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Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for 
the diagnosis and treatment of PC have not been found at the genetic level, thus 
making epigenetics a promising research path in studies of PC. Histone 
methylation is one of the most complicated types of epigenetic modifications and 
has proved crucial in the development of PC. Histone methylation is a reversible 
process regulated by readers, writers, and erasers. Some writers and erasers can 
be recognized as potential biomarkers and candidate therapeutic targets in PC 
because of their unusual expression in PC cells compared with normal pancreatic 
cells. Based on the impact that writers have on the development of PC, some 
inhibitors of writers have been developed. However, few inhibitors of erasers 
have been developed and put to clinical use. Meanwhile, there is not enough 
research on the reader domains. Therefore, the study of erasers and readers is still 
a promising area. This review focuses on the regulatory mechanism of histone 
methylation, and the diagnosis and chemotherapy of PC based on it. The future of 
epigenetic modification in PC research is also discussed.

Key Words: Pancreatic cancer; Epigenetics; Histone modification; Methylation; Demethy-
lation; Clinical application
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Core Tip: Pancreatic cancer is a highly lethal malignancy of the digestive tract that is 
difficult to diagnose and treat. Histone methylation/demethylation equilibrium is 
altered in carcinogenesis, resulting in changes in chromatin structure and gene 
expression. Not only are histone methylation writers related to histone methylation 
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erasers but histone methylation is also related to other epigenetic modifications. 
Therefore, histone methylation is addressed as a potentially important chemotherapy 
drug target.
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INTRODUCTION
Pancreatic cancer (PC) is a malignant tumor. The lack of adequate diagnostics for PC 
limits the efficacy of the few currently available treatment options. Current diagnostic 
methods include clinical biomarkers, imaging, biopsy, etc. To date, carcinoembryonic 
antigen 19 (CA-19) is the only PC clinical biomarker approved by the U.S. Food and 
Drug Administration[1], but the use of CA-19 is limited by its inadequate sensitivity 
and specificity[2,3]. Percutaneous biopsy can result in micrometastases in younger 
patients who receive surgery, so it is only appropriate for inoperable patients[4]. 
Current diagnostic methods are either inaccurate or limited. Conventional treatment 
methods for PC mainly include surgery, adjuvant chemotherapy, drug therapy, and 
radiation therapy[5]. Surgery remains the most important treatment, followed by 
adjuvant chemotherapy[5]. At present, only 15% to 20% patients can be surgically 
treated after diagnosis, and only 20% of the patients survive 5 years after receiving 
surgery[6,7]. Regarding chemotherapy, gemcitabine and other drugs have proved 
effective for advanced and metastatic PC, but the development of drug resistance has 
limited the effectiveness[8]. The survival rate of PC patients has not changed much in 
the past 40 years[8]. The robust molecular biomarkers need to be developed for 
diagnosis and targeted therapies.

Cancer development is a complex process involving both genetic and epigenetic 
changes. Genome instability, regulated by both genetic mutations and epigenetic 
modifications, contributes to tumor progression[9]. The concept of epigenetics itself is 
evolving with the increase of our knowledge of the molecular mechanism and 
regulation of gene expression. It is currently widely acknowledged that epigenetics is 
the study of alternations in gene expression patterns without changes in DNA 
sequences[10]. Epigenetic modifications include DNA methylation, histone 
modification and non-coding RNAs. Epigenetic modifications present a new direction 
for cancer prevention, clinical diagnosis, and drug development.

Histone modification is one of the most important and complicated epigenetic 
regulatory mechanisms and is crucial in PC. Histone modification affects chromatin 
structure, transcription, and DNA repair process[11]. Histone modification takes part 
in the regulation of chromatin architecture and specific loci regulation by recruiting 
cell-specific transcription factors and interacting with initiation and elongation factors
[12]. Histone modification also regulates the transcription process by influencing RNA 
processing[12]. In terms of regulating chromatin structure, histone modification affects 
the higher-order chromatin structure by changing the interactions of histones with 
DNA, and/or by recruiting chromatin remodeling complexes indirectly[13-15].

Histone modifications include histone acetylation, methylation, phosphorylation, 
and ubiquitination. Histone methylation plays crucial roles in the development of PC. 
Therefore, this review focuses on histone methylation and its clinical applications.

HISTONE METHYLATION
Post-translational methylation in histone tails is a reversible dynamic chromatin 
modification. Methyl is dynamically added by methyltransferases-writers, removed by 
demethylase-erasers, and interpreted by effector proteins-readers[16]. Readers 
recognize specific sites and promote the recruitment of transcription factors or 
chromatin-associated protein complexes and bind to histones to enable the localization 
of enzymes to specific targets[17].

https://www.wjgnet.com/1007-9327/full/v27/i36/6004.htm
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Histone methylation takes place on the residues of arginine, lysine, and histidine. 
According to the amino acid residues modified, there are arginine residue methyl-
transferases and lysine residue methyltransferases[18]. Histone arginine methylation is 
a universal post-translational modification, and aberrant histone arginine methylation 
is strongly associated with carcinogenesis and metastasis[19]. Arginine residues may 
be differentially methylated by different types of protein arginine N-methyltrans-
ferases (PRMTs)[19].

