Stewart et al. protein data we used the mean expression across all proteins mapping to the 

same gene symbol. Both gene-level protein data matrices were then separately subjected to 

gene-level z-score transformation before joining the matrices using the unique gene symbols 

as keys. The resulting integrated protein data matrix was then subjected to the NMF-based 

clustering pipeline described above using the 3,366 genes quantified across all 216 tumors.

RNA subtyping: Previously reported LSCC gene expression-subtype signatures were 

downloaded from the original publication (Wilkerson et al., 2010) and applied to our RNA 

expression dataset using the centroid-based method in a manner similar to the TCGA 

study (Hammerman et al., 2012). Specifically, the RNA expression of the 208 signature 

genes, represented as FPKM, was mean-centered in the gene-wise manner, and each sample 

was correlated to each of the four centroid vectors representing the average signature 

gene expression for the four subtypes. The samples were assigned to one of the four 

transcriptomics subtypes according to the highest correlations. Samples with insignificance 

correlation (p > 0.01) were marked to have ‘undecided’ subtype.

Chromosomal instability index: The CIN score reflects the overall copy number aberration 

across the whole genome. From the segment-level CNA result, we used a weighted-sum 

approach to summarize the chromosome instability for each sample (Vasaikar et al., 2019). 

The absolute segment-level log2 ratios of all copy number segments (indicating the copy 

number aberration of these segments) within a chromosome were weighted by the segment 

length and summed up to derive the instability score for the chromosome. The genome-wide 

chromosome instability index was calculated by summing up the instability score of all 22 

autosomes.

Fusion detection and analysis: Fusion calling was performed using a combination 

of CRISP, CODAC MI-ONCOSEQ pipeline (Robinson et al., 2017; Wu et al., 2018), 

fusioncatcher_v1.10 (Nicorici et al.) and arriba_v1.1.0 (https://github.com/suhrig/arriba/). 

The fusions calls were compiled and visualized using AGFusion to display the predicted 

domain and exon structure of the fusion proteins as described (Vats et al., 2020).

mRNA and Protein correlation: To compare mRNA expression and protein abundance 

across samples we focused on the RNAseq data with 21,792 genes, and global proteome 

with 11,575 quantified proteins. Protein IDs were mapped to gene names. In total, 10,890 

genes common to both RNAseq and proteome data spanning 108 tumor samples were used 

in the analysis. The analyses were carried out on normalized data: RNAseq data were 

log2 transformed, upper quartile normalized RPKM values, which were median-centered 

by row (i.e., gene); proteome data was two-component normalized as described earlier. 

Pearson correlation was calculated for each gene. Both correlation coefficient and p-value 

were recorded. Further, adjusted p-values were calculated using the Benjamini–Hochberg 

procedure.
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CNA-driven cis and trans effects: Correlations between copy number alterations 

(CNA) and RNA, proteome, phosphoproteome acetylproteome and ubiquitylproteome 

(with proteome and PTM data mapped to genes, by choosing the most variable protein 

isoform/PTM site as the gene-level representative) were determined using Pearson 

correlation of common genes present in CNA-RNA-proteome (9,988 genes), CNA-RNA­

phosphoproteome (5,144 genes), CNA-RNA-acetylproteome (1,344 genes) and CNA-RNA­

ubiquitylproteome (2,616 genes). In addition, p-values (corrected for multiple testing using 

Benjamini-Hochberg FDR) for assessing the statistical significance of the correlation values 

were also calculated. CNA trans-effects for a given gene were determined by identifying 

genes with statistically significant (FDR < 0.05) positive or negative correlations.

CMAP analysis: Candidate genes driving response to copy number alterations were 

identified using large-scale Connectivity Map (CMAP) queries. The CMAP (Lamb et al., 

2006; Subramanian et al., 2017) is a collection of about 1.3 million gene expression 

profiles from cell lines treated with bioactive small molecules (~20,000 drug perturbagens), 

shRNA gene knockdowns (~4,300) and ectopic expression of genes. The CMAP dataset 

is available on GEO (Series GSE92742). For this analysis, we use the Level 5 (signatures 

from aggregating replicates) TouchStone dataset with 473,647 total profiles, containing 

36,720 gene knock-down profiles, with measurements for 12,328 genes. See https://clue.io/

GEO-guide for more information.

To identify candidate driver genes, proteome profiles of copy number-altered samples 

were correlated with gene knockdown mRNA profiles in the above CMAP dataset, and 

enrichment of up/downregulated genes was evaluated. Normalized log2 copy num- ber 

values less than 0.3 defined deletion (loss), and values greater than +0.3 defined copy 

number amplifications (gains). In the copy number-altered samples (separately for CNA 

amplification and CNA deletion), the trans-genes (identified by significant correlation in 

“CNA driven cis and trans effects” above) were grouped into UP and DOWN categories 

by comparing the protein ratios of these genes to their ratios in the copy number neutral 

samples (normalized log2 copy number between 0.3 and +0.3). The lists of UP and 

DOWN trans-genes were then used as queries to interrogate CMAP signatures and calculate 

weighted connectivity scores (WTCS) using the single-sample GSEA algorithm (Krug et al., 

2018). The weighted connectivity scores were then normalized for each perturbation type 

and cell line to obtain normalized connectivity scores (NCS). See (Subramanian et al., 2017) 

for details on WTCS and NCS. For each query we then identified outlier NCS scores, where 

a score was considered an outlier if it lay beyond 1.5 times the interquartile range of score 

distribution for the query. The query gene was designated a candidate driver if (i) the score 

outliers were statistically cis-enriched (Fisher test with BH-FDR multiple testing correction) 

and (ii) the gene had statistically significant and positive cis-correlation.

For a gene to be considered for inclusion in a CMAP query it needed to i) have a copy 

number change (amplification or deletion) in at least 15 samples; ii) have at least 20 

significant trans genes; and iii) be on the list of shRNA knockdowns in the CMAP. 502 

genes satisfied these conditions and resulted in 976 queries (CNA amplification and deletion 

combined) that were tested for enrichment. Thirty two (32) candidate driver genes were 

identified with Fisher’s test FDR < 0.25, using this process.
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In order to ensure that the identified candidate driver genes were not a random occurrence, 

we performed a permutation test to determine how many candidate driver genes would be 

identified with random input (Mertins et al., 2016). For the 976 queries used, we substituted 

the bona-fide trans-genes with randomly chosen genes, and repeated the CMAP enrichment 

process. To determine FDR, each permutation run was treated as a Poisson sample with 

rate λ, counting the number of identified candidate driver genes. Given the small n ( = 

10) and λ, a Score confidence interval was calculated (Barker, 2002) and the midpoint of 

the confidence interval used to estimate the expected number of false positives. Using 10 

random permutations, we determined the overall false discovery rate to be FDR = 0.33, 

with a 95% CI of (0.27, 0.40) for genes with either CNA amplification or deletion, and an 

FDR=0.06 (95% CI: 0.01, 0.12) for six (6) genes with both CNA amplification and deletion.

To identify how many trans-correlated genes for all candidate regulatory genes could be 

directly explained by gene expression changes measured in the CMAP shRNA perturbation 

experiments, knockdown gene expression consensus signature z-scores (knockdown/control) 

were used to identify regulated genes with α = 0.05, followed by counting the number of 

trans-genes in this list of regulated genes.

To obtain biological insight into the list of candidate driver genes, we performed (i) 

enrichment analysis on samples with extreme CNA values (amplification or deletion) to 

identify statistically enriched sample annotation subgroups; and (ii) GSEA on cis/trans­

correlation values to find enriched pathways.

LINCS analysis: Differentially expressed genes between the 5 NMF LSCC subtypes were 

identified using the limma package. In order to identify genes that were uniquely expressed 

in each subtype, all pairwise comparisons between the 5 subtypes were computed. In 

addition, genes that were differentially expressed (adjusted p.value < 0.05) in at least 3 

out of the 4 comparisons and had a concordant fold change among all comparisons were 

identified as subtype-specific and were used in the subsequent analysis.

Protein abundance comparisons were performed between all 5 NMF subtypes using the 

Wilcoxon rank-sum test and p-values were adjusted using the Benjamini & Hochberg 

method. Subtype-specific differentially expressed proteins were identified based on their 

differential expression (adjusted p.value < 0.05) in at least 2 out of the 4 comparisons, and 

by having a concordant fold change among all comparisons. The identified differentially 

expressed genes and proteins were then filtered for gene symbols measured in the 

L1000 assay (978 landmark genes). These NMF-specific signatures were used as input to 

calculate normalized weighted connectivity scores (WTCS) against the Library of Integrated 

Network-Based Cellular Signatures (LINCS) L1000 perturbation-response signatures. The 

scores were computed using the sig_queryl1k_tool pipeline (https://hub.docker.com/u/cmap) 

and the LINCS L1000 Level 5 compound (trt_cp) signatures from CLUE (clue.io, 

“Expanded CMap LINCS Resource 2020 Release”). The resulting normalized connectivity 

scores were summarized across cell lines using the maximum quantile of all the scores of the 

same compound (Qhi = 67,Qlow = 33) as previously described (Subramanian et al., 2017). 

The corresponding compound metadata were obtained from CLUE (clue.io, “Expanded 

CMap LINCS Resource 2020 Release”) and were used to filter and identify compounds 
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with existing annotations (drug name, MOA, Target). The top 20 negatively connected 

compounds to each NMF signature were selected for visualization.

Defining cancer-associated genes: Cancer-associated genes (CAG) were compiled using 

the Census website https://cancer.sanger.ac.uk/census. The list of genes is provided in Table 

S1.

