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Large microbial communities reside in the gut as an endogenous organ and interact with the host physiology through symbiotic rela-
tionships, affecting health. Recent advances in high-throughput sequencing techniques have made it possible to better understand 
these complex microbial communities and their effects on hosts. Animal and clinical studies have provided considerable evidence to 
show that the microbiota plays an important role in chronic kidney disease, acute kidney injury, nephrolithiasis, and kidney transplan-
tation by altering the functions of the intestinal barrier, regulating local and systemic inflammation, controlling production of metabolic 
components, and affecting immune responses. Although the exact mechanism underlying the microbial shift and its impact on dis-
ease progression remains uncertain, the kidney-gut interaction clearly plays a significant role in onset and progression of kidney dis-
ease and, therefore, holds promise as a therapeutic target. Here, we review recent literature pertaining to the bidirectional relation-
ship between microbes and humans in various kidney diseases and discuss the future direction of microbial research in nephrology. 
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Introduction

Over 100 trillion microorganisms including bacteria, fungi, 

and protozoa (collectively called the microbiota) form col-

onies in the human gut and interact in a complex manner 

with their host, directly or indirectly affecting host health 

[1,2]. Microbial species are transferred first from the vaginal 

canal at birth, and these microbial communities keep chang-

ing in response to various environmental stimuli including 

diet, stress, and antibiotic use. The intestinal microbiota is 

characterized by significant diversity; however, the micro-

bial composition remains relatively stable over time and is 

similar within families as well as in individuals from a region 

with common dietary habits [3,4]. 

The structure of the microbiota is balanced functionally 

by commensal or adversarial relationships with the host. 

Therefore, changes in intestinal microbial balance, known 

as dysbiosis, are associated with an unbalanced intestinal 

microbiota with quantitative and qualitative changes in the 

composition and metabolic functions. Dysbiosis can con-

tribute to pathogenesis in various diseases, including obe-

sity, cancer, diabetes, inflammatory bowel disease, asthma, 

and cardiovascular disease [5]. In this review, the emerging 

roles of the intestinal microbiota in various kidney diseases 

and the future of microbiome research are discussed.



The microbiota as an endogenous organ

The intestinal microbiota exerts a variety of functions while 

maintaining a symbiotic relationship with the host. Colonic 

microbiota ferment non-digestible carbohydrates includ-

ing dietary fibers, cellulose, and resistant starch to produce 

short-chain fatty acids (SCFAs; acetate, propionate, butyrate, 

etc.). SCFAs function as an energy source for colonocytes, 

strengthen intestinal barrier integrity, and exert potent an-

ti-inflammatory and immunomodulatory functions [6–8]. 

The microbiota is involved in the synthesis of various vita-

mins (vitamin B12, thiamine, riboflavin, and vitamin K) and 

the metabolism of amino acids [9]. 

The intestinal microbial community contributes to the 

development and maturation of the immune system. De-

fects in the development of gut-associated lymphoid tissue, 

Peyer’s patches, and mesenteric lymph nodes in germ-free 

mice indicate the important role of the microbiota in im-

mune system development. Germ-free mice also displayed 

defective immunoglobulin A production and increased 

susceptibility to and mortality from certain pathogenic bac-

teria, suggesting that the microbiota is important in normal 

physiological immune response [10]. Epithelial cells and 

immune cells crosstalk with the microbiota and recognize 

pathogenic microorganisms or their metabolic products and 

subsequently increase the production of antimicrobial pro-

teins and inflammatory cytokines through activation of the 

nuclear factor kappa B (NF-κB) pathway. Sustained immune 

activation by intestinal bacteria acts as a key immune mod-

ulator, activating both proinflammatory and counter-regu-

latory, anti-inflammatory pathways, and the balance among 

these signals through the induction of various immune cells 

is important for the maintenance of normal physiology. Ho-

meostasis of immune response signals exchanged between 

the microbiota and the host is important for development of 

secondary lymphoid organs [11–14]. 