The maintenance of the balance between histone methylation and demethylation is 
fundamental to normal cellular development and function[20,21]. The break of the 
balance between histone methylation and demethylation results in oncogenesis and 
progression[21,22]. Corresponding to writers, erasers can be divided into arginine 
residue demethylases and lysine residue demethylases. However, current research on 
histone arginine residue demethylases is limited, so we only discuss lysine residue 
demethylases. Based on their mechanism of action, lysine demethylases (KDMs) are 
classified into two families: Flavin adenine dinucleotide (FAD)-dependent and Fe(II) 
and 2-oxoglutarate (2OG)-dependent[23-25].

The appropriate localization of histone methyltransferase and histone demethylase 
is dependent on the readers that can recognize histone modifications[26]. The reader 
can either be an independent polypeptide or a part of methyltransferase/demethylase
[27-31]. Some reader domains such as chromodomain[32,33], Tudor domain[34], 
tryptophan-aspartic acid 40 (WD40) domain[35,36] and plant homeodomain (PHD) 
finger[37,38] are well known. These reader domains all have their own specific 
structure[32-38].

HISTONE METHYLATION WRITERS IN PC
Among histone methylation, arginine and lysine methylation are the most widely 
studied in PC[39]. Histone methylation is performed mainly by two types of writers: 
PRMTs and lysine methyltransferases (KMTs) (Table 1), with S-adenosyl-L-methionine 
(SAM) as the methyl donor[40].

PRMTs
PRMTs catalyze the transfer of a methyl group from SAM to a guanidino-nitrogen 
atom[41]. Three types of methylated arginine residues are found in mammalian cells: 
Asymmetric dimethyl-arginine (ADMA), symmetric dimethyl-arginine (SDMA) and 
monomethyl-arginine (MMA)[41]. Depending on their catalytic activity, PRMTs can be 
classified in three types[42]. Type I PRMTs are responsible for producing ADMA, 
whose methyl groups are linked to the same guanidino nitrogen atom. Type II PRMTs 
add the methyl groups on each of the guanidino nitrogen atom of arginine symmet-
rically, producing SDMA[42]. PRMT7 is the sole member of type III, exclusively 
catalyzing the formation of MMA[43]. PRMT1 and PRMT5 function in PC[44,45]. 
PRMT1 belongs to type I and PRMT5 belongs to type II[42].

PRMT1: PRMT1 is the founding member of the PRMT family, and PRMT1 can 
methylate histone H4 at arginine 3. This modification is associated with transcriptional 
activation[44]. Upregulation of PRMT1 is found in various cancer types[46-49]. PRMT1 
is highly expressed in pancreatic ductal adenocarcinoma (PDAC) cells, and elevated 
PRMT1 levels predict a poor clinical outcome[44]. PRMT1 promotes PC cell growth in 
vitro and in vivo[44]. PRMT1 increases the β-catenin protein level in PC cells[44]. 
Overactivation of β-catenin signaling promotes the growth, migration, and metastasis 
of PC cells[50-52]. PRMT1 downregulation inhibits PC cell proliferation and invasion
[53]. GLI family zinc finger 1 (Gli1) is a substrate of PRMT1 in PDAC. Methylation of 
Gli1 at R597 by PRMT1 promotes its transcriptional activity by enhancing the binding 
of Gli1 to the promoters of its target gene[54]. Interruption of Gli1 methylation 
attenuates oncogenic functions of Gli1 and sensitizes PDAC cells to gemcitabine 
treatment[54].

PRMT5: PRMT5 is a type II writer, responsible for symmetric demethylation[19,55]. 
PRMT5 regulates the expression of a wide spectrum of target genes by modifying the 
chromatin structure or transcriptional machinery[56]. Specifically, PRMT5 can catalyze 
the methylation of arginine 8 on histone H3 and arginine 3 on histone H4 (H4R3)[57]. 
High expression of PRMT5 has been observed in various cancers. PRMT5 expression 
improves cancer cell survival, proliferation, migration and metabolism while 
inhibiting cancer cell apoptosis[55]. PRMT5 expression is significantly upregulated in 
PC tissues[56]. PRMT5 promotes tumorigenesis and PC cell proliferation[45]. PRMT5 
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Table 1 Histone methyltransferases play a major role in pancreatic cancer

Family Subfamily Alias Site Function in pancreatic cancer

PRMTs PRMT1 HRMT1L2, HMT2, 
ANM1

H4R3me2a Increase the β-catenin protein level; Methylate Gli1 at R597[44,54]

PRMT5 HRMT1L5, SKB1, HSL7 H3R2me2s Silence the expression of the tumor suppressor FBW7; Promote 
EMT via activating EGFR/ AKT/β-catenin signaling[45,56,188,
189]

KMTs SMYD3 ZNFN3A1, ZMYND1 H4K5me3 Affect the PC progression by regulating MMP-2; Potentiate Ras 
signaling through methylation of MAP3K2[62,64]

EZH2 KMT6, WVS, ENX-1 H3K27me3 Suppress miR-139-5p expression by upregulating H3K27me3; 
Repress the E-cadherin by tri-methylation of H3K27[78,190]

All current research on reprogramming histone methyltransferases that play a role in pancreatic cancer. EMT: Epithelial-mesenchymal transition; FBW7: F-
Box and WD repeat domain containing 7; KMTs: Histone lysine methyltransferases; PC: Pancreatic cancer; PRMTs: Protein arginine N-methyltransferases.

promotes cell migration, invasion, and the epithelial-mesenchymal transition (EMT) 
via activating EGFR/AKT/β-catenin signaling in PC cells[45]. PRMT5 knockdown 
reduces glucose intake and lactate levels in PC cells[56]. PRMT5 can inhibit the 
expression of F-Box and WD repeat domain containing 7 (FBW7)[58,59]. PRMT5 
inhibits FBW7 via suppression of FBW7 gene promoter activity and elevation of cMyc 
stability, leading to tumorigenicity and aerobic glycolysis in PC cells[56]. PRMT5 
induces the phosphorylation of epidermal growth factor receptor (EGFR) at Y1068 and 
Y1172[45]. Then PRMT5 activates phosphorylation of AKT and its downstream GSK3β
[45].