CpG Island Methylator Phenotype: The methylation analysis started with all 103 tumor 

samples, which excluded 4 samples from the cohort with high missing rate (see above), to 

generate the CpG island methylator phenotypes (CIMP). Specifically, we first generated the 

gene-level methylation score, by taking the averaged beta values of all probes harboring 

in the islands of promotor or 5 UTR regions of the gene. Then, we preprocessed the 

data by filtering genes that were hypermethylated, i.e. the gene-level methylation score 

>0.2, transformed the score into M-values, normalized the transformed values, and then 

imputed the missing values with k-nearest neighbors (KNN). With preprocessed data, we 

performed consensus clustering 1000 times, each taking 80% of the samples and all genes, 

and calculated the consensus matrix (probabilities of two samples clustering together) for 

each predetermined number of clusters K. K ranges from 2 to 10. In each value of K, we 

visualized the consensus matrix using K means with Euclidean distance as the distance 

metric. Finally, we determined the optimal number of clusters by considering the relative 

change in area under the consensus cumulative density function (CDF) curve. In the end, 

three distinct clusters were identified, one was hypermethylated with mean M value 0.393, 

and two were hypomethylated with mean M value −0.041 and −0.359, respectively. We 

labeled these three clusters as CIMP high, CIMP intermediate, and CIMP low groups.

iProFun Based Cis Association Analysis: We used iProFun, an integrative analysis 

tool to identify multi-omic molecular quantitative traits (QT) perturbed by DNA-level 

variations. We considered five functional molecular quantitative traits (gene expression, 

protein, phosphoprotein, acetylprotein, ubiquitylproteome levels) for their associations with 

DNA methylation, accounting for mutation, copy number variation, age, gender, tumor 

purity and smoking status. Tumor purity was determined using TSNet from RNA-seq data. 

The iProFun procedure was applied to a total of 12,666 genes that was available in at 

least one predictor (mutation, CNA, DNA methylation) and one outcome (mRNA, global 

protein, phospholation, acetylation and ubiquitylation) for their cis regulatory patterns in 

tumors. For each of the 12,666 genes, we started with linear regression to capture the 

covariate-adjusted associations. The resulting association summary statistics was used to 

call probabilities of belonging to each of the 2^5=32 possible configurations. We calculated 

the probabilities of associating with each of the five outcomes by combining probabilities 

from relevant configurations, and calculated FDR controlled associations. The significant 

genes need to pass three criteria: (1) the satisfaction of biological filtering procedure, 

(2) posterior probabilities > 75%, and (3) empirical false discovery rate (eFDR)<10%. 

As DNA methylation at the promoter regions of a gene down regulates its expression 

level, biological filtering procedure requires DNA methylations that exist either negative 

significant associations or insignificant associations with all 5 the types of molecular QTs 

for significance call. DNA methylations with significant positive associations with QTs were 
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filtered out for significance call, as it was not the pattern of biological associations that were 

interesting. Secondly, a significance was called only if the posterior probabilities > 75% 

of a predictor being associated with a molecular QT, by summing over all configurations 

that are consistent with the association of interest. Lastly, we calculated empirical FDR 

via 100 permutations per molecular QTs by shuffling the label of the molecular QTs, and 

requested empirical FDR (eFDR) <10% by selecting a minimal cutoff value of alpha such 

that 75%<alpha<100%. The eFDR is calculated by: eFDR= (Averaged No. of genes with 

posterior probabilities > alpha in permuted data) / (Averaged No. of genes with posterior 

probabilities > alpha in original data). Figure 1G annotated those genes whose DNA 

methylation had cascading effects (associated with all QTs under investigation), and among 

them those whose protein abundances significantly differ between tumor and NAT were 

annotated.

EMT-specific cluster and fibroblast enrichment: NMF derived EMT-enriched subtype 

was interrogated for EMT and fibroblast related proteins in LSCC tumor patients. The 

relative protein expression was calculated using z-score. The single ssGSEA was performed 

on a protein dataset using GSVA (v3.11) to calculate normalized enrichment score for EMT 

and fibroblast proliferation using MSigdb (v6.1) and gene ontology geneset respectively. 

Similar analysis was also performed to interrogate SOX2 associated genes and its relation 

with IL6_JAK_STAT signaling (MSigdb hallmarks geneset V6.1).

Differential marker analysis: A Wilcoxon signed rank test was performed on TMT-based 

global proteomic data between tumor and matched normal samples to determine differential 

abundance of proteins between tumor and NAT samples. Proteins having < 50% missing 

values were considered for downstream analysis. Proteins with log2-fold-change (FC)> 2 

in tumors and Benjamini-Hochberg FDR < 0.01 were considered to be tumor-associated 

proteins. Over-representation analysis of Gene Ontology Biological Process terms was 

performed on a background of quantified proteins in WebGestaltR (Liao et al., 2019). 

The selected gene list was either significant proteins or proteins containing a significantly 

altered phosphorylation site from the differential marker analyses. ORA was performed 

separately for increased and decreased proteins. Terms were considered significant with a 

Benjamini-Hochberg adjusted p-value <0.01.

Among tumor associated proteins, the top 50 differential proteins with more than 90% of 

samples showing high expression in tumors were selected and shown. Differential proteins 

with more than 99% of samples showing tumor specific expression were highlighted. 

Immunohistochemistry-based antibody-specific staining scores in lung tumors were obtained 

from the Human Protein Atlas (HPA, https://www.proteinatlas.org), in which tumor-specific 

staining is reported in four levels, i.e., high, medium, low, and not detected. The 

protein-specific annotations such as enzymes, transcription factor, transporters, secreted, 

transmembrane and FDA-approved drugs targeting the protein or reported in drugbank were 

designated. Similarly, differential analysis was performed between RNA, phosphosite and 

acetylproteome datasets between tumor and matched NATs. The differential genes/sites with 

log2-fold-change (FC)> 2 in tumors and Benjamini-Hochberg FDR < 0.01 were considered 
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to be tumor-associated. The overlapping genes/sites with proteins were represented in a 

checkerbox plot.

Overall and disease-free survival in TCGA lung squamous carcinoma: Survival for 

lung squamous tumor patients in TCGA LSCC cohort was calculated using the time from 

date of diagnosis to death or last contact (Overall survival, OS) and disease-free interval 

time (Disease-free survival, DFS). Normalized RNA expression was categorized into low 

and high expression group based on mean. Univariate Cox proportional hazards models 

were fitted to OS, and DFI endpoints to calculate the hazard ratios for tumor-associated 

genes/proteins using coxph function in Survival package (version 2.44) in R. The p-values 

were determined using a log-rank test. The hazard ratio [exp(cox coefficient)] was used to 

compare poor survival in low and high-expression group.

Kaplan-Meier survival analysis: We used time-to-death or last contact data for the current 

cohort (recorded as number of days from diagnosis date) to assess survival differences based 

on various sample subgroups and clinical annotations. We used Kaplan-Meier analysis to 

explore survival differences associated with tumor grade, mutation burden, mutation status 

for SMGs, CUL3-NFE2L2-KEAP1 combined mutation status, CNA for KAT6A/SOX2/

TP63/FGFR1/CDKN2A, immune subtype, NMF cluster, CIN, tumor grade and ploidy.

We identified NMF mixed tumors (i.e., tumors that are not part of the core NMF clusters) 

had significantly worse survival (log-rank p-value = 0.005). We used a Fisher test to 

find enriched annotations (among those mentioned in the previous paragraph, with tumor 

stemness index added) associated with NMF mixed tumors. The frequency of SOX2 

amplifications were significantly enriched in NMF mixed tumors (p-value = 0.0038). None 

of the other annotations had significant enrichment in the NMF mixed tumors.

Continuous Smoking Score: Non-negative matrix factorization (NMF) was used in 

deciphering mutation signatures in cancer somatic mutations stratified by 96 base 

substitutions in tri-nucleotide sequence contexts. To obtain a reliable signature profile, we 

used SomaticWrapper to call mutations from WGS data. SignatureAnalyzer exploited the 

Bayesian variant of the NMF algorithm and enabled an inference for the optimal number 

of signatures from the data itself at a balance between the data fidelity (likelihood) and the 

model complexity (regularization). After decomposing into three signatures, signatures were 

compared against known signatures derived from COSMIC (Tate et al., 2019) and cosine 

similarity was calculated to identify the best match.

We also sought to integrate count of total mutations, t, percentage that are signature 

mutations, c, and count of DNPs, n, into a continuous score, 0 < S < 1, to quantify the 

degree of confidence that a sample was associated with smoking signature. We referred to 

these quantities as the data, namely D = C ∩ T ∩ N, and used A and A’ to indicate smoking 

signature or lack thereof, respectively. In a Bayesian framework, it is readily shown that a 

suitable form is S = 1 / (1 + R), where R is the ratio of the joint probability of A’ and D to 

the joint probability of A and D. For example, the latter can be written P(A)・P(C|A)・P(T|A)・
P(N|A) and the former similarly, where each term of the former is the complement of its 
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respective term in this expression. Common risk statistics are invoked as priors, i.e. P(A) = 

0.9 (Walser et al., 2008).

We consider S to be a score because rigorous conditioned probabilities are difficult to 

establish. (For example, the data types themselves are not entirely independent of one 

another and models using common distributions like the Poisson do not recapitulate realistic 

variances.) Instead, we adopt a data-driven approach of estimating contributions of each data 

type based on 2-point empirical fitting of roughly the low and high extremes using shape 

functions. The general model for data type G is P(G|A) = [x ・erf (g/y) + 1] / (x + 2) and 

P(G|A’) = 1 - P(G|A), where erf is the Gaussian error function, g is the observed value for 

the given data type, and x and y are empirically-determined weights.

The shape function for total mutations, T, has two modifiers. First, it includes a simple 

expected-value correction for purity, u. Namely, assuming mutation-calling does not capture 

all mutations because of impurities, t is taken as the observed number of mutations divided 

by a purity shape function, f, where f ≤ 1. Although one might model f according to 

common characteristics of mutation callers, e.g. close to 100% sensitivity for pure samples 

and very low calling rate for low variant allele fractions (VAFs), the purity estimates for 

these data are based on RNA-Seq and are not highly correlated with total mutation counts. 

Consequently, we use a line function, f = 0.2・u + 0.8, which does not strongly impact the 

adjustment of low-purity samples. Second, before choosing weights, we removed outliers, as 

determined by Peirce’s criterion. Based on the distribution of continuous smoking score, we 

set 0.15 as the lower bound cutoff and 0.6 as the upper bound cutoff for defining the inferred 

smoking status. We classified the samples with strong smoking evidence if the smoking 

score > 0.6; samples with weak smoking evidence if smoking score < 0.15.