Microbial-epithelial interactions also serve to protect and 

maintain the intestinal barrier by several mechanisms, in-

cluding preventing pathogens from attaching to intestinal 

epithelial cells [15], activating anti-inflammatory pathways 

[16], and regulating mucus properties [17]. The colonization 

of germ-free mice with a mixture of Lactobacillus strains has 

been shown to enhance barrier integrity, suggesting that the 

microbiota is important in maintaining barrier integrity [18]. 

In addition to metabolic and immune functions, the intes-

tinal microbiota has been shown to contribute to develop-

ment of the complex enteric nervous system [19]. 

In summary, as an endogenous organ, the gut and mi-

crobiota perform multiple physiological roles in the host, 

including metabolism, maintenance of barrier integrity, 

development of the immune system, immune modulation, 

and maturation of the enteric nervous system. This knowl-

edge has led to the idea that dysbiosis contributes to the 

pathogenesis of not only intestinal diseases, but also of vari-

ous metabolic diseases, cancer, inflammatory diseases, and 

cardiovascular diseases, and that strategies targeting the mi-

crobiota hold promise in prevention and treatment of these 

diseases.

Intestinal microbiota and chronic kidney disease

Several studies have shown the presence of dysbiosis in ani-

mal models and humans with chronic kidney disease (CKD) 

[20,21]. In CKD patients, uremia, intestinal edema, pro-

longed colonic transit time, dietary restriction of fiber, met-

abolic acidosis, and frequent use of antibiotics can directly 

or indirectly contribute to dysbiosis and an altered intestinal 

environment [21–26]. 

In an early study, Vaziri et al. [20] found significant differ-

ences in the abundance of 190 bacterial operational taxo-

nomic units between end-stage kidney disease (ESKD) and 

healthy controls. They showed that the abundance of sac-

charolytic microorganisms such as Lactobacillus and Bifido-

bacteria decreases in ESKD, whereas that of proteolytic mi-

croorganisms such as Clostridium and Bacteroides increases. 

Although urea supplementation was unable to provoke 

similar dysbiosis in a mouse model of CKD, accumulation of 

uremic toxins could negatively affect the growth of commen-

sal bacteria and might be responsible for dysbiosis [21]. A 

recent study on Chinese ESKD patients reported a reduction 

of butyrate-producing bacteria including Roseburia, Faecali-

bacterium, Coprococcus, and Prevotella [27]. Wong et al. [28] 

showed the relative expansion of bacterial families produc-

ing urease, indole, and p-cresol forming enzymes, while the 

bacterial families producing SCFAs were reduced. Given the 

toxic effects of these metabolites and the beneficial effects 

of SCFA, dysbiosis in patients with ESKD is likely to play cer-

tain roles in the development of systemic inflammation and 

uremic symptoms.

The intestinal barrier, composed of a single epithelial lining 
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and mucus layer, prevents transmigration of luminal con-

tents while permitting selective absorption of nutrients, wa-

ter, and electrolytes. Dysbiosis in CKD has been shown to be 

associated with barrier disruption that potentially leads to 

transmigration of bacteria or their metabolites [29–32]. Stud-

ies have shown the increased permeability to exogenous 

polyethylene glycol or increased circulating endotoxin levels 

in patients with CKD, suggesting enhanced transmigration 

through a disrupted barrier [29,30]. Urea directly provokes 

a decrease in transepithelial resistance of cultured entero-

cytes, and intestinal edema and regional ischemia in CKD 

could lead to development of leaky gut [31]. At the molecular 

level, intestinal barrier disruption has been associated with 

decreased expression of heat shock protein 70 (HSP70) and 

claudin-1, increased expression of pore-forming claudin-2, 

and epithelial apoptosis in the colon of a mouse model of 

CKD [31,32]. In a recent study on CKD, dysbiosis and barrier 

disruption were found to be linked to an altered mucosal 

immune response through activation of inflammatory mac-

rophages with production of inflammatory cytokines [32]. 

This could potentially lead to systemic inflammation and 

aggravated cardiovascular/renal complications [30,32-34]. 

