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Abstract

The quality of importance distribution is vital to adaptive importance sampling, especially in high 

dimensional sampling spaces where the target distributions are sparse and hard to approximate. 

This requires that the proposal distributions are expressive and easily adaptable. Because of the 

need for weight calculation, point evaluation of the proposal distributions is also needed. The 

Gaussian process has been proven to be a highly expressive non-parametric model for conditional 

density estimation whose training process is also straightforward. In this paper, we introduce a 

class of adaptive importance sampling methods where the proposal distribution is constructed 

in a way that Gaussian processes are combined autoregressively. By numerical experiments of 

sampling from a high dimensional target distribution, we demonstrate that the method is accurate 

and efficient compared to existing methods.

Index Terms—

adaptive importance sampling; generative model; Gaussian Process; population Monte Carlo

1. INTRODUCTION

Adaptive importance sampling (AIS) is a class of powerful estimation methods that 

iteratively optimize the proposal distribution along with drawing weighted samples. There 

are many different variations of AIS; however the performance of all these methods is 

very sensitive to the quality of the chosen proposal distribution [18]. Traditionally, fixed 

parametric distributions, such as Gaussian mixtures, are used as proposal distributions [2, 

16]. However, in high dimensional samples spaces, the target distributions are usually hard 

to be captured by these fixed-form distributions.

With the development of machine learning, several kinds of compound data generating 

methods have proven to be highly expressive, such as neural generative models [6, 14] 

and Gaussian process latent variable machines [20]. These methods succeed in capturing 

details of high dimensional data distributions. However, to use data generating methods as 

proposal distributions for AIS, point evaluations of the generative models are required to 

calculate the weights of the drawn samples. However, many data generating models cannot 
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evaluate the probability analytically. For example, in [22], a variational autoencoder (VAE) 

model is used as a proposal distribution, where the probability is evaluated by Monte Carlo 

approximations.

There are two kinds of compound distributions that can evaluate probability of samples 

analytically. One is latent variable machines that use bidirectional transformations [5, 11, 

15, 21]. The other kind of distributions, which are called autoregressive distributions, are 

the ones that can be factorized by the chain rule of conditional distributions. In [13], it was 

shown that these two types of models are equivalent under certain conditions. In this paper, 

we work within the autoregressive framework.

Kernel density estimation is a commonly used non-parametric density estimation method, 

and it is usually invoked in low dimension sample spaces. In terms of estimation of 

conditional distributions, there are several methods such as [9, 10]. Gaussian processes allow 

for a powerful non-parametric conditional density estimation, where the models of the data 

are conditional Gaussian distributions.

In this paper, we introduce a class of AIS methods that use autoregressive distributions 

whose components are non-parametric distributions, including kernel density estimation and 

Gaussian processes, as proposal distributions. We provide two examples of this class of 

methods, and they are based on AIS and adaptive multiple importance sampling (AMIS). By 

numerical experiments, we show that when the dimension of the target distribution is high, 

the proposed methods outperform the state-of-the-art AMIS methods and Gaussian mixture 

distributions.

The problem is defined in Section 2. In Section 3, we briefly review AIS, autoregressive 

distributions, and Gaussian processes. We propose our method in Section 4 and present 

results of numerical experiments in Section 5. In Section 6, we discuss the results and 

provide concluding remarks.

2. PROBLEM DEFINITION

Our goal is to draw samples from a given non-normalized target distribution π(x). We 

assume that we can only evaluate π(x) point-wisely. We also assume that the integral of 

π(·) is not tractable and that as a result, the partition function is not available. This is a 

common situation in Bayesian estimation when we want to draw samples from a posterior 

distribution: the partition function of a high-dimensional posterior distribution is usually not 

available.

When x is high dimensional, the target distribution is sparse, and the sampling process is 

very challenging. We address the problem of sampling from target distributions of this type.