KMTs
KMTs transfer one, two, or three methyl-groups to histone lysine residues[60]. KMTs 
are categorized into two protein families based on catalytic domain sequence 
similarity and structural organization[61]. Two major writers, SMYD3 (KMT3E) and 
EZH2 (KMT6), are related to PC[62,63]. SMYD3 is a member of SET and MYND-
domain family[64]. EZH2 belongs to the polycomb family[61].

SMYD3: SMYD3 belongs to the SET and MYND-domain family. SMYD3 can promote 
the proliferation, migration, and invasion of many types of cancer[64]. SMYD3 is a 
protooncogene in liver, colon and breast tissue based on its high level of endogenous 
expression and cancer-related promoter polymorphism[65-70]. SMYD3 is upregulated 
in PC. SMYD3 is positively associated with caspase-3 and MMP-2 expression in PC 
tissues[62]. Active Src phosphorylates p300 in the nucleus, and then the complex binds 
to HMGA2 and SMYD3 genes. Therefore, HMGA2 and SMYD3 are regulated to 
promote PC cell migration and invasion[71].

EZH2: EZH2 is the enzymatic subunit of polycomb repressive complex 2 (PRC2), a 
complex that methylates lysine 27 of histone H3(H3K27) to promote transcriptional 
silencing[72]. High expression of EZH2 protein has been associated with several 
cancers[73-75]. EZH2 is overexpressed in PC[76]. FBW7 interacts with EZH2 and 
downregulates EZH2 via ubiquitination and degradation in PC cells[76]. Downregu-
lation of FBW7 induces high EZH2 protein expression and promotes tumor 
progression in PC[76]. Long non-coding RNA (lncRNA) BLACAT1 facilitates prolif-
eration, migration, and aerobic glycolysis of PC cells by repressing CDKN1C via EZH2-
induced histone H3 lysine 27 trimethylation (H3K27me3)[77]. EZH2 regulates the 
expression of miR-139-5p via H3K27me3, and the EZH2/miR-139-5p axis participates 
in the progression of PC, whereby downregulation of EZH2 and upregulation of miR-
139-5p repress the EMT and lymph node metastasis of PC[78]. EZH2 can bind to the 
promoters of P15 and KLF2 to induce H3K27me3[79]. LncRNA SNHG15 knockdown 
inhibits PC cell proliferation and tumorigenesis while inducing cell apoptosis, and the 
SNHG15-mediated oncogenic effect is partly by repressing P15 and KLF2 expression 
via EZH2-induced H3K27me3[79].
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HISTONE METHYLATION ERASERS IN PC
The demethylation of arginine and lysine in histone tails is the two main forms of 
histone demethylation. Due to the large gaps in research on arginine demethylation, 
the main situation of KDMs in PC will be mainly described. KDMs can catalyze 
monomethyl, dimethyl or trimethyl labeling of histone lysine residues[12]. There is 
some evidence that occurrence, development, and therapy of PC are all related to 
KDMs[80,81] (Table 2).

KDM1
Flavin-dependent KDMs are a subfamily of amine oxidases that catalyze the selective 
posttranslational oxidative demethylation of methyl lysine side chains within 
substrates[82]. Two subtypes of KDMs, KDM1A and KDM1B, are related to PC[83,84]. 
They are expressed at high levels in PC tissues. To date, the expression patterns and 
physiological functions of KDM1A/LSD1 in PC have not been fully elucidated. 
KDM1A and hypoxia inducible factor-1α (HIF1α) are the interaction partners of the 
homeobox protein PROX1[85,86]. KDM1A acts synergistically with HIF1α in 
maintaining glycolysis[87]. Compared with KDM1A, KDM1B/LSD2 lacks a "tower 
domain" and has a zinc finger domain in the N-terminal region, which makes KDM1B 
endowed with different biochemical properties[24,25,88]. KDM1B is related to many 
important biological functions, including transcriptional regulation, genome 
imprinting, somatic cell reprogramming, DNA methylation, and signal transduction
[89-92]. The downregulation of KDM1B can inhibit PC cell proliferation and promote 
PC cell apoptosis in vitro[93,94].

JmjC domain-containing protein family
JmjC domain-containing (JMJD) protein family is a type of Fe (II) and α-ketoglutarate-
dependent dioxygenases. The JMJD protein family now consists of 33 members. There 
are 18 members with the ability to demethylate H3K4, H3K9, H3K27, H3K36, and 
H4K20[23,95-108].

KDM2B: KDM2B acts on H3K36 demethylation. KDM2B enhances the bypass of 
primary cell senescence by directly binding to tumor suppressor gene CDKN2A sites 
and demethylating histones, thereby guiding the recruitment of PRC2; thus, it plays an 
important role in cell cycle progression and senescence[109,110]. KDM2B regulates cell 
proliferation, migration, and angiogenesis[111-113]. KDM2B plays a crucial role in 
poorly differentiated PDAC, and there is an interaction between EZH2 and KDM2B
[114].