Uremic toxins derived from the gut are associated with 

poor outcomes of CKD. Protein-bound uremic toxins such 

as p-cresyl sulfate or indoxyl sulfate, produced by fermen-

tation of tyrosine or tryptophan by intestinal bacteria, are 

excreted by tubular secretion in the kidney, leading to el-

evated blood levels in patients with CKD. Indoxyl sulfate 

has been reported to increase transforming growth factor-β 

expression and oxidative stress, promote smooth muscle cell 

calcification, and cause endothelial cell dysfunction. These 

protein-bound uremic toxins ultimately lead to increased 

risk of cardiovascular diseases, mortality, and CKD progres-

sion [35–38]. Trimethylamine N-oxide (TMAO), another ure-

mic toxin derived from bacterial metabolism of quaternary 

amines, has been reported to be associated with increased 

mortality in patients with CKD [39,40]. 

Based on these findings, therapeutic strategies targeting 

the microbiota, including prebiotics, an indigestible food 

ingredient that induces activation of microorganisms; pro-

biotics, living microorganisms; synbiotics, a combination 

of prebiotics and probiotics; and adsorbents, which adsorb 

toxic substances, might be useful in the treatment of CKD. 

AST-120, an insoluble enteric carbon adsorbent that can 

suppress the accumulation of indoxyl sulfate, has been 

shown to delay dialysis initiation and to slow the reduction 

in glomerular filtration rate despite negative results shown in 

a recent double-blind controlled trial [41–44]. Probiotic sup-

plementation has recently been shown to improve glucose 

homeostasis with a decrease of markers of inflammation 

and oxidative stress in diabetic hemodialysis patients [45]. In 

a randomized, double-blind, placebo-controlled crossover 

trial on patients with CKD, synbiotics showed beneficial 

effects on serum p-cresyl sulfate reduction associated with 

favorable modifications of fecal microbiota [46]. However, 

clinical research published to date does not provide strong 

evidence of the efficacy of pre- or probiotics in patients with 

CKD, possibly owing to the limited number of studies and 

small sample sizes [47]. More importantly, a lack of under-

standing of the characteristics of dysbiosis that have causal 

relationships with CKD is the most significant hurdle in 

translational research targeting the microbiome. 

Interestingly, Lobel et al. [48] recently showed that dietary 

interventions that induce posttranslational modifications 

in microbial enzymes can influence CKD progression by 

suppressing uremic toxin production without altering the 

microbiome composition. These results suggest that thera-

peutic strategies targeting bacterial metabolites or metabolic 

pathways might be more effective than those affecting the 

microbiota community. Given that a large body of evidence 

indicates significance of kidney-gut interactions in patients 

with CKD, a better understanding of the molecular mecha-

nisms underlying kidney-gut crosstalk, further development 

in microbiome analysis techniques, and improved bioinfor-

matics tools are needed.

Intestinal microbiota and acute kidney injury

Unlike CKD, few studies have analyzed the kidney-gut 

crosstalk in acute kidney injury (AKI). In a recent study by 

Yang et al. [49], intestinal dysbiosis, characterized by an in-

crease in Enterobacteriaceae and a decrease in Lactobacilli 

and Ruminococcaceae, was induced on day 1 in a mouse 

ischemia/reperfusion injury (IRI) model. Furthermore, the 

authors showed that germ-free mice transplanted with feces 

from IRI mice developed more severe postischemic kidney 

injury compared to controls. These results show that sud-

den changes in kidney function or injury are sufficient to 

provoke dysbiosis in a short time period, and the changes in 

microbial composition might serve as an important modifier 
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of AKI. In support of these findings, the authors also showed 

that depletion of the microbiota using a combination of 

nonabsorbable antibiotics before IRI significantly reduced 

postischemic injury. In the same study, the authors showed 

that kidney IRI-induced dysbiosis is associated with leaky 

gut, bacterial translocation, and reduced fecal SCFA levels 

as well as activation of both innate and adaptive immune 

responses. Neutrophils and proinflammatory macrophages 

were shown to accumulate in the lamina propria of the large 

intestine, and the Th17 pathway was shown to be activated 

in the small intestine. Microbial depletion led to inhibition 

of Th17 activation and decreased proinflammatory macro-

phage accumulation in the intestine; simultaneously, it in-

creased the levels of regulatory T cells and M2 macrophages 

in both the kidney and large intestines. These data suggest 

that an altered mucosal immune response associated with 

dysbiosis is an important player in the kidney-gut crosstalk 

in AKI [49]. Additionally, the data also indicate a shift in the 

microbiota and in mucosal immunity toward dysbiosis and 

proinflammatory changes in IRI-induced AKI, which could 

further aggravate kidney injury. 