Identification of differentially regulated events in NRF2 mutant tumors.: For each 

gene, normalized levels of mRNA/protein/phosphoprotein (log transformed data) were fit 

into a linear regression model. In addition to NFR2 mutation status, gender, tumor purity 

and ethnicity were also included in the model. Coefficient and p-value of NRF2 mutation 

status variables from the fitted model were used to evaluate the extent and significance 

of the difference between patients with and without aberration. To adjust for multi-test, 

p-values were adjusted with the BH method. Genes that showed significant upregulation 

(up) in more than one dataset (Table S4) were used to generate a GMT file for ssGSEA 

based NRF2 activity score calculation using ssGSEA (https://github.com/broadinstitute/

ssGSEA2.0). The NRF2 activity score contains a total of 54 genes upregulated both at 

protein and RNA level, identified by our NRF2 mutant versus wildtype tumor differential 

analysis (p-value <0.05 and logFC>1). Among the 54 genes, 44 have been previously 

associated with NRF2 signaling (either in NRF2 concept in msigdb such as Gene Sets 

NFE2L2.V2 (Malhotra et al., 2010) and SINGH_NFE2L2_TARGETS ((Singh et al., 2008), 

BIOCARTA_ARENRF2_PATHWAY], NRF2 wikipathway or Lacher et al (Lacher and 

Slattery, 2016). Ten of the 54 genes were novel targets identified in this study.

Immune cluster identification based on cell type composition: The abundance of 64 

different cell types were computed via xCell based on transcriptomic profiles (Aran et 

al., 2017) based on 108 tumors and 94 NAT samples. Table S6 contains the final score 
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computed by xCell of different cell types. Consensus clustering was performed based on 

immune cells, fibroblasts, endothelial and epithelial cells from xCell. In particular, we 

only considered cells that were detected in at least 10% of the patients (FDR < 5%). 

This filtering resulted in 25 cell types annotated in Table S6. Based on these signatures, 

consensus clustering was performed in order to identify groups of samples with similar 

immune/stromal characteristics. Consensus clustering was performed using the R packages 

ConsensusClusterPlus (Wilkerson and Hayes, 2010) based on z-score normalized signatures. 

Specifically, signatures were partitioned into three major clusters using the Partitioning 

Around Medoids (PAM) algorithm, which was repeated 1000 times (Wilkerson and Hayes, 

2010) (Figure 6A, Table S6).

TCGA pan-cancer immune subtyping: Tumors were classified into the six distinct 

immune subtypes — wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, 

immunologically quiet, and TGF-β dominant — identified by a TCGA pan-cancer 

analysis presented in (Thorsson et al., 2018). Gene expression data (log2 FPKM; lscc-v3.0­

rnaseq-uq-fpkm-log2-NArm) was input to the ImmuneSubtypeClassifier R package (https://

github.com/CRI-iAtlas/ImmuneSubtypeClassifier) (Gibbs, 2020) to assign an immune 

subtype to each of the tumors.

Ranking tumors by inferred activity of IFN-γ pathway: We assumed that true biological 

activity of a pathway is regulated by collective changes of expression levels of majority 

of proteins involved in this pathway. Then, a difference of a pathway activity between 

tumors can be assessed by a difference in positioning of expression levels of proteins 

involved in this pathway in ranked list of expression levels of all proteins in each of tumors. 

Following this idea, we assessed relative positioning of pathway proteins between tumor by 

determining two probabilities: a probability of pathway proteins to occupy by random the 

observed positions in a list of tumor proteins ranked by expression levels from the top to 

the bottom and, similarly, a probability to occupy by random the observed positions in a 

list of expression levels ranked from the bottom to the top (Reva et al., 2020). Then, the 

inferred relative activation of a given pathway across tumors was assessed as a negative 

logarithm of the ratio of the above “top” and “bottom” probabilities. Thus, for a pathway of 

a single protein, its relative activity across tumors was assessed as a negative log of ratio of 

two numbers: a number of proteins with expression level bigger than an expression level of 

given protein, and a number of proteins with expression levels less than an expression level 

of given protein. For pathways of multiple proteins, the “top” and “bottom” probabilities 

were computed as geometrically averaged P values computed for each of proteins using 

Fisher’s exact test, given protein’s ranks in a list of pathway proteins and in a list of ranked 

proteins of a tumor, a number of proteins in a pathway, and the total number of proteins 

with the assessed expression level in a given tumor (Reva et al., 2020). The thermodynamic 

interpretation of the inferred pathway activity scoring function is a free energy associated 

with deviation of the system from equilibrium either as a result of activation or suppression. 

Thus, the scoring function is positive, when expression levels of pathway’s proteins are 

overrepresented among top expressed proteins of a tumor, and it is negative, when pathway’s 

proteins are at the bottom of expressed proteins of a tumor; the scoring function is close 
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to zero, when expression levels are distributed by random or equally shifted towards top or 

bottom.

In our analysis, we used a gene list of IFN-γ signaling pathway from (Abril-Rodriguez and 

Ribas, 2017). We settled with this 15 genes signaling pathway because it has all necessary 

components – a cytokine mediator, receptors, signal transduction, transcription factors and 

final effectors (PD-L1/2, MHC-I), and all those genes are expressed in cancer cells.

Estimation of Tumor Purity, Stromal and Immune Scores: Besides xCell, we utilized 

ESTIMATE (Yoshihara et al., 2013) to infer immune and stromal scores based on 

gene expression data (Table S6). Cibersort absolute immune scores were obtained by 

evaluating upper-quartile normalized RNA-seq FPKM data with the Cibersort web app 

(cibersort.stanford.edu; (Newman et al., 2015)) in absolute mode. To infer tumor purity, 

TSNet was utilized (Petralia et al., 2018) (Table S6).

Differentially Expressed Genes and Pathway Analysis: Genes upregulated in Hot and 

Warm clusters compared to the Cold cluster were identified based on gene expression 

data, global proteomic, phosphoproteomic and acetylation data. For this analysis, markers 

with at most 50% missing values were utilized. For each data type, the expression level 

of gene/protein/sites was modeled as a function of immune cluster via linear regression. 

P-values were then adjusted for multiple comparisons via Benjamini-Hochberg adjustment. 

For each immune cluster, considering the set of genes up(down)-regulated with Benjamini­

Hochberg adjusted p-value lower than 10%, a fisher exact test was implemented to derive 

enriched pathways. ssGSEA (Barbie et al., 2009) was utilized to obtain pathway scores 

based on RNA-seq and global proteomics data using the R package GSVA (Hänzelmann et 

al., 2013). For this analysis, pathways from the Reactome (Fabregat et al., 2018), KEGG 

(Kanehisa et al., 2017) and Hallmark (Liberzon et al., 2015) databases were considered and 

as background the full list of gene/proteins observed under each data type was utilized. For 

phosphorylation and acetylproteome data, a gene was considered upregulated if at least one 

substrate of the gene was found upregulated at 10% FDR. The pathway analysis results for 

different data types are contained in Table S6.

Deriving RTK CBPE scores: A total of 42 human RTKs were present in our proteomics 

data set. For each phosphosite in our data set we computed a linear association with each 

of the RTKs in two ways. A phosphosite profile across samples (for tumor and NAT 

separately) was modeled as a linear combination of 1) an RTK protein profile and a profile 

of a protein that a given phosphosite belonged to or 2) an RTK protein profile, a profile 

of a protein that a given phosphosite belonged to and a profile of tumor purity estimates 

obtained from RNAseq data via TSNet (Petralia et al., 2018). Each association computation 

was carried out only if at least 50% of samples had non-missing data of all three of 

RTK protein, phosphosite, and protein in question. The phosphosite:RTK associations were 

considered significant if their FDR adjusted p-value was below 0.1. Additionally, for each 

phosphosite the z-scores of their log2 phosphoprotein abundance were computed across 

samples (separately for tumor and NAT). A raw RTK CBPE score was computed for each 

RTK in each sample as a number of all phosphosites with significant association with this 

RTK that also had a z-score higher than 1. These raw RTK CBPE scores in each sample 
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were normalized across RTKs so the final RTK CBPE scores of all RTKs in one sample 

would add up to 1. We selected the most relevant subset of RTKs by requiring that each 

had a normalized CBPE score of at least 0.1 in at least 5 samples. Nine RTKs satisfied this 

condition in the tumor data set, and seven in NAT.

Independent component analysis: ICA was performed with a workflow modified from 

previously described (Liu et al., 2019). Decomposition was run for 100 times on the 

matrix of protein abundance difference between tumor/NAT pairs (n=99). Independent 

components were in the form of vectors comprised with weights of all genes in the original 

data. Components extracted from each run were clustered using HDBSCAN algorithm 

(McInnes et al., 2017) with cosine distance as dissimilarity metric, min_cluster_size=50 

and min_samples=20. The centroids of clusters (n=37) were considered as representative of 

stable signatures, and mean mixing scores (activity of each signature over all samples) of 

each cluster were used to represent the activity levels of corresponding signature in each 

sample. Correlation between the extracted signatures and known clinical characteristics were 

examined by regressing the corresponding mixing scores for all members of a component 

cluster against 64 sample annotations to obtain within-cluster average of log10 P-values. 

Significance was controlled for multiple testing at 0.01 level (log10 (p-value)=−5.3). Each 

signature vector (cluster centroid) was submitted to GSEA pre-ranked test for functional 

annotations.

Mutation-based cis- and trans-effects: We examined the cis- and trans-effects of 22 

genes with somatic mutations that were significant in a previous large-scale TCGA LSCC 

study (Bailey et al., 2018) on the RNA, proteome, and phosphoproteome of known 

interactome DBs including Omnipath, Phosphositeplus, DEPOD, Signor, and CORUM. 

After excluding silent mutations, samples were separated into mutated and WT groups. We 

used the Wilcoxon rank-sum test to report differentially expressed features (RNA, proteins, 

phosphosites, acetylsites, and ubiquitylation sites) between the two groups. Differentially 

enriched features passing an FDR <0.05 cut-off were separated into two categories based on 

cis- and trans- effects.

Germline quantitative trait loci (QTL) analysis: To identify germline genetic variants 

that explain variation in tumor gene (eQTL) and protein (pQTL) expression, we utilized the 

gold-standard mapping pipeline at https://github.com/molgenis/systemsgenetics/wiki/eQTL­

mapping-analysis-cookbook-(eQTLGen). Briefly, we followed the default steps that include 

correcting for population stratification removing outliers, normalizing and mapping cis­

QTLs. For cis-eQTL analysis input, we used i) germline genotype data; and ii) RNA-seq 

raw read count data for 105 samples, and performed analyses only for genes with sum of 

read count ≥ 10. For cis-pQTL analysis input, we used i) germline genotype data; and ii) 

normalized and filtered protein TMT ratio aggregated to gene level for 108 samples. The 

genotype data were harmonized using Genotype Harmonizer v1.4.9 (Deelen et al., 2014). 