KDM3A: KDM3A/JMJD1A, one member of the JMJD1 family, participates in 
transcriptional regulation by demethylating monomethyl or dimethyl H3K9[115,116]. 
Since cells are heterogeneous in early PDAC tissues, new progress has been made in 
the study of PDAC morphology, which is specifically manifested by the upregulation 
of DCLK1 expression[117]. KDM3A plays a key role in the upregulation of DCLK1 
expression, and KDM3A expression inhibitors can inhibit the malignant properties of 
PDAC[118].

KDM4: The KDM4 subfamily consists of 12 demethylases including KDM4A, B, C, 
and D, which can catalyze the removal of inhibitory trimethyl marker of H3K9 and 
H3K36 related to transcription[98,119]. KDM4A, B, and D play a role in PC mainly. 
The interaction between regulatory factor X-associated protein RFXAP and KDM4A 
can disrupt DNA damage repair[120]. RFAXP is a key transcription factor for MHC II 
molecules[121,122]. It can bind to the promoter of KDM4A and induce its expression
[120]. In PC, Fisetin can interact with RFXAP/KDM4A to inhibit PC tumor growth in 
vivo and cell proliferation in vitro[120]. In PC, KDM4B shows the ability to 
downregulate E-cadherin[123]. The high nuclear expression of KDM4D in the samples 
of pancreatic resection margins significantly and independently predicts an earlier 
recurrence in PC patients[124].

KDM5: KDM5 subfamily consists of four members, KDM5A, KDM5B, KDM5C, and 
KDM5D[125]. The role of KDM5 family in PC is not completely clear. KDM5A is 
associated with the development of PC[126]. KDM5A inhibits the expression of 
mitochondrial pyruvate carrier-1 (MPC-1) and controls the metabolites of pyruvate in 
mitochondria in PDAC[126]. Upregulation of MPC-1 seems to inhibit the development 
of cancer. Therefore, it can be inferred that KDM5A promotes the development of 
PDAC.
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Table 2 Histone demethylase that plays a major role in pancreatic cancer

Family Subfamily Alias Site Function in pancreatic cancer

KDM1A LSD1 H3K4me1 Promote the occurrence of cancer[83]KDM1

KDM1B LSD2, AOF1 H3K4me2 Related to tumor tissue apoptosis[84]

KDM2B Ndy1, FBXL10, 
JHDM1B

H3K4me3, H3K36me2 Promote senescence of primary cells[109,110]

KDM3A JMJD1A, 
JHDM2A

H3K9me2 
(preferential), 
H3K9me1

Regulate biological and pathological processes, including embryonic 
development, stem cell self-renewal and differentiation, genome 
integrity and tumorigenesis[191,192]

KDM4A JMJD2A H3K36me3, H3K9me3 Destruction of homologous recombination[120,138]

KDM4B JMJD2B H3K9me3 Promote epithelial-mesenchymal transition[123]

KDM4 family

KDM4D JMJD2D H3K9me2/me3 Stimulates in vitro proliferation and cell survival, and plays a vital 
role in DNA double-strand break repair[193,194]

KDM5A JARID1A, 
RBBP2

H3K4me2 Promote the inhibition of active transcription and repair of DNA 
double-strand breaks[139,195]

KDM6A UTX H3K27me2/me3 The effect of KDM6A on PC tissue is currently unclear[196]KDM6 family

KDM6B JMJD3 H3K27me2/me3 Enhance the aggressiveness of cancer cells[176]

Jumonji 
C

PHD finger and 
zinc finger protein 
family

KDM7A JHDM1D H3K9me2, H3K27me2 May be related to the upregulation of E-cadherin gene expression[93]

All current research on reprogramming histone demethylases that play a role in pancreatic cancer. The table is sorted by family. PC: Pancreatic cancer; 
PHD: Plant homeodomain.

KDM6: KDM6 subfamily is mainly composed of KDM6A/UTX, its paralogs UTY and 
KDM6B[127]. They can demethylate the dimethyl and trimethyl groups of H3K27. 
They play important roles in the occurrence and development of many cancers. 
KDM6A/UTX has been the most frequently mutated epigenetic regulator in cancers 
including PC[128-133]. In addition, KDM6A also antagonizes PRC2-mediated H3K27 
trimethylation catalyzed by EZH2, thereby regulating development[99,104,134]. 
KDM6A has not been found to function in PC tissues. Downregulation of KDM6B is 
widespread in many cancer cells[135,136]. Almost all pancreatic epithelial tissues have 
been detected KRAS gene mutations before they become cancerous[137]. KDM6B, 
which is located downstream of the KRAS gene, is upregulated in the pre-tumor phase 
of pancreatic intraepithelial tumors[138]. It is worth noting that the expression of 
KDM6B decreases with cancer development.

KDM7 (PHF and ZF protein subfamily): At present, the effect of KDM7 subfamily on 
PC has been seldom developed. According to relevant data, KDM7A may be related to 
the occurrence and development of PC[139].

READER DOMAIN IN WRITERS AND ERASERS
PHD fingers are central “readers” of histone post-translational modifications. They 
recognize specific histone modifications and bind to histone to ensure the different 
enzymes to locate in special targets[140,141]. They are structurally conserved, 
represented by the canonical C4HC2C/H sequence coordinating two zinc ions. They 
present in many chromatin-modifying proteins, such as demethylases or methyltrans-
ferases, or act as scaffolding proteins that can connect multi-subunit enzymatic 
complexes with a particular genomic region[30,140,141]. In this part, we will discuss 
how PHD fingers regulate histone methylation/demethylation and their binding 
substrates (Table 3).