3. BACKGROUND

3.1. Adaptive importance sampling and its variations

We operate in settings when we do not have much information about the target distribution 

π(x), and thus, handcrafting a proposal distribution q(x) for importance sampling (IS) is 
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challenging [8]. AIS is a class of iterative importance sampling that optimizes the proposal 

distribution over iterations of IS [12]. We will use the subscript t to denote the iteration 

index. We start from some initialization of the proposal distribution q1(x), and in each 

importance iteration t, we use the accumulated weighted samples (X1: t
(m),w1: t

(m)), to optimize an 

updated proposal distribution qt+1(x). This step is called “adaptation.” There are many ways 

of adaptation, depending on the form of the proposal distribution. Proceeding with iterations, 

we improve the proposal distribution, and thereby the quality of the drawn samples and the 

various statistics obtained from them.

Variations of AIS methods [2], such as AMIS [4] are usually different because of the 

adopted form of the proposal distribution, the process of adaptation, and how the results 

from previous iterations are used. Many of these methods use Gaussian or Gaussian mixture 

distributions as proposal distributions [3, 4]. The accuracy of these methods degrades fast 

with the increase of the dimension of the sample space. Therefore, an expressive proposal 

distribution that can approximate the target distribution better in higher dimensions is 

needed.

3.2. Autoregressive distributions

Autoregressive distributions are joint distributions that can be factorized based on the 

conditional distribution expansion rule,

qt xt = q1, t x1, t ∏
d = 2

D
qd, t xd, t ∣ x1:d − 1, t , (1)

where D is the number of dimensions of the sample space. Samples of this distribution can 

be drawn by ancestral sampling [1]. Evaluation of the log-probability of a sample can be 

achieved by separately computing the factors corresponding to each dimension, and the sum 

of the evaluations is the log-probability of that sample. When optimizing the autoregressive 

distribution, each factor of the proposal distribution can be optimized separately in parallel.

3.3. Gaussian processes

The Gaussian process regression [23] is a non-parametric Bayesian model for estimation 

of functions from noisy data. They rely on conditional Gaussian distributions, where their 

covariances are regulated by “kernels” that measure similarities among data.

Suppose that training input and output data are given by (x(1:N), y(1:N)), where N is the 

number of training data. The predictive distribution of y* conditioned on x* is modeled by

q y* ∣ x*, θ, σ2 = N y* ∣ μt x*, θ , Σt x*, θ + σ2 , (2)

where

μt x*, θ = Σ * , x Σx, x + σ2IN
−1y(1:N),

Σt x*, θ = Σ * , * − Σ * , x Σx, x + σ2IN
−1Σ * , x

⊤ ,
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and

Σx, x =
kθ x(1), x(1) ⋯ kθ x(1), x(N)

⋮ ⋱ ⋮
kθ x(N), x(1) ⋯ kθ x(N), x(N)

,

Σ * , x = kθ x*, x(1) ⋯ kθ x*, x(N) ,
Σ * , * = kθ x*, x* ,

where θ and σ2 are hyperparameters of the GP model, and kθ(·, ·) is the kernel function of 

the GP. In the proposed method, we use the radial basis function (RBF) kernel.

However, it is hard for the GP to work with large datasets because the inverse of 

the covariance matrix requires O(N3) complexity. There are many methods that aim to 

reduce the computational complexity of Gaussian process regression [17]. In our work, we 

utilize a python package GPy [7] that uses the deterministic training conditional (DTC) 

approximation [19] to reduce the computational complexity to O(n3) where n is the number 

of inducing input, and n is much smaller than the data size N.

4. THE PROPOSED METHOD

4.1. AIS with non-parametric proposals

In the proposed AIS method, the proposal distribution has the autoregressive form (1). 

Because the proposal distribution is non-parametric, in the initialization step, we need to 

provide some initialization of the underlying data η1:D, 0
(1:N) . Here we can use random data 

drawn from a non-informative distribution, such as a standard Gaussian distribution,

η1:D, 0
(1:N)iidN 0, ID , (3)

where N is the number of drawn samples, and ID denotes the D-by-D identical matrix.

The distribution of the first dimension q1,t(x1,t) can be modeled by kernel density 

approximation, which is non-parametric. Kernel density estimation is usually not 

challenging in low dimensional spaces. As we are using it for just one dimension, it will be 

suitable for modeling the distribution of the first dimension,

q1, t x1, t = 1
N ∑

n = 1

N
N x1, t ∣ η1, t − 1

(n) , bt
2 , (4)

where bt is the bandwidth of the smoothing kernel at iteration t.