To adjust for population stratification, we identified the multi dimensional scaling (MDS) 

components using the genotype data using PLINK v1.07 (Purcell et al., 2007). For both 

types of cis-QTL mapping, we used eqtl-mapping-pipeline-v1.3.9 using its standard settings 

(HWE > 0.0001, MAF > 0.01, and call rate > 0.95, maximum distance between the SNP 
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and the middle of the probe is 250,000 bp). To control for multiple testing, we performed 10 

permutations. We deemed QTLs at ≤ FDR 5% as significant. Finally, we performed pathway 

analysis of the identified significant eGenes (genes whose expression is impacted by at least 

one cis-QTL) using QIAGEN Ingenuity Pathway Analysis (Krämer et al., 2014)

miRNA analysis presented in Figure 4: Targets of miRNAs were downloaded from 

the miRNA targets database miRTarBase and only the miRNA/target pairs with strong 

experimental evidence were retained (Huang et al., 2020). Spearman correlation was used to 

calculate the correlations between miRNA and its target genes.

Pathway projection using ssGSEA: The single sample Gene Set Enrichment Analysis 

(ssGSEA) implementation available on https://github.com/broadinstitute/ssGSEA2.0 was 

used to project log2(FPKM) mRNA abundances to MSigDB cancer hallmark gene sets using 

the following parameters:

• gene.set.database=“h.all.v6.2.symbols.gmt”

• sample.norm.type=“rank”

• weight=0.75

• statistic=”area.under.RES”

• output.score.type=“NES”

• nperm=1000

• global.fdr=TRUE

• min.overlap=10

• correl.type=”z.score”

Phosphorylation-driven signature analysis: We performed phosphosite-specific signature 

enrichment analysis (PTM-SEA) (Krug et al., 2018) to identify dysregulated 

phosphorylation-driven pathways. To adequately account for both magnitude and variance 

of measured phosphosite abundance, we used p-values derived from application of the 

Wilcoxon rank-sum test to phosphorylation data as ranking for PTM-SEA. To that end, 

p-values were log-transformed and signed according to the fold change (signed −log10 

(p-value)) such that large positive values indicated phosphosite abundance in classical or 

NFE2L2, CUL3, KEAP1 mutated samples, and large negative values indicated phosphosite 

abundance in samples that do not belong to classical NMF subtype or wild-type samples (in 

Figure 3I)

logPsite = − log10 p−valuesite * sign log2 fold changesite

PTM-SEA relies on site-specific annotation provided by PTMsigDB and thus a single site­

centric data matrix data is required such that each row corresponds to a single phosphosite. 

We note that in this analysis the data matrix comprised a single data column and each row 

represented a confidently localized phosphosite assigned by Spectrum Mill software.
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We employed the heuristic method introduced by Krug et al. (Krug et al., 2018) to 

deconvolute multiple phosphorylated peptides to separate data points (log-transformed 

and signed p-values). Briefly, phosphosites measured on different phospho-proteoform 

peptides were resolved by using the p-value derived from the least modified version of 

the peptide. For instance, if a site T4 measured on a doubly phosphorylated (T4, S8) peptide 

(PEPtIDEsR) was also measured on a mono-phosphorylated version (PEPtIDESR), we 

assigned the p-value derived from the mono-phosphorylated peptide proteoform to T4, and 

the p-value derived from PEPtIDEsR to S8. If only the doubly phosphorylated proteoform 

was present in the dataset, we assigned the same p-value to both sites T4 and S8.

We queried the PTM signatures database (PTMsigDB) v1.9.0 downloaded from https://

github.com/broadinstitute/ssGSEA2.0/tree/master/db/ptmsigdb using the flanking amino 

acid sequence (+/− 7 aa) as primary identifier. We used the implementation of PTM-SEA 

available on GitHub (https://github.com/broadinstitute/ssGSEA2.0) using the command 

interface R-script (ssgsea-cli.R). The following parameters were used to run PTM-SEA:

weight: 1

statistic: “area.under.RES”

output.score.type: “NES”

nperm: 1000

min.overlap: 5

correl.type: “Z-score”

The sign of the normalized enrichment score (NES) calculated for each signature 

corresponds to the sign of the tumor-NAT log fold change. P-values for each signature 

were derived from 1,000 random permutations and further adjusted for multiple hypothesis 

testing using the method proposed by Benjamini & and Hochberg (Benjamini and Hochberg, 

1995). Signatures with FDR-corrected p-values < 0.05 were considered to be differential 

between tumor and NAT.

CDKN2A and RB1 annotations and pathway analysis: Comprehensive tumor annotation 

for CDKN2A and RB1 genomic status was carried out using multiple molecular features 

for each patient. Specifically, we considered the following: 1) mutation types (missense/

in-frame indels mutations, nonsense (stop gain, frameshift indels) mutations, and splice 

site (splice donor, splice acceptor) mutations) as separate categories and 2) copy number 

data. For cases with mutation, we considered both the variant allele frequency of the 

mutation from whole exome sequencing and copy number data (log ratio, absolute copy 

number, and B-allele frequency). Only mutations that occurred in cases with loss of the 

wild-type allele were annotated as loss of heterozygosity (LOH) mutations and used for 

subsequent analysis. 2) Based on CDKN2A copy number data, we next annotated tumors 

without mutations as homozygous deletions or no loss (WT). Samples were re-classified 

as having p16INK4a promoter hypermethylation if three p16INK4a promoter-associated 
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methylation probes (cg11075751, cg02008397, and cg01694391) all had beta values >= 

0.2. Multi-gene proliferation scores were calculated as described previously (Ellis et al., 

2017) as the means of the gene normalized RNA levels for cell cycle associated genes 

characterized by Whitfield et al (Whitfield et al., 2002). p16INK4a RNA levels were 

obtained from the isoform specific RSEM data for Ensembl transcript ENST00000304494.8, 

while ENST00000579755.1 was used for p14ARF, and log2 (RSEM + 1) values were used 

for barplots. Isoform specific protein data included Refseq NP_000068.1 for p16INK4a and 

Refseq NP_478102.2 for p14ARF. Calculation of CDK1, 2, and 4 target site scores from 

the phosphorylation site data and Hallmark E2F targets and G2M scores from the RNA-seq 

data is described above (Phosphorylation-driven signature analysis and Pathway projection 

using ssGSEA, respectively). Lolliplots for CDKN2A mutations in the CPTAC head and 

neck squamous cell carcinoma and this lung squamous cell carcinoma cohort were generated 

using the ProteinPaint web application to visualize mutations (Zhou et al., 2016). Mutations 

annotated as nonsense mediated decay (NMD) mutations were those that resulted in low 

expression of p16INK4a RNA in the tumors harboring the mutations.

Association analysis between KGG-site abundances and E3 ligases and DUBs: A list 

of known human E3 ubiquitin and ubiquitin-like ligases and DUBs was compiled from 

(Medvar et al., 2016; Nijman et al., 2005). We then fit a linear model using limma in R 

with the formula kgg_site_abundance ~ protein_abundance, followed by empirical bayes 

shrinkage. The coefficient p-values were used to determine significant associations after 

FDR correction (FDR < 0.01).

Cluster and pathway analysis of significantly modulated K-GG sites in 
tumors.: Consensus clustering of the K-GG dataset after protein abundance correction was 

performed on tumor samples, resulting in 3 clusters. Next, marker selection for each cluster 

was performed by moderated t-test between samples that belong to the clusters against the 

remaining samples. These K-GG sites showing differential abundance across sample clusters 

were further clustered into 3 site-wise clusters.

Genes in these site-wise clusters were used for pathway enrichment analysis against the 

KEGG, Reactome, and WikiPathways databases using g:profiler (Raudvere et al., 2019). 

Pathway enrichment was performed using a gene background containing all observable 

genes in the K-GG dataset. Pathway enrichment results were imported into Cytoscape 

(Shannon et al., 2003) using the Enrichment Map app (Merico et al., 2010) for network 

analysis of pathways. Pathways were connected using the gene overlap and clustered 

(pathway cutoff q-val < 0.1; jaccard overlap > 0.375). Each cluster was manually annotated 

from the pathways contained in it to facilitate interpretation.

PTM CLUMPS analysis: We employ two methods to select tumor-specific sites to include 

in structural analysis. First, we take PTM-sites for solely tumor-derived samples and binarize 

modifications by negative vs. positive normalized signal. These are considered as individual 

“events” as done with mutations in CLUMPS v1 (Kamburov et al., 2015). For a more 

robust approximation of tumor-specific acetylation or ubiquitination, we perform differential 

expression using Limma between NAT and Tumor samples (Ritchie et al., 2015). Sites are 

selected with an FDR < 0.1 (Benjamini-Hochberg) and LFC > 0.1. We then binarize these 
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tumor sites as done in the first approach. We first map the PTM-sites to corresponding 

UNIPROT ids (ID) with available PDBs. For each crystal structure, we compute an initial 

WAP score and randomly sample sites as done in CLUMPS. We generate an empirical 

p-value based on a random sampling of lysines in each crystal structure to limit the selection 

to residues capable of ubiquitination or acetylation. The null hypothesis we define is each 

random sampling of lysines will have a WAP score less than or equal to the initially 

computed WAP score. We run 1e6 permutations to generate an empirical p-value.

DepMap genetic dependency and drug response analysis: Cell lines annotated as 

“NSCLC_squamous” from DepMap were considered as LSCC for which molecular profiles, 

dependency scores, and drug response were used.

To determine copy number status in LSCC cell lines, copy number segmentation files for 

LSCC cell lines were processed with GISTIC2.0 (using the same parameters used to process 

this study’s LSCC cohort as described in STAR METHODS). Samples were considered to 

be amplified for a given gene if GISTIC thresholded values = 1 or 2 and not amplified 

if GISTIC thresholded values = −2, −1, or 0. Mutation status for CCND1, CDKN2A, and 

RB1, Np63 transcript isoform expression, phospho-Rb-Ser807/811 RPPA abundance, and 

drug responses to a survivin inhibitor (YM-155) and CDK4/6i inhibitors (abemaciclib and 

palbociclib) were also retrieved from DepMap.