Regulation of writers by PHD finger
KMT2A-E all have PHD fingers, but the number of PHD fingers in these proteins is 
different. KMT2A and KMT2B have four PHD fingers, while KMT2C has eight PHD 
fingers and KMT2D has seven PHD fingers, but KMT2E only has one PHD finger. 



Liu XY et al. Histone methylation in pancreatic cancer

WJG https://www.wjgnet.com 6010 September 28, 2021 Volume 27 Issue 36

Table 3 Different enzymes and plant homeodomain finger domain

Type of enzyme Name of enzyme PHD 
domain Histone substrates Function

KDM1B/LSD2 PHD H3K4me2 Unknown[25]

KDM2A PHD H3K36me2/me1 Unknown[150]

KDM4A-C Two PHD Unknown Unknown[155,197]

PHD1 Unmethylated H3K4 histone tail PHD1 finger by H3 N-terminal tail peptides stabilizes 
binding of the substrate to the catalytic finger and 
improves the catalytic efficiency of demethylation[198,
199]

PHD2 Unmodified H3K4 Unknown[158]

KDM5A

PHD3 H3K4me3 PHD3 finger can recruit substrate and it relates to 
demethylation propagation along nucleosomes via a 
positive-feedback regulatory mechanism[151,199]

PHD1 H3K4me0 PHD1 finger recognizes the N-terminus of histone H3, 
provides an anchoring mechanism for KDM5B and 
PHD1-H3K4me0 is interaction is important for inhibition 
of migration[17]

PHD2 Couldn’t bind to histone Unknown[17]

KDM5B

PHD3 H3K4me3/H3K4me0 PHD3 finger detects H3K4me3, anchors at chromatin and 
spreads the transcriptionally inactive state

KDM5C PHD1 H3K4 PHD1 finger stabilizes the substrate peptide and helps to 
position the H3K4 in the JmjC finger exactly[162]

Histone 
demethylation 
enzyme

PHF8(KDM7subfamily) PHD1 Suppressive marks on 
H3K9me2/me3 and 
H3K27me2/me3 and 
H4k20me2/me3

PHD1 finger plays a significant role in PHF8 substrate 
recognition and helps to improve substrate affinity and 
specificity[164]

PHD1 Unknown PHD1 finger is necessary for a context-dependent 
regulation of holocomplex formation and implicated in 
tumor suppression[143]

PHD2 Unknown PHD2 finger shows the E3 ubiquitin ligase activity and 
involve in homo-dimerization[144,200]. Mutation in 
PHD2 will enhance transactivation ability and help to 
recruit target gene promoters

PHD3 H3K4me3/me2 Unclear, one possibility is binding of H3K4me3 by PHD3 
is necessary for the transcription-promoting effects of 
KMT2A/2B, another is to set a broad, methylated 
chromatin finger[145]

KMT2A, KMT2B

PHD4 Unknown PHD4 finger mediates intramolecular interactions 
between the N-terminal and C-terminal fragments of 
KMT2A with PHD1, and improves its stability[143]

KMT2C Eight PHD 
fingers

Unknown These fingers help KMT2C to recruit to its target genes 
correctly[30,146]

KMT2D Seven 
PHD 
fingers

Unmodified histone H4 and 
asymmetrical H4R3me2

These fingers are essential for methyltransferase activity 
of KMT2D and KMT2D-mediated differentiation[201]

Histone 
methylation 
enzyme

KMT2E PHD H3K4me3 PHD finger binds to H3K4me3 specially and facilitates the 
recruitment of KMT2E to active transcription chromatin 
regions[148,149,202]

All current research on the regulation of writers and erasers by plant homeodomain domain. “Unknown” means that the corresponding literature was not 
mentioned. This table is sorted by types and subfamilies of enzymes. JmjC: Jumonji C; KMT: Histone lysine methyltransferase; PHD: Plant homeodomain.

There are 24 PHD fingers in KMT2A-E[142].

Regulation of KMT2A and KMT2B by PHD finger: KMT2A and KMT2B have similar 
domain architecture and both contain three consecutive PHD fingers, PHD1-3. These 
consecutive PHD fingers are followed by a bromodomain and the fourth PHD4 finger
[142]. The precise function of PHD1 finger in KMT2A and KMT2B is unclear, but it can 
regulate the intramolecular interactions between N-terminal and C-terminal segments
[143]. PHD1 fingers are necessary for holocomplex formation and are implicated in 



Liu XY et al. Histone methylation in pancreatic cancer

WJG https://www.wjgnet.com 6011 September 28, 2021 Volume 27 Issue 36

tumor suppression[143]. PHD2 finger has an E3 ubiquitin ligase in the presence of the 
E2-conjugating enzyme CDC34[144]. Mutation of the PHD2 finger will cause increased 
transactivation ability of KMT2A and its recruitment to target genes[142], because of 
increased protein stability[144]. PHD3 finger binds to H3K4me3/me2, but the affinity 
between PHD3 finger and H3K4me2 is eight times lower than the affinity between 
PHD3 finger and H3K4me3[145]. Although PHD3 finger can recognize H3K4me3, the 
special function of KMT2A in transcriptional maintenance is unclear[145]. One 
possibility is that binding of H3K4me3 by PHD3 finger is necessary for the 
transcription-promoting effects of KMT2A, and another possibility is that newly 
deposited H3K4me3 mark helps KMT2A slide along the gene to set a broad, 
methylated chromatin domain[145]. The stability of KMT2A is dependent on its 
intramolecular interaction which is mediated via its PHD1 finger with PHD4 finger 
and the phenylalanine/tyrosine-rich domain of KMT2A[143]. Therefore, PHD4 finger 
in KMT2A can improve the stability of KMT2A in case of hydrolysis.