The conditional distributions are modeled by Gaussian processes according to (2), with 

(η1:d − 1, t
(1:N) , ηd, t

(1:N)) as underlying input and output training data, or

qd, t xd, t ∣ x1:d − 1, t, θd, t, σd, t
2 =

N xd, t ∣ μt x1:d − 1, t, θd, t , Σt x1:d − 1, t, θd, t + σd, t
2 . (5)
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When sampling from a distribution, we first draw samples from the kernel density 

approximation and then we generate samples from the conditional distributions sequentially, 

i.e.,

kt
(1:M)iidDU(1:N),

x1, t
(m) N η

1, t − 1
kt

(m)
, bt

2 ,

xd, t
(m) N xd, t ∣ μt x1:d − 1, t

(m) , θd, t , Σt x1:d − 1, t
(m) , θd, t + σd, t

2 ,

(6)

where DU(1:N) means discrete uniform distribution that samples integers from 1 to N.

The non-normalized sample weights are calculated by

wt
(m) = exp log π xt

(m) − log qt xt
(m) , m = 1:M, (7)

where the log-pdf evaluation of the proposal distribution is

log qt xt
(m) = log 1

N ∑
n = 1

N
N x1, t

(m) η1, t − 1
(n) , bt

2

+ ∑
d = 2

D
ℒN xd, t

(m) ∣ μt x1:d − 1, t
(m) , θd, t , Σt x1:d − 1, t

(m) , θd, t + σd, t
2 ,

(8)

and ℒN denotes the log-pdf of a Gaussian distribution.

The proposal distribution is non-parametric, and therefore adaptations can be achieved by 

replacing the underlying data set of the proposal distribution with resampled data from the 

accumulated weighted samples. Note that the number of resampled samples N does not 

have to be the same as the number of samples drawn from the proposal distribution M. The 

resampling process can be performed as follows:

it(1:N)iidC s:t,
∑l = 1

M ws: t
(l)

∑r = s
t ∑l = 1

M wr
(l) ,

jt
(1:N)iidC 1:M,

∑r = s
t wr

(1:M)

∑r = s
t ∑l = 1

M wr
(l) ,

ηt
(n) = x

it
(n)
jt
(n)

, n = 1:N,

(9)

where S = max(0, t − L + 1), and L is the maximum number of iterations that is kept. 

The earlier iterations are considered as burn-in. The symbols C x(1:M), w(1:M)  denote a 

categorical distribution from which we draw x according to the weights w.

In addition to replacing the underlying data, we can also update the hyperparameters 

based on the resampled samples for better performance. The bandwidth of the kernel 

density estimation, the hyperparameters of the Gaussian process kernel, the white noise 
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of the Gaussian process, and the inducing points can be updated by the type-II maximum 

likelihood as follows:

bt + 1 = argmax
b

1
N ∑

n = 1

N
log q1, t η1, t

(n), b ,

θd, t + 1, σd, t + 1
2 = argmax

θd, σd
2

1
N ∑

n = 1

N
log qd, t xd, t

(n) ∣ x1:d − 1, t
(n) , θd, t, σd, t

2 .

(10)

The inducing inputs are optimized by DTC using the GPy [7] package. The proposed 

AIS method is summarized by Algorithm 1, which we refer to as autoregressive GP AIS 

(AGP-AIS).

4.2. AMIS with non-parametric proposals

Our non-parametric proposal distribution can be used in different variations of AIS. For 

example, it can be applied in the AMIS structure if we change the weighting process of AIS 

(7) to the following:

wj
(m) =

(t − s + 1)π xt
(m)

∑i = s
t qi xt

(m) j = s: t, m = 1:M, (11)

where qi is the exponent of (8). Note that in each iteration t, we need to re-weight the history 

samples from iteration s to t. The proposed AMIS method is summarized by Algorithm 2 

AGP-AMIS.
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5. NUMERICAL EXPERIMENTS

The target distribution for all the experiments is a banana-shaped distribution [4], which is 

defined by

π(x) = fN 0D, Σ x1, x2 + b x1
2 − σ2 , x3, ⋯, xD , (12)

where Σ = diag(σ2, 1, …, 1). In our experiments, we set the parameters to b = 0.03 and σ = 

10.