Figure 7: For identifying if top protein biomarkers (502 proteins significantly overexpressed 

(log2(FC) >2, FDR <0.01) in tumors relative to their matched NATs, most with coherent 

overexpression in multi-omic analysis) also conferred altered dependencies in LSCC cell 

lines, we leveraged DepMap genetic dependency dataset (CRISPR Avana Public 20Q3) 

that contained 18119 genes and 789 cell lines (https://depmap.org/portal/download/ file: 

Achilles_gene_effect.csv). Only 16 cell lines were classified as LSCC (Cell Line Sample 

Info.csv). Median dependencies were calculated and for every gene and density plot 

in Figure 7C shows dependency score of the 502 genes corresponding to 502 protein 

biomarkers relative to other genes.

Figure S4B: To investigate copy number and dependency associations in LSCC cell lines, 

each gene up-regulated at the protein level with recurrent copy number gain in tumors vs 

NATs (from Figure 4A with Log2FC>0 & FDR < 0.05) was used as a query to compare 

dependency scores of the given gene (Combined CRISPR KO screen, DepMapPublic 21Q1) 

in LSCC cell lines where the query gene was amplified vs not-amplified. A lower mean 

change in dependency scores for a given gene in amplified vs not-amplified samples 

indicates LSCC cell lines are more dependent upon that gene when it is amplified.

Continuous log2 copy number data from DepMap was used in Figure S4M to correlate 

SOX2 copy number with EZH2 shRNA dependency data (Combined shRNA screen from 

DEMETER2 Data v6 in DepMap).

Drug responses to YM-155 (PRISM secondary screen) were compared by t-test in LSCC 

cell lines with low vs high levels of Np63 by transcript isoform expression (Figure S4G). 

Pearson correlation was also performed with phospho-Rb-Ser807/811 RPPA abundance 
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and drug responses to CDK4/6i inhibitors, abemaciclib (PRISM secondary screen) and 

palbociclib (Sanger GDSC1) (Figure S3D).

CausalPath analysis: CausalPath (Babur et al., 2018) searches for known biological 

mechanisms that can explain correlated proteomic changes in terms of causal hypotheses. 

We set CausalPath parameters to compare tumors and NATs with a paired t-test, used 

0.1 as FDR threshold for proteomic change significance and network significance, 

and detected 5917 potential causal relations between proteins. We repeated the same 

analysis for each NMF subtype separately and identified 4378 (basal-inclusive), 5334 

(classical), 3048 (EMT-enriched), 3744 (inflamed-secretory), and 4332 (proliferative­

primitive) relations. We used these CausalPath network results in the preparation of Figure 

7C, identifying potential upstream regulators of oncogenic phosphoproteomic changes. Here 

an oncogenic phosphoproteomic change can be any of the following 4 events: increase 

of activating phosphorylation of an oncoprotein, decrease of inactivating phosphorylation 

of an oncoprotein, decrease of activating phosphorylation of a tumor suppressor protein, 

and increase of inactivating phosphorylation of a tumor suppressor protein. We used 

the OncoKB database for oncoprotein and tumor suppressor classification (excluded 

proteins that have both annotations), and used PhosphoSitePlus and Signor databases 

for the activating/inhibiting classification of phosphorylation sites. In the phosphorylation 

regulation networks, we included only the targetable regulators (activated proteins) and 

excluded the untargetable regulators (inactivated proteins).

Variant Peptide Identification: We used NeoFlow (https://github.com/bzhanglab/neoflow) 

for neoantigen prediction (Wen et al., 2020). Specifically, Optitype (Szolek et al., 2014) 

was used to find human leukocyte antigens (HLA) for each sample based on WES data. 

Then we used netMHCpan (Jurtz et al., 2017) to predict HLA peptide binding affinity for 

somatic mutation–derived variant peptides with a length between 8–11 amino acids. The 

cutoff of IC50 binding affinity was set to 150 nM. HLA peptides with binding affinity 

higher than 150 nM were removed. Variant identification was also performed at both 

mRNA and protein levels using RNA-Seq data and MS/MS data, respectively. Variant 

identification and gene quantification using RNA-Seq data were performed following the 

methods used in the previous study (Vasaikar et al., 2019). To identify variant peptides, 

we used a customized protein sequence database approach (Wang et al., 2012). We built a 

customized database for each TMT experiment based on somatic variants from WES data. 

We used Customprodbj (Wen et al., 2020) (https://github.com/bzhanglab/customprodbj) for 

customized database construction. MS-GF+ was used for variant peptide identification for 

all global proteome and phosphorylation data. Results from MS-GF+ were filtered with 

1% FDR at peptide level. Remaining variant peptides were further filtered using PepQuery 

(http://www.pepquery.org) (Wen et al., 2019) with the p-value cutoff <= 0.01. Competitive 

filtering based on unrestricted posttranslational modification searching was enabled in 

PepQuery validation. The spectra of variant peptides were annotated using PDV (http://

www.zhang-lab.org/) (Li et al., 2019b).
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Cancer/testis Antigen Prediction: Cancer/testis (CT) antigens were downloaded from the 

CTdatabase (Almeida et al., 2009). CT antigens with a median >4-fold increase in tumor 

from NAT were highlighted.

PROGENy Scores: PROGENy (Schubert et al., 2018) was used to generate activity scores 

for EGFR based on RNA expression data. Tumor RNA expression values were submitted to 

PROGENy.

LSCC, HNSCC and LUAD integrative analysis: LUAD data for 110 lung 

adenocarcinoma samples and 102 NAT were acquired from the published manuscript 

(Gillette et al., 2020). HNSCC data for 108 head and neck squamous cell carcinoma samples 

and 66 NAT were acquired from the submitted manuscript (Huang et al., 2021). The LUAD 

and HNSCC proteomics data were processed, quantified, and normalized using the same 

pipeline as described for the LSCC samples. Differential expression analysis for all three 

cohorts was performed as described in the Differential marker analysis method. Proteins 

missing in more than 50% of the paired tumor/NAT samples were excluded.

Copy number drivers for all three were assessed by filtering the 8309 genes that were 

quantified in all three cohorts in the copy number, RNA, and proteomic data to those found 

in focal amplification regions (q value < .25). Spearman correlation was performed for these 

genes between CNA and RNA and between CNA and protein. Proteins were considered 

drivers if the correlation between both the CNA and RNA and CNA and protein were 

significantly positively associated (BH adjusted p value <0.01). Proteins were also required 

to be significantly increased in tumor vs paired NAT in the same cohort (Wilcoxon signed 

rank BH adjusted p value <0.01).

To identify genes associated with the immune score, correlation between CNA, RNA, 

protein, and the immune score was performed for the genes present in both CNA and RNA 

in a cohort (20,313 genes in LSCC, 18,091 genes in LUAD, and 21,616 genes in HNSCC). 

The immune score was calculated as the z-score transformation of the ESTIMATE Immune 

score, which was calculated for all three cohorts as described in the method Estimation of 

Tumor Purity, Stromal and Immune Scores. To be considered copy number drivers of the 

immune score, genes had to have a positive correlation between CNA & RNA, CNA & 

immune score, and RNA & immune score. If the protein was quantified in the cohort, the 

gene was also required to have a positive correlation between CNA & protein and protein 

& immune score. Spearman correlations with a BH adjusted p value < 0.01 were considered 

significant.
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Highlights

• Unsupervised clustering revealed subtype with EMT and phosphoprotein 

signatures

• Potential therapeutic vulnerabilities included survivin, NSD3, LSD1 and 

EZH2

• Rb phosphorylation nominated as a biomarker for trials with CDK4/6 

inhibitors

• Detailed immune landscape analysis highlighted targetable points of immune 

regulation
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Figure 1: Proteogenomic Landscape of LSCC
A. Schematic showing the number of tumors and NATs profiled and the various data 

types generated in this study. The lower panel represents data completeness. WGS: 

Whole Genome Sequencing, WES: Whole Exome Sequencing. CNA: copy number 

alteration. DNAme: DNA methylation. pSTY: phosphoproteome. Ac: acetylproteome. Ub: 

ubiquitylproteome.

B. Stacked histograms indicating the distribution of patient phenotypes. Smoking History 

reflects self-report.

C. Co-occuring mutation plot indicating cancer-relevant genes. MutSig-based significantly 

mutated genes (SMGs, q-value < 0.1) in this dataset are highlighted in red font.

D. Heatmaps showing correlation between copy number alterations (CNA) and RNA (left) 

or proteomics (right). Red and green events represent significant (FDR <0.01) positive and 

negative correlations, respectively.

E. Flow chart for identification of cancer-associated genes (CAGs) that showed GISTIC­

based focal amplification or deletion (q<0.25) and cis-effects in both mRNA and protein 

(FDR<0.05).

F. Differential protein expression (Log2 fold-change (FC)) in tumors with and without 

high-level amplification of the FGFR1 gene (GISTIC thresholded value =2).

G. Genes whose DNA methylation was significantly associated with cascading cis regulation 

of their cognate mRNA expression, protein level, phosphopeptide and acetylpeptide 

abundance. Shapes indicate the cis-effects across the indicated datasets. Named genes also 

showed differential expression between tumors and NATs.

See also Figure S1 and Table S1–3
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Figure 2: LSCC Molecular Subtypes and Associations
A. NMF-based clustering of tumor CNA, RNA, protein, phosphosite and acetylsite profiles, 

showing five primary NMF subtypes (top sample annotation row).

B. Heatmap representing significantly enriched pathways (MSigDB Hallmark) in five multi­

omic subtypes.

C. Kaplan-Meier plot comparing survival probability of patients whose tumors were core 

members of a specific NMF subtype (NMF Core) to those whose tumors had characteristics 

of more than one NMF subtype (NMF mixed).
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D. Heatmap showing relative overexpression of mesenchymal proteins in the EMT-E 

subtype compared to others.

E. Correlation between ssGSEA-based enrichment of EMT (Hallmark genesets) and 

fibroblast proliferation (GO: Gene Ontology) genesets (Pearson correlation=0.65, 

p=2.8×10−14).

F. Distribution of RTK correlation-based phosphosite enrichment (RTK CBPE) scores for 

PDGFRB and ROR2 across the five NMF subtypes. Wilcoxon p values for CBPE scores in 

EMT-E vs other subtypes are 1.5×10−6 for PDGFRB and 2.7×10−7 for ROR2.