Regulation of KMT2C by PHD finger: KMT2C contains eight PHD fingers while 
KMT2D contains seven PHD fingers[142]. Although the function of PHD fingers in 
KMT2C is unclear, the functional extended PHD finger is important for KMT2C to be 
recruited to its target genes[146]. PHD4, PHD5, and PHD6 in KMT2D are tandem and 
these tandem PHDs can bind to unmethylated or asymmetrically demethylated H4 
arginine3[147]. This connection is important for nucleosomal methylation activity and 
mediates stem cell differentiation by KMT2D[147]. But this binding ability is repressed 
by symmetrical demethylation on arginine-3 of histone H4 (H4R3me2s), because 
H4R3me2s can hinder the histone binding ability and catalytic activity in PHD4-6[142,
147].

Regulation of KMT2E by PHD finger: The binding of KMT2E and histone is based on 
its single PHD finger which can bind to H3K4me3, and this special spatial structure of 
KMT2E makes it possible to recognize H3K4me3[148]. Although KMT2E can also bind 
to H3K4me2 and H3K4me1, the stability of binding of H3K4me2 and KMT2E is five 
times weaker than H3K4me3, while the stability of binding of H3K4me1 and KMT2E is 
sixteen times weaker than H3K4me3[148]. This can facilitate the recruitment of KMT2E 
to active transcription chromatin regions[148,149].

Regulation of erasers by PHD finger
PHD fingers can be found in KDMs[150,151]. These PHD fingers bind to the tail of H3 
to enable the localization of enzymes to specific targets[152], and promote the 
recruitment of transcription factors or chromatin-associated protein complexes[17].

Regulation of KDM4 subfamily by PHD finger: PHD fingers can be found in KDM4 
subfamily. KDM4A, KDM4B, and KDM4C have a catalytic histone demethylase 
domain, double PHD and Tudor domains, whereas KDM4D contains only a catalytic 
domain and lacks PHD and Tudor domains[153,154]. Although KDM4A-C have PHD 
fingers, the function of PHD fingers is unclear[155].

Regulation of KDM5 subfamily by PHD finger: KDM5 subfamily, including 
KDM5A-D, catalyze demethylation of the transcriptionally activating trimethylated 
and demethylated lysine-4 mark on H3[100,103,156,157]. KDM5A contains three PHD 
fingers (PHD1, PHD2, PHD3). Qualitative pull-down assays with isolated PHD1 
domain of KDM5A show that it binds to unmodified H3K4 peptide[158]. The PHD1 
finger preferentially recognizes unmethylated H3K4 histone tail, which is a KDM5A-
mediated trimethylation products of H3K4 (H3K4me3) demethylation[151]. The 
function of PHD2 finger is unknown. PHD3 finger has been studied in the context of 
its fusion with nucleoporin NUP98 and it specifically binds to the H3K4me3, with a 
decrease in affinity for lower methylation states[17,158]. Since these preferred binding 
substrates are the products of KDM5A-mediated demethylation, a model in which 
demethylation can propagate along nucleosomes via a positive-feedback regulatory 
mechanism, has been put forward[151].

The KDM5B PHD1 finger can recognize the N-terminus of H3, which is unmodified 
or methylated at Lys9[17]. The KDM5B PHD2 finger cannot bind to histone. The 
KDM5B PHD3 finger prefers to bind to H3K4me3[17]. The PHD1 finger specifically 
binds to H3K4me0, and the PHD3 finger is selective for H3K4me3. A combination of 
two ‘readers’ capable of recognizing distinctive epigenetic marks is likely to impact 
KDM5B activity. Binding of PHD1 to H3K4me0 may provide an anchoring mechanism 
for KDM5B to sense H3K4me3 through PHD3 and slide along the H3K4me3-enriched 
promoters, demethylating nearby methylated H3K4 and further spreading the 
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transcriptionally inactive state of chromatin[17]. In addition, abrogation of H3 tail 
recognition by point mutation in the PHD1 domain of KDM5B decreases H3K4 
demethylation in cells, resulting in the repression of tumor suppressor genes[159]. 
Therefore, the importance of interaction between PHD1 and H3 tail is proved.

Similarly, the PHD1 finger domain in KDM5C is close to the JmjC domain, and the 
linker of JmjC domain is 13 amino acids long and is expected to recognize and bind to 
H3K9me3[157,160]. Although the PHD1 domain is not necessary for the demethylase 
activity, it helps to recognize the substrate peptide[157,161]. The interaction between 
PHD1 domain and JmjC domain stabilizes the substrate peptide and the PHD1 
domain can help precisely position H3K4 in the JmjC domain[162].