The gut-kidney crosstalk in AKI is supported by several 

recent studies that demonstrated the renoprotective effects 

of probiotics or gut microbiota-derived metabolites [50,51]. 

Lactobacillus salivarius BP121 was shown to mitigate cispla-

tin-induced kidney injury by decreasing kidney inflamma-

tion, oxidative stress, and serum levels of uremic toxins [50]. 

Among gut microbiota-derived metabolites, administration 

of SCFAs (acetate, propionate, and butyrate) mitigated kid-

ney injury, and the renoprotective effects of these molecules 

were associated with increased autophagy, decreased in-

flammation, and decreased oxidative stress [51]. In a study 

by Nakade et al. [52], gut microbiota-derived D-serine was 

shown to attenuate tubular damage in AKI. Altogether, these 

data suggest that the gut microbiota is important and could 

serve as a therapeutic target in AKI. However, further studies 

that enhance our understanding of the complex kidney-gut 

interplay are necessary to apply these findings in the treat-

ment of human AKI.

Intestinal microbiota and nephrolithiasis

Nephrolithiasis is a relatively common kidney disease re-

ported in 6.0% of the male population and 1.8% of the fe-

male population in Korea [53]. The incidence of the disease 

increases approximately three fold in individuals with a 

family history of the disease [54]. The genetic predisposition 

or environmental conditions shared by family members can 

influence disease pathophysiology. The concentrations of 

urinary calcium, oxalate, phosphate, and uric acid play an 

important role in stone formation, and emerging evidence 

indicates active participation of the gut/microbiome in the 

pathogenesis of nephrolithiasis. Oxalate, which is a constit-

uent of the most common type of kidney stone, is excreted 

via the urine after absorption in the intestine. Lack of com-

mensal bacteria with oxalate-degrading activity has been 

shown to be associated with stone formation. In uric acid 

excretion, one-third of the uric acid is degraded by intesti-

nal uricolysis, also suggesting the possible role of intestinal 

microbiota in the pathogenesis of uric acid stones. Obser-

vations have shown that the overall microbial composition 

in patients with kidney stones is considerably different from 

that in healthy controls, which further support the intestinal 

microbiota as an important contributor to stone formation 

[55,56]. According to a recent systematic review of 25 studies, 

increase in Enterobacteriaceae and Streptococcaceae and 

decrease in Prevotellaceae, Prevotella, and Roseburia are 

characteristic of the microbiota in patients with stone forma-

tion [56]. Oxalobacter formigenes are gram-negative, anaer-

obic bacteria that degrade and, therefore, reduce absorption 

and subsequent urinary excretion of oxalate, leading to a 

potential protection against calcium oxalate stone formation 

[57,58]. A case-controlled study in which 47 patients with 

recurrent calcium oxalate stones were compared with 259 

controls showed that colonization with O. formigenes re-

duced the risk of recurrent calcium oxalate stone formation 

by approximately 70% [58]. However, even though that pre-

liminary study conducted in a small sample size showed that 

supplementation with O. formigenes significantly reduced 

urinary or plasma oxalate level, a recent randomized trial on 

patients with primary hyperoxaluria reported no beneficial 

effects of O. formigenes supplementation [59,60]. 

Although single microbial strains might not sufficiently 

lower the pathological risk of oxalate metabolism, therapeu-

tic trials on microbiota modulation strategies, such as treat-

ment with a combination of different microbial strains, diet 

control, and fecal transplantation, hold promise [61–63], and 

the intestinal environment can be considered a novel thera-

peutic target in nephrolithiasis.
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Intestinal microbiota and kidney transplantation

Dysbiosis in patients with CKD has emerged as an important 

contributing factor in chronic inflammation and increased 

cardiovascular risk. However, considering the more complex 

clinical conditions of transplant recipients, such as improve-

ment of uremia, administration of immunosuppressive 

drugs, and frequent use of antibiotics, understanding the 

role of the intestinal microbiota and its interaction with the 

host immune system or patient outcomes poses a significant 

challenge [64]. Fricke et al. [65] reported drastic changes in 

the microbiota in patients in the first month after kidney 

transplantation (KT) in association with improvement of re-

nal function upon administration of prophylactic antibiotics 

and high-dose immunosuppressants. However, persistent 

exposure to immunosuppressants and various posttrans-

plant complications can lead to substantial longitudinal 

changes in microbial composition [66].