G. Proteins and phosphosites significantly associated with PDGFRB or ROR2 CBPE scores, 

known to play a role in EMT and extracellular matrix reorganization. The left panel shows 

Spearman correlation between PDGFRB CBPE scores and protein/phosphosite abundance 

profiles.

See also Figure S2 and Table S1–4
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Figure 3: Impact of Somatic Mutations on Proteogenomic Features
A. Significant (Wilcoxon FDR<0.05) cis- (circles) and trans-effects (squares) of selected 

mutations (x axis) on the expression of cancer-associated gene products, with mRNA in blue 

and proteins in green.

B. Similar to panel A but showing phosphosites.

C. Similar to panel A but showing acetylsites.

D. Similar to panel A but showing ubiquitylsites.

E. CNA data for CDKN2A and RB1 was used to classify tumors as having homozygous 

deletions or three classes of loss of heterozygosity mutations: nonsense/frameshift 

indel, missense/inframe indel, and splicing (see Table S4). CDKN2A genetic and 

hypermethylation annotations were based on the effect of the aberration on the p16INK4a 

(p16) gene product, but the effects of these CDKN2A/p16 aberrations on both major 

isoforms (p16INK4a and p14ARF (p14)) at the RNA (barplot) and protein (heatmap directly 

below barplot) levels are shown. Samples with amplification of CCND1–3, CDK4, and 

CDK6 were assessed by GISTIC (threshold = 2), and the genomic status, protein, and 

phosphoprotein levels for RB1 are included. Also shown are RNA-based scores for the 

cell cycle (MGPS, the mean of cell cycle genes and E2F target and G2M checkpoint 

gene set scores derived from ssGSEA of Hallmark gene sets) and phosphosite-based CDK 

kinase activity scores for CDKs 1, 2, and 4 derived from single sample post translational 

modifications - signature enrichment analysis (ssPTM-SEA) of known kinase targets. Three 

tumors with copy number gain of CDKN2A are not included.

F. Correlation between differential regulation of protein abundance (Log2 Fold-change 

(FC)) versus phosphoprotein log2 FC in tumors with NRF2 pathway mutation (one or two 
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mutations in KEAP1, CUL3, or NFE2L2) versus NRF2 WT tumors (no NRF2 pathway 

aberration).

G. NRF2 pathway score and RNA, protein and phosphoprotein expression of key NRF 

pathway members according to NMF subtype.

H. CDK5 protein expression (Log2 TMT ratio) by NMF subtype. P-values are from the 

Anova test.

I. PTM-SEA-derived normalized enrichment scores (NES) for pathways enriched in NRF2 

pathway-mutated (Mutant) vs wild-type samples (WT) plotted against NES for pathways 

enriched in NMF Classical vs other subtypes. Significantly upregulated (FDR<0.05) PTM­

SEA terms in the Classical subtype are indicated by red dots and labeled.

See also Figure S3 and Table S4
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Figure 4: Proteogenomic Impact of Chromosome 3q Amplification
A. Differential protein expression (Log2 FC) between tumors and NATs for genes on 

chromosome arm 3q.

B. Frequency distribution of ΔNp63α RNA expression in tumors and NATs.

C. Differential protein expression in samples classified as ΔNp63α-low vs -high based on 

ΔNp63α transcript level. The outlier upregulated gene product in red is BIRC5, also known 

as survivin.

D. Differential expression of microRNAs in ΔNp63α-low vs -high samples.

E. Pearson correlation between expression of miR-205 and mRNA expression of its cognate, 

experimentally validated targets.

F. Pearson correlation between expression of miR-205 and protein abundance of its cognate 

targets.

G. Relationship between miR-205 expression (log2 TPM) and EMT (top, p=2.3×10−08, 

Correlation = −0.53) and DNA replication (bottom, p=1.1×10−06, Correlation= 0.47) scores.

H. Heatmap showing relative protein expression (TMT log ratio) of selected proteins with 

significant (FDR<0.01) Pearson correlation values (positive or negative) with SOX2 protein 

expression.

I. Pearson correlation (p= 5.2×10−07, Correlation = −0.46) between SOX2 protein expression 

and HALLMARK_IL6_JAK-STAT_signaling NES.

See also Figure S4 and Table S4
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Figure 5: Ubiquitylation landscape in LSCC
A. Consensus clustering of protein ratio-corrected K-GG (di-glycine) site abundances in 

tumor samples and their associations. Heatmap shows only protein ratio-corrected K-GG 

sites with differential abundance across clusters (FDR<0.01). Enriched pathways and 

molecular and clinical annotations are indicated.

B. Number of K-GG sites showing significant correlations (FDR< 0.01) with E3 ligases. 

Shown are the five E3 ligases with the highest proportion of positive correlations.

C. Pearson correlations between HERC5 protein expression and K-GG site protein-corrected 

abundance in key glycolytic enzymes PKM, PGK1, and ENO1.

D. HERC5 protein expression (log2 TMT ratio) with samples grouped by immune subtype. 

Significant (Kruskal−Wallis, p = 2.8×10−05) association is seen between HERC5 abundance 

and immune subtypes.

E. Representative examples of significant spatial clustering of lysine acetylsites (purple) 

on PGK1 (left) and ACADVL (right) protein 3-D structure space-filling models (cyan) as 

determined by PTM CLUMPS. (PGK1 structure = PDB ID:3ZOZ. ACADVL structure = 

PDB ID:3B9).

F. TXN protein levels in the NMF Classical subtype relative to NATs and other NMF 

subtypes (top left). Protein-corrected ubiquitylation (K-GG) sites are decreased on TXN1 in 

tumor subtypes relative to NATs (top right). TXNIP is decreased in tumor subtypes relative 

to NATs (lower left). TXN1 activator TXNRD1 is increased in the Classical subtype relative 

to NATs and other NMF subtypes (lower right). Kruskal−Wallis p-values are indicated in the 

respective plots.

G. Schematic representation of PTM-based modulation in LSCC tumors showing key 

enzymes in the metabolic and reactive oxygen species (ROS) pathways. Green and red 

Satpathy et al. Page 75

Cell. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



arrows indicate higher and lower abundance of the corresponding PTMs in tumors. Putative 

ISGylation targets of HERC5 are indicated by dotted lines. A known regulatory PKM 

phosphosite observed to be modulated in LSCC tumors is also highlighted.

H. Lollipop charts showing the Log2 FC of acetylated (K-Ac) and ubiquitylated sites 

(K-GG) between tumors and NATs (Hyper: log2(FC)>1 or Hypo: <−1, FDR<0.01). The 

upper panel shows specific sites that were hyper-ubiquitylated and hypoacetylated in tumors; 

the lower panel shows specific sites that were hyperacetylated and hypo-ubiquitylated in 

tumors. Dot colors indicate protein fold change between tumors and NATs. “k” represents 

modified lysine.

I. Relative abundances of RAN K127 acetylation (K-Ac), ubiquitylation (K-GG) and RAN 

protein levels across NMF subtypes and NATs. Wilcoxon p-values are indicated above; ns 

represents p>0.05.

See also Figure S5 and Table S5
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Figure 6: Immune Landscape of LSCC
A. Heatmaps illustrate cell type compositions and activities of selected individual genes/

proteins and pathways across the four immune clusters: Hot, Warm, and Cold tumor 

and NAT-enriched. Successive heatmaps illustrate xCell immune signatures, mRNA and 

protein expression of key immune-related markers, and ssGSEA pathway scores based on 

global proteomic data for biological pathways that were differentially regulated in immune 

groups based on both mRNA and global protein abundance (Common) or on global protein 

abundance alone (Proteomics only).
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B. Pathway scores of key pathways differentially expressed across the immune clusters. 

Wilcoxon p-values for the individual comparisons are provided on top.

C. Contour plot of two-dimensional density based on Macrophage (x-axis) and CD8 T-cell 

scores (y-axis) showing the variation in these cell types’ distributions observed across the 

different immune clusters.

D. Acetylsites differentially expressed between Hot and Cold tumors. Acetylsites of genes 

contained in the Hallmark Oxidative Phosphorylation pathway are highlighted in blue, 

ARHGDIB K135 is highlighted in red, and remaining sites are in gray. Darker color 

designates significant sites (FDR < 0.1).

E. Regulation of Rho GTPase signaling including K135 acetylation of ARHGDIB.

F. Global protein abundance of RAC2, DOCK2 and ELMO1, acetylproteome abundance of 

ARHGDIB K135k and phosphorylation abundance of ARHGEF6 at Serine 225 in immune 

clusters. Wilcoxon p-values are reported.

G. RTK CBPE scores for 108 tumor samples and associated xCell signatures and pathway 

scores. The first heatmap shows CBPE scores of key RTKs, the second xCell signatures 

(Aran et al., 2017) and the third pathway scores based on global protein abundance.

H. Distribution of RTK CBPE scores for CSF1R, PDGFRB and FGFR2 stratified by 

immune clusters. Significance values (two-sided Wilcoxon test) between Hot clusters and 

combined Warm and Cold clusters are indicated on the violin plots.

I. Heatmap showing proteins and phosphosites correlated with CSF1R CBPE scores that are 

known to be involved in immune evasion. See also Figure S6 and Table S6
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Figure 7: Proteomic Features Related to Diagnosis, Prognosis, or Treatment
A. Differentially expressed proteins between tumors and NATs.

B. Significantly increased proteins (larger font indicates >4 fold) in the study LSCC cohort 

that are associated with poor overall survival (OS) or disease-free survival (DFS) in the 

TCGA LSCC cohort mRNA.

C. Genetic dependencies of 502 proteins (log2 FC >2, FDR<0.01 and NAs <50%) in LSCC 

cell lines (n=16) profiled as part of the Achilles Dependency-Map project.
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D. Genes, ordered by their chromosomal location, that are deleted in at least 25% of 

the samples and significantly correlated to the immune score. Immune-related genes are 

highlighted.

E. EGFR protein and tyrosine phosphorylation levels compared to EGFR copy number and 

an EGFR activity score (PROGENy).

F. Heatmap showing Pearson correlation between the EGFR activity score represented by 

PROGENy (top) and RNA expression of EGFR ligands. *p<0.05

G. GO Biological Process enrichment for proteins with increased phosphorylation in EGFR 
amplified samples compared to non-amplified samples.