Regulation of KDM7 by PHD finger: PHF8 belongs to KDM7 subfamily and 
transcriptionally removes suppressive demethylation and monomethylation of lysine 9 
and 27 on H3 and lysine 20 on H4[163]. PHF8 has a PHD finger which is closed to the 
catalytic domain. PHD finger in PHF8 plays a significant role in PHF8 substrate 
recognition, because it helps to improve substrate affinity and specificity[164]. PHF8 
can be recruited to the promoters through the combination of its PHD finger and 
H3K4me2/3 during the cell cycle transition from G1 to S[107]. Although the functions 
of PHD fingers can be found in gastric cancer[165], breast cancer[166], colorectal 
cancer[167], lung cancer[168], etc., the functions of PHD finger are still unclear in PC.

CLINICAL APPLICATION
Epigenetic genes play vital roles in maintaining structural stability and physiological 
functions of normal chromosomes and are deficient in some patients with PC, thereby 
serving as potential targets for correcting these deficiencies and precisely killing these 
aberrant PC cells[169]. The discovery of histone methyltransferases, demethylases and 
their active sites has provided new insights in the diagnosis and treatment of PC. The 
active sites and mechanism of the inhibitors in PC treatment are shown in Table 4.

Histone modifications define the previously unrecognized subsets of PC patients 
with different epigenetic states and therefore represent the prognostic and predictive 
biomarkers that can be used to guide clinical decisions, such as the use of fluorouracil 
chemotherapy[170]. H3K4me2, H3K9me2, or H3K18AC expressed at low levels are 
positively correlated with the poor prognosis of PC[170]. EZH2 expression is higher in 
PC cells than in normal cells; thus, EZH2 can be used as a potential biomarker for early 
diagnosis of PDAC[171]. High expression of KDM4D in benign cells near the edge of 
surgically resected PC tissues is predictive of early recurrence[124]. The discovery of 
epigenetic biomarkers can provide a great reference for early diagnosis, drug selection 
and surgery prognosis of PC.

SMYD3 is a candidate therapeutic target against PC, lung cancer and potentially 
other RAS-driven tumors[172]. In mice, complete loss of SMYD3 function with no 
apparent phenotype suggests that SMYD3 inhibitors, as chemotherapeutic agents, 
cause minimal collateral toxicity. The clinically used combination of Raf protein kinase 
or dual specificity threonine/tyrosine kinase inhibitors and SMYD3 inhibitors can 
reduce drug toxicity and suppress the development of drug resistance[172].

SMYD3 inhibitor piperidine-4-formamide-acetanilide compound, BCI-121, is a small 
molecule inhibitor that significantly inhibits proliferation in PC cell lines with high 
expression of SMYD3. BCI-121 and histone competitively bind to SMYD3; BCI-121 
binds inside the lysine channel, which connects cofactor binding sites and histone 
peptide binding sites[173].

The PRMT5 inhibitor EZP015556 targets MTAP (a gene commonly lost in PC) 
negative tumors, which indicates that it is an effective treatment for a subpopulation of 
MTAP positive tumors. According to the individualized medication approach, the 
therapeutic response in different patient-derived organoids (PDOs), developed 
directly from patient tumor tissue is different. The PDO model is used to validate the 
effectiveness of PMRT5 inhibition as a potential treatment for PDAC[174]. EZH2 
expression in PC cells is significantly higher than that in normal pancreatic duct cells 
and fibroblasts. 3-Deazaneplanocin A (DZNeP) regulates the expression of EZH2 and 
H3K27me3, synergically enhancing the anti-proliferative activity of gemcitabine and 
significantly increasing the apoptosis rate of cells[175]. DZNeP is an S-adenosine 
homocysteine hydrolase inhibitor. DZNeP also enhances the mRNA and protein 
expression of nucleoside transporter HENT1/HCNT1[175]. The combination of 
DZNeP and DZNeP/gemcitabine significantly reduces the growth volume of PDAC 
spheres in selective medium[175].
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Table 4 Inhibitors for the treatment of pancreatic cancer

Drug type Drug name Active site Mechanism Effect Targeting tumors

SMYD3 inhibitor 
piperidine-4-
formamide-
acetylaniline 
compound (BCI-
121)

It competes with histones 
to bind SMYD3, binding 
sites are formed within 
the SET and post-SET 
fingers and contained in a 
deep and narrow 
substrate binding cavity

BCI-121 is a competitive 
inhibitor significantly inhibits; 
SMYD3-substrate interaction 
and chromatin recruitment

It inhibits cancer cell 
growth and accumulates 
during the cell cycle S

High expression of 
SMYD3 protein in 
cancer cell lines 
(pancreatic cancer, 
lung, prostate and 
ovarian cancer)[173]

PRMT5 inhibitor 
EZP015556

MTAP - It works for MTAP He 
and MTAP PDO

A negative tumor 
MTAP (a commonly 
lost gene in 
pancreatic cancer)
[174]

Relating to histone 
methyltransferase

EZH2 inhibitor 3-
Dazocycline A 
(DZNeP)

It regulates EZH2 and 
H3K27me3 protein 
expression

DZNeP inhibit the activity of S-
adenosine-L-homocysteine 
(AdoHcy) hydrolase, which 
reversely hydrolyzes AdoHcy 
to adenosine and homocysteine, 
thereby inhibiting histone 
methylation

It synergistically 
enhanced 
antiproliferative activity 
of gemcitabine and 
significantly increased 
apoptosis rate

Pancreatic ductal 
carcinoma[175]

Relating to histone 
demethylase

BET inhibitor JQ1 
related to KDM6A

Reducing activity and p63 
levels of MYC pathways

GLI1 is the main target gene of 
the Hh pathway JQ1 reduces 
the mRNA and protein levels of 
primary human CAFs. TGF-β is 
an interstitial activator that JQ1 
its induced response

Altered KMT2C (MLL3)-
KDM6A (UTX)- PRC2 
regulating axis

Pancreatic ductal 
carcinoma[169,176,
177]

All current research on inhibitors for the treatment of pancreatic cancer developed based on histone methylation modification. “-” means that the content 
does not exist here. This table is sorted according to the correlation with histone methyltransferases and demethylases. CAF: Cancer-associated fibroblast; 
KMT: Histone lysine methyltransferases; PDO: Patient-derived organoid; PRC2: Polycomb repressive complex 2; TGF-β: Transforming growth factor β.