We ran experiments with the proposed AGP-AIS and AGP-AMIS methods. For comparison 

purposes, we also tested AMIS that uses a Gaussian mixture distribution with 10 

components as a proposal distribution.

Even though we only utilize point evaluation of the target distribution, it is actually possible 

to generate samples from the target distributions directly by first drawing z(1:M) from a 

standard Gaussian distribution, and then twist its first two dimensions to acquire x(1:M), that 

is to follow these steps:

Z(1:M)iidN 0, ID , (13)

and then, for m = 1 : M

x1
(m) = σz1

(m),
x2

(m) = z2
(m) + b σ2 + x1

(m) 2 ,
x3:D

(m) = z3:D
(m) .

(14)

In the experiment, the ideal samples are directly drawn from the target distribution for 

benchmark performance comparisons.

The performance is measured in two ways. First, as suggested in [4], we measure the 

difference between the following statistics and their theoretical values:
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P1 = ∑
d = 1

D
mean xd, s: t

(1:M) − ∑
d = 1

D
E xd , (15)

P2 = ∑
d = 1

2
var xd, s: t

(1:M) − ∑
d = 1

2
V xd , (16)

P3 = ∑
d = 3

D
var xd, s: t

(1:M) − ∑
d = 3

D
V xd . (17)

Second, we focus on the first two dimensions of the samples. Because we know the ideal 

samples can be acquired transforming the standard Gaussian distribution samples, we can 

apply the inverse transformation of (14) on samples from the proposed methods and measure 

the Gaussianity of the inverse transformed samples T −1 xs: t
(1:M) , where T−1(·) is defined by

T −1 x1:2 = x1
σ , x2 + b σ2 + x1

2
⊤

(18)

The performance is measured by the maximum difference between the sample cumulative 

distribution function (CDF) and the standard Gaussian CDF, which can be further used in the 

Kolmogorov–Smirnov Gaussianity test.

We did two sets of experiments. In the first experiment, we used M =1E5 and N =1E3 in 

all the compared sampling methods. We performed 10 simulations of the methods for target 

distributions with different dimensions D =5, 10, 15, 20. In this example, we see that the 

performance decays quickly for GM-AMIS when the number of dimensions increases, while 

the AGP-based methods remain with very high accuracy.

In the second experiment, we used the same dimension of the target distribution, D =10, 

and the same number of resampled samples for proposal adaptation N =1E3 for all the 

tested methods but drew different numbers of samples M =1E3, 1E4, 1E5 from the proposal 

distribution. In this example, we see that to achieve similar performance, GM-AMIS needs 

to draw many more samples than the AGP methods.

Because the target distribution becomes sparser in high dimensions, the Gaussian process­

based distribution, which is more expressive, can estimate the target distribution better. The 

method is non-parametric, and it makes full use of the weighted samples. Thus, it needs less 

samples than the Gaussian mixture-based methods.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a class of adaptive importance sampling methods that use auto­

regressive generative models and Gaussian processes for obtaining proposal distributions. 

Our numerical experiments suggest that the methods are efficient in the number of samples, 

more accurate, and less sensitive in dimensions than existing methods.
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Fig. 1: 
Performance of the methods as a function of the dimension of x. The definitions of P1, P2, 

and P3 are given by (15)–(17).
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Fig. 2: 
The performance of the methods as functions of the number of drawn samples. The 

definitions of P1, P2, and P3 are given by (15)–(17).
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Fig. 3: 
(a) and (c) are log-histograms of the samples acquired from one realization of the proposed 

methods with 1E5 samples drawn from a 20-dimensional banana-shaped distribution, where 

(a) is obtained by AGP-AIS and (c) is obtained by AGP-AMIS. The lines are contours of the 

log target distribution. (b) and (d) are transformed samples from (a) and (c) correspondingly. 

The lines are contours of the log standard normal distribution.
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