H. Summary roadmap figure partitioned into five major categories, indicated by different 

colors.

See also Figure S7 and Table S7
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PTMScan® Ubiquitin Remnant Motif (K-ε-GG) 
Kit

Cell Signaling Technology Catalog 5562

PTMScan Acetyllysine Kit Cell Signaling Technology Catalog: 13416

CD4 Dako Clone 4B12, RRID:AB_2728838

CD8 Bio-Rad Clone 4B11, RRID:AB_322868

CD163 Abcam Ab182422, RRID:AB_2753196

ARHGDIB Sigma-Aldrich HPA051235, RRID:AB_2681398

CK (pan-Cytokeratin) Dako clone AE1/AE3, RRID:AB_2132885

alpha-SMA Abcam ab5694, RRID:AB_2223021

Biological Samples

Primary tumor samples See Experimental Model and Subject 
Details

N/A

Chemicals and Reagents

HPLC-grade water J.T. Baker Catalog: 4218-03

Urea Sigma Catalog: U0631

Sodium chloride Sigma Catalog: 71376

1M Tris, pH 8.0 Invitrogen Catalog: AM9855G

Ethylenediaminetetraacetic acid Sigma Catalog: E7889

Aprotinin Sigma Catalog: A6103

Leupeptin Roche Catalog: 11017101001

Phenylmethylsulfonyl fluoride Sigma Catalog: 78830

Sodium fluoride Sigma Catalog: S7920

Phosphatase inhibitor cocktail 2 Sigma Catalog: P5726

Phosphatase inhibitor cocktail 3 Sigma Catalog: P0044

Dithiothretiol, No-Weigh Format ThermoScientific Catalog: 20291

Iodoacetamide Sigma Catalog: A3221

Lysyl endopeptidase Wako Chemicals Catalog: 129-02541

Sequencing-grade modified trypsin Promega Catalog: V511X

Formic acid Sigma Catalog: F0507

Acetonitrile, LC-MS grade Honeywell Catalog: 34967

Acetonitrile, anhydrous Sigma Catalog: 271004

Trifluoroacetic acid Sigma Catalog: 302031

Tandem Mass Tag reagent kit – 11plex ThermoFisher Catalog: A34808

0.5M HEPES, pH 8.5 Alfa Aesar Catalog: J63218

Hydroxylamine solution, 50% (vol/vol) in H2O Aldrich Catalog: 467804

Methanol Honeywell Catalog: 34966

Ammonium hydroxide solution, 28% (wt/vol) in 
H2O

Sigma Catalog: 338818
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REAGENT or RESOURCE SOURCE IDENTIFIER

Ni-NTA agarose beads Qiagen Catalog: 30410

Iron (III) chloride Sigma Catalog: 451649

Acetic acid, glacial Sigma Catalog: AX0073

Potassium phosphate, monobasic Sigma Catalog: P0662

Potassium phosphate, dibasic Sigma Catalog: P3786

MOPS Sigma Catalog: M5162

Sodium hydroxide VWR Catalog: BDH7225

Sodium phosphate, dibasic Sigma Catalog: S9763

Phosphate-buffered saline Fisher Scientific Catalog: 10010023

iVIEW DAB Detection Kit Roche Catalog: 760-091

Equipment

Reversed-phase tC18 SepPak, 3cc 200mg Waters Catalog: WAT054925

Solid-phase C18 disk, for Stage-tips Empore Catalog: 66883-U

Stage-tip needle Cadence Catalog: 7928

Stage-tip puncher, PEEK tubing Idex Health & Science Catalog: 1581

PicoFrit LC-MS column New Objective Catalog: PF360-75-10-N-5

ReproSil-Pur, 120 Å, C18-AQ, 1.9-μm resin Dr. Maisch Catalog: r119.aq

Nanospray column heater Phoenix S&T Catalog: PST-CH-20U

Column heater controller Phoenix S&T Catalog: PST-CHC

300 μL LC-MS autosampler vial and cap Waters Catalog: 186002639

Offline HPLC column, 3.5-μm particle size, 4.6 
um × 250 mm

Agilent Catalog: Custom order

Offline 96-well fractionation plate Whatman Catalog: 77015200

700 μL bRP fractionation autosampler vial ThermoFisher Catalog: C4010-14

700 μL bRP fractionation autosampler cap ThermoFisher Catalog: C4010-55A

96-well microplate for BCA Greiner Catalog: 655101

Microplate foil cover Corning Catalog: PCR-AS-200

Vacuum centrifuge ThermoFisher Catalog: SPD121P-115

Centrifuge Eppendorf Catalog: 5427 R

Benchtop mini centrifuge Corning Catalog: 6765

Benchtop vortex Scientific Industries Catalog: SI-0236

Incubating shaker VWR Catalog: 12620-942

15 mL centrifuge tube Corning Catalog: 352097

50 mL centrifuge tube Corning Catalog: 352070

1.5 mL microtube w/o cap Sarstedt Catalog: 72.607

2.0 mL microtube w/o cap Sarstedt Catalog: 72.608

Microtube caps Sarstedt Catalog: 72.692

1.5 mL snapcap tube ThermoFisher Catalog: AM12450

2.0 mL snapcap tube ThermoFisher Catalog: AM12475

Instrumentation
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REAGENT or RESOURCE SOURCE IDENTIFIER

Microplate Reader Molecular Devices Catalog: M2

Offline HPLC System for bRP fractionation Agilent 1260 Catalog: G1380-90000

Online LC for LC-MS ThermoFisher Catalog: LC140

Q Exactive Plus Mass Spectrometer ThermoFisher Catalog: IQLAAEGAAPFALGMBDK

Q Exactive HF-X Mass Spectrometer ThermoFisher Catalog: 0726042

Orbitrap Fusion Lumos Tribrid Mass 
Spectrometer

ThermoFisher Catalog: IQLAAEGAAPFADBMBHQ

Critical Commercial Assays

TruSeq Stranded Total RNA Library Prep Kit with 
Ribo-Zero Gold

Illumina Catalog: RS-122-2301

Infinium MethylationEPIC Kit Illumina Catalog: WG-317-1003

Nextera DNA Exosome Kit Illumina Catalog: 20020617

KAPA Hyper Prep Kit, PCR-free Roche Catalog: 07962371001

BCA Protein Assay Kit ThermoFisher Catalog: 23225

Deposited Data

DepMap: Mutation DepMapPublic 21Q1 (PMID: 
31068700; Dataset doi:10.6084/
m9.figshare.13681534.v1)

https://depmap.org/portal/download/

DepMap: Segmented copy number DepMapPublic 21Q1 (PMID: 
31068700; Dataset doi:10.6084/
m9.figshare.13681534.v1)

https://depmap.org/portal/download/

DepMap: Gene level copy number DepMapPublic 21Q1 (PMID: 
31068700; Dataset doi:10.6084/
m9.figshare.13681534.v1)

https://depmap.org/portal/download/

DepMap: RNAseq (transcript isoform) DepMapPublic 21Q1 (PMID: 
31068700; Dataset doi:10.6084/
m9.figshare.13681534.v1)

https://depmap.org/portal/download/

DepMap: Proteomics (RPPA) CCLE 2019 (PMID: 31068700) https://depmap.org/portal/download/

DepMap: CRISPR KO screen (combined) DepMapPublic 21Q1 (bioRxiv 
2020.05.22.110247; doi: https://doi.org/
10.1101/2020.05.22.110247)

https://depmap.org/portal/download/

DepMap: shRNA screen (combined) DEMETER2 Data v6 (PMID: 
30389920)

https://depmap.org/portal/download/

DepMap: GDSC drug screen Sanger GDSC 1 (PMID: 27397505) https://depmap.org/portal/download/

DepMap: PRISM drug screen PRISM Repurposing 19Q4 Secondary 
Screen (PMID: 32613204)

https://depmap.org/portal/download/

PhosphoSitePlus (Hornbeck et al., 2012) https://www.phosphosite.org

Connectivity Map (CMAP) (Lamb et al., 2006; Subramanian et al., 
2017)

https://www.broadinstitute.org/connectivity­
map-cmap

Human Protein Atlas (HPA) (Uhlén et al., 2005) https://www.proteinatlas.org

CT Antigen database (Almeida et al., 2009) http://www.cta.lncc.br

Dependency map (DepMap) (Tsherniak et al., 2017) https://depmap.org/portal/
v3.3.8 is a GECKOv2 Achilles dataset

Library of Integrated Network-based Cellular 
Signatures (LINCS)

(Lamb et al., 2006; Subramanian et al., 
2017)

https://clue.io/data
Expanded CMap LINCS Resource 2020 
(1/28/2021 update)

CPTAC HNSCC cohort (Huang et al., 2021) https://cptac-data-portal.georgetown.edu/
study-summary/S054
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REAGENT or RESOURCE SOURCE IDENTIFIER

CPTAC LSCC cohort This study https://cptac-data-portal.georgetown.edu/
study-summary/S063

Software and Algorithms

methylationArrayAnalysis (version 3.9) (Maksimovic et al., 2016) https://master.bioconductor.org/
packages/release/workflows/html/
methylationArrayAnalysis.html

Illumina EPIC methylation array (3.9) Hansen KD, 2019 https://bioconductor.org/packages/release/
data/annotation/html/
IlluminaHumanMethylationEPICanno.ilm10
b2.hg19.html

Methylation array analysis pipeline for CPTAC Li Ding Lab https://github.com/ding-lab/
cptac_methylation

miRNA-Seq analysis pipeline for CPTAC Li Ding Lab https://github.com/ding-lab/CPTAC_miRNA

VEP (McLaren et al., 2016) https://github.com/Ensembl/ensembl-vep/
tags

TNScope / DNAScope (Sentieon) (Freed et al.) sentieon.com

vcfAnno (Pedersen et al., 2016) https://github.com/brentp/vcfanno

VariantAnnotation (Bioconductor) (Obenchain et al., 2014) https://bioconductor.org/packages/release/
bioc/html/VariantAnnotation.html

arriba_v1.1.0 https://github.com/suhrig/arriba/

fusioncatcher_v1.10 (Nicorici et al.) https://github.com/ndaniel/fusioncatcher/
blob/master/doc/manual.md

eQTLGen (Westra et al., 2013) https://github.com/molgenis/
systemsgenetics/wiki/eQTL-mapping­
analysis-cookbook-(eQTLGen)