In KT recipients, the balance between activation of allo-

geneic immune responses and suppression using immuno-

suppressants is a key factor in determining graft outcomes. 

Therefore, considering the important immune-modulatory 

role of intestinal microbiota and various immune cells, it is 

possible that alterations in the number and composition of 

microbiota could have a huge impact on graft outcome in-

cluding transplant rejection and posttransplant infection. 

Lee et al. [67] reported that the abundance of Enterococcus 

in rectal stool samples was associated with urinary tract in-

fection, and the absence of Bacteroides, Ruminococcus, Co-

prococcus, and Dorea was associated with post-renal trans-

plant diarrhea. In addition to intestinal microbiota, Diaz et 

al. [68] have demonstrated that long-term administration 

of immunosuppressants facilitates oral colonization of op-

portunistic pathogens, leading to increased posttransplant 

secondary infections. 

Other observations in which microbial distance between 

donor and recipient showed a significant negative correla-

tion with 6-month estimated glomerular filtration rate, 

suggesting that intestinal microbiota similarity might affect 

graft outcome [69]. In the same study, the dissimilarity of mi-

crobiota between donor and recipient was associated with 

increased posttransplant infection rate. Moreover, certain 

microbial species have been shown to affect the blood levels 

of immunosuppressants by modulating drug pharmacoki-

netics, which might explain the interindividual differences 

in tacrolimus dose administered for achieving therapeutic 

efficacy [70]. 

The presence of certain species in the microbiota prior 

to KT has been reported to be significantly associated with 

subsequent rejection, suggesting a possible role for microbi-

ota in immune modulation [66]. However, despite growing 

evidence, the effects exerted by the microbial community on 

immune activation, rejection, or pharmacokinetics remain 

largely unknown. Future studies assessing the impact of 

longitudinal changes in individuals and the role of specific 

microbes in a larger population will help elucidate the role 

of the microbiota in KT.

Conclusions

Advances in high-throughput sequencing technology have 

provided unprecedented insights into the complex micro-

bial communities of the various mucosal surfaces. Similar 

to several other metabolic and chronic inflammatory con-

ditions including diabetes, obesity, or rheumatoid arthritis, 

emerging data have demonstrated that alteration of intesti-

nal microbiota is associated with a variety of kidney diseas-

es. Dysbiosis and associated barrier dysfunction, bacterial 

translocation, and an altered immune response were shown 

to play important roles in both AKI and CKD. Several strains 

of bacteria participating in degradation of oxalate have been 

shown to be associated with oxalate stone formation, and 

recent studies also suggest the presence of more complex 

interactions between the microbiota and kidney in trans-

plantation recipients (Fig. 1). However, many of these stud-

ies only show a correlation, and causal relationship remains 

largely unclear. To develop microbiota-targeted therapeu-

tics, further studies unraveling the mechanisms underlying 

the shifts of microbiota, metabolites, and their impact on 

disease pathogenesis are needed. 

Despite promising data from several clinical trials testing 

the effect of pre-, pro-, and synbiotics in various kidney dis-

eases, they are derived from studies that enrolled only small 

numbers of patients; also, the results are inconsistent and 

limited. Various factors such as individual genetic character-

istics, race, and environmental factors complicate the in-

teraction between the microbial community and the host, 

and targeting a single microbial community might not 

provide sufficient control over complex host and microbial 

interactions. 
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Nevertheless, the microbiota of mucosal surfaces is a 

previously unrecognized factor that can potentially modify 

pathogenesis and outcome in various kidney diseases. A 

better understanding of the molecular mechanisms linking 

altered microbiota and its crosstalk with hosts, as well as 

improved animal models and analytical techniques, should 

be developed to facilitate translation of these findings to 

humans.
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