Pindel0.2.5 (Ye et al., 2009) http://gmt.genome.wustl.edu/packages/
pindel/

SignatureAnalyzer (Kim et al., 2016) https://software.broadinstitute.org/
cancer/cga/msp

CNVEX Marcin Cieslik Lab https://github.com/mctp/cnvex

CRISP Marcin Cieslik Lab https://github.com/mcieslik-mctp/crisp-build

Spectrum Mill Karl R. Clauser, Steven Carr Lab https://proteomics.broadinstitute.org/

ComBat (v3.20.0) (Johnson et al., 2007) https://bioconductor.org/packages/release/
bioc/html/sva.html

gPCA (Reese et al., 2013) https://cran.r-project.org/web/packages/
gPCA/index.html

GISTIC2.0 (Mermel et al., 2011) ftp://ftp.broadinstitute.org/pub/GISTIC2.0/
GISTIC_2_0_23.tar.gz

iProFun (Song et al., 2019) https://github.com/WangLab-MSSM/
iProFun

ESTIMATE (Yoshihara et al., 2013) https://bioinformatics.mdanderson.org/
public-software/estimate/

WebGestaltR (Wang et al., 2017) http://www.webgestalt.org/

GSVA (Hanzelmann et al., 2013) https://bioconductor.org/packages/release/
bioc/html/GSVA.html

TSNet (Petralia et al., 2018) https://github.com/WangLab-MSSM/TSNet

xCell (Aran et al., 2017) http://xcell.ucsf.edu/

CPTAC LSCC Data Viewer Steven Carr lab https://rstudio-connect.broadapps.org/
CPTAC-LSCC2021/
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REAGENT or RESOURCE SOURCE IDENTIFIER

ConsensusClusterPlus
(Wilkerson and Hayes, 2010)

http://bioconductor.org/packages/release/
bioc/html/CancerSubtypes.html

MS-GF+ (Kim and Pevzner, 2014) https://github.com/MSGFPlus/msgfplus

NeoFlow (Wen et al., 2020) https://github.com/bzhanglab/neoflow

netMHCpan (Jurtz et al., 2017) http://www.cbs.dtu.dk/services/
NetMHCpan/

Optitype (Szolek et al., 2014) https://github.com/FRED-2/OptiType

Customprodbj (Wen et al., 2020) https://github.com/bzhanglab/customprodbj

PDV (Li et al., 2019b) https://github.com/wenbostar/PDV

PepQuery (Wen et al., 2019) http://pepquery.org

PTM-SEA (Krug et al., 2018)) https://github.com/broadinstitute/ssGSEA2.0

PTMsigDB (Krug et al., 2018)) http://prot-shiny-vm.broadinstitute.org:3838/
ptmsigdb-app/

Terra Broad Institute data science platform. https://terra.bio/

Panoply Broad Institute Proteomics Platform https://github.com/broadinstitute/PANOPLY

CMap (Lamb et al., 2006; Subramanian et al., 
2017)

https://clue.io/cmap

LIMMA v3.36 (R Package) (Ritchie et al., 2015) https://bioconductor.org/packages/release/
bioc/html/limma.html

FactoMineR v1.41NMF(R - package) (Gaujoux and Seoighe, 2010; Lê et al., 
2008)

https://cran.r-project.org/web/packages/
FactoMineR/index.html

MClust v5.4 (R package) (Scrucca, Fop, Murphy and Raftery, 
2017)

https://cran.r-project.org/web/packages/
mclust/index.html

g:Profiler (Raudvere U, et al., 2019) https://biit.cs.ut.ee/gprofiler/gost

Cytoscape (Shannon P, et al., 2003) https://cytoscape.org/

ImmuneSubtypeClassifier (Gibbs, 2020) https://github.com/CRI-iAtlas/
ImmuneSubtypeClassifier

ProteinPaint (Zhou et al., 2016) https://pecan.stjude.doud/proteinpaint/

Ordinal Christensen RHB (2019) https://CRAN.R-project.org/
package=ordinal

Cell. Author manuscript; available in PMC 2022 August 05.

http://bioconductor.org/packages/release/bioc/html/CancerSubtypes.html
http://bioconductor.org/packages/release/bioc/html/CancerSubtypes.html
https://github.com/MSGFPlus/msgfplus
https://github.com/bzhanglab/neoflow
http://www.cbs.dtu.dk/services/NetMHCpan/
http://www.cbs.dtu.dk/services/NetMHCpan/
https://github.com/FRED-2/OptiType
https://github.com/bzhanglab/customprodbj
https://github.com/wenbostar/PDV
http://pepquery.org
https://github.com/broadinstitute/ssGSEA2.0
http://prot-shiny-vm.broadinstitute.org:3838/ptmsigdb-app/
http://prot-shiny-vm.broadinstitute.org:3838/ptmsigdb-app/
https://terra.bio/
https://github.com/broadinstitute/PANOPLY
https://clue.io/cmap
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/FactoMineR/index.html
https://cran.r-project.org/web/packages/FactoMineR/index.html
https://cran.r-project.org/web/packages/mclust/index.html
https://cran.r-project.org/web/packages/mclust/index.html
https://biit.cs.ut.ee/gprofiler/gost
https://cytoscape.org/
https://github.com/CRI-iAtlas/ImmuneSubtypeClassifier
https://github.com/CRI-iAtlas/ImmuneSubtypeClassifier
https://pecan.stjude.doud/proteinpaint/
https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinal

	Summary
	In Brief
	Graphical Abstract
	Introduction
	Results
	Proteogenomic landscape of LSCC
	Multi-omic clustering identifies five LSCC molecular subtypes, including one that is EMT-Enriched
	NMF EMT-E subtype tumors show phosphorylation-driven PDGFR and ROR2 signaling.
	Loss of CDK4/6 pathway inhibitors is a universal feature of LSCC but Rb1 expression is variable
	NRF2 pathway activation in tumors with and without NRF2 pathway mutations
	Proteogenomic analysis of chromosome 3 prioritizes therapeutic targets in LSCC
	Crosstalk between lysine acetylation and ubiquitylation impacts cancer metabolism
	Immune landscape and regulation in LSCC
	Proteomic Biomarker Candidates for Prognosis, Diagnosis, and Treatment

	Discussion
	Limitations of the study

	STAR★METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Material availability
	Data and Code Availability
	CPTAC LSCC proteomics data:
	CPTAC HNSCC proteomics data:
	CPATC LUAD proteomics data:


	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Human Subjects

	METHOD DETAILS
	Specimen Acquisition
	Sequencing sample preparation
	Whole exome Sequencing (WES)
	Library construction and Hybrid Selection
	Cluster Amplification and Sequencing

	Whole genome sequencing (WGS)
	Cluster Amplification and Sequencing


	Array Based Methylation Analysis
	RNA and miRNA sequencing
	Quality Assurance and Control of RNA Analytes
	Total RNA Sequencing
	miRNA-seq Library Construction
	miRNA Sequencing

	Mass Spectrometry methods
	Protein Extraction and Tryptic Digestion
	Common Reference (CR) Pool and Plex layout
	Proteome, Phosphoproteome, and Acetyprotome:
	Ubiquitylproteome:

	TMT-11 Labeling of Peptides
	Proteome, Phosphoproteome, Acetylproteome:

	Peptide Fractionation
	For Proteome, Phosphoproteome, Acetylproteome:

	Phosphopeptide Enrichment
	Acetylpeptide Enrichment
	Ubiquitylpeptide Enrichment with on-bead TMT labeling
	LC-MS/MS for Proteomics Analyses
	Immunohistochemistry (IHC) analysis.
	TMA construction
	Immune cell marker, Immunohistochemistry (IHC)
	Multiplex Immunofluorescence (mIF) staining
	IHC based assessment of TP63 low samples (Figure 4)



	QUANTIFICATION AND STATISTICAL ANALYSIS
	Genomic Data Analysis
	Copy Number Calling
	Somatic Variant Calling
	Germline Variant Calling
	GISTIC and MutSig analysis

	RNAseq and miRNAseq Quantification
	RNAseq Quantification
	Isoform specific RNA quantification
	DNA methylation data preprocessing
	miRNA-seq Data Analysis

	Proteomics Data Analysis
	Spectrum quality filtering and searching
	Protein grouping, and localization of PTMs
	Quantitation using TMT ratios
	Two-component normalization of TMT ratios
	Normalization of acetyl- and ubiquitylproteome

	Proteogenomic analysis
	Quality control and Batch effect assessment
	Dataset filtering
	Unsupervised multi-omic clustering using NMF
	Integrative analysis with Stewart et al.
	RNA subtyping
	Chromosomal instability index
	Fusion detection and analysis
	mRNA and Protein correlation
	CNA-driven cis and trans effects
	CMAP analysis
	LINCS analysis
	Defining cancer-associated genes
	CpG Island Methylator Phenotype
	iProFun Based Cis Association Analysis
	EMT-specific cluster and fibroblast enrichment
	Differential marker analysis
	Overall and disease-free survival in TCGA lung squamous carcinoma
	Kaplan-Meier survival analysis
	Continuous Smoking Score
	Identification of differentially regulated events in NRF2 mutant tumors.
	Immune cluster identification based on cell type composition
	TCGA pan-cancer immune subtyping
	Ranking tumors by inferred activity of IFN-γ pathway
	Estimation of Tumor Purity, Stromal and Immune Scores
	Differentially Expressed Genes and Pathway Analysis
	Deriving RTK CBPE scores
	Independent component analysis
	Mutation-based cis- and trans-effects
	Germline quantitative trait loci (QTL) analysis
	miRNA analysis presented in Figure 4
	Pathway projection using ssGSEA
	Phosphorylation-driven signature analysis
	CDKN2A and RB1 annotations and pathway analysis
	Association analysis between KGG-site abundances and E3 ligases and DUBs
	Cluster and pathway analysis of significantly modulated K-GG sites in tumors.
	PTM CLUMPS analysis
	DepMap genetic dependency and drug response analysis
	CausalPath analysis
	Variant Peptide Identification
	Cancer/testis Antigen Prediction
	PROGENy Scores
	LSCC, HNSCC and LUAD integrative analysis



	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	KEY RESOURCES TABLE