Bromodomain and extra-terminal (BET) inhibitors and EZH2 inhibitors are 
designed to rescue the dysregulated KMT2C/MLL3-KDM6A/UTX-PRC2 regulatory 
axis and have achieved preliminary success in preclinical models. The regulatory axis 
regulates the expression of various downstream tumor suppressor genes[169]. 
Therefore, rebalancing this axis represents a new approach to PDAC therapy.

Defects in KDM6A make sex-specific squamous PC sensitive to bromouracil and 
BET inhibitors[169]. BET inhibitor JQ1 reverses squamous cell differentiation and 
inhibits tumor growth in vivo by decreasing MYC pathway activity and p63 levels
[176]. JQ1 affects cancer-associated fibroblast (CAF) activation by acting on the 
Hedgehog and TGF-β pathways. JQ1 inhibitor converts α-SMA-positive CAFs to α-
SMA-negative CAFs, but does not eliminate CAFs[177].

Small molecules containing 8-hydroxyquinoline structure are competitive inhibitors 
of KDM4 (also known as JMJD2) family, binding active iron to inhibit the activity of 
KDM4 and regulate demethylation of H3K9 sites[178]. KDM4C inhibitor SD70 can 
inhibit the growth of prostate cancer cells[179].

Many types of inhibitors of KDM1A have been reported, but the inhibitors of this 
enzyme are mainly targeted at acute myeloid leukemia or small cell lung cancer, etc. 
And there are few studies on PC. For example, SP2509 is a noncompetitive inhibitor, 
and is used in current clinical trials for the treatment of acute myeloid leukemia or 
small cell lung cancer[180]. Ory-1001 effectively inactivates LSD1 and is highly 
selective for FAD-dependent ammonia oxidase[181]. The application of histone 
demethylase inhibitors in the treatment of PC is still limited, so it is necessary to 
strengthen the exploration of the treatment of PC based on the existing research.

FUTURE DIRECTIONS
Histone writers and erasers do not work independently. In fact, the interactions 
between writers and erasers include the positive correlativity between EZH2 and 
KDM2B, and the synergistic effects of EZH2 and KDM6A[182,183]. In bladder cancer, 
the H3K27 demethylase KDM6A gene often has mutations[131,184]. This makes cancer 
tissues that have lost KDM6A more vulnerable to EZH2 attack[185]. This accelerates 
the onset of tumors. The expression of EZH2 and KDM2B in ovarian cancer is 
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positively correlated[183]. Therefore, knocking down the KDM2B gene is beneficial to 
inhibit the migration of ovarian cancer cells in vitro.

Many problems remain in the research of histone modifications. Research on histone 
methyltransferases is relatively adequate, but there are few articles about the 
mechanism of SMYD2, so SMYD2 is not mentioned in our review. Current research on 
histone arginine residue demethylases has not yet fully achieved results. Therefore, 
only histone lysine residue demethylases are discussed. However, the effect of KDM7 
subfamily demethylases on PC has seldom been proved, so only some guesses about 
the effect of KDM7A are mentioned. Besides, the study of the interactions between 
writers and erasers in PC is still in a blank state. The role of the reader domain in PC 
remains unclear. This review only lists the roles of the PHD domain in the localization 
of histone modifications and the recruitment of related protein complexes. Reader 
domain is still a potential research direction in PC.

The study of histone methylation and demethylation has enlightening effects on the 
diagnosis, treatment, and prognosis of PC. Histone modifications can be used to 
predict in the prognosis of PC patients[171]. Histone methyltransferase and 
demethylase inhibitors are used clinically to treat PC. The corresponding inhibitors act 
on the signal regulatory pathway and change the signal expression of downstream 
target cells, thus regulating the growth and development of cancer cells. At present, 
the research of histone demethylase inhibitors is inadequate. Therefore, histone 
demethylase inhibitors need to be further explored.

The effect of histone modifications on PC is interdependent. The interactions 
between histone modifications and other epigenetic forms can influence the occurrence 
and progression of cancers such as cervical cancer and breast cancer. The effect of 
these interactions enlightens the research on PC. DNA methylation and the expression 
of miRNAs can be regulated by histone methyltransferases and demethylases, thereby 
causing alternations of developing process of cancer. Histone methyltransferase EZH2 
epigenetically silences tumor-suppressor miRNAs, such as miR-139-5p, miR-125b, 
miR-101, let-7c and miR-200b, thereby promoting cancer cell metastasis[186]. Histone 
demethylase KDM5B targets H3K4 demethylation of miR-let-7e and promotes tumor 
cell proliferation through epigenetically inhibiting the tumor suppressor miR[187]. The 
combination of EZH2 and promoter region induces the expression of specific target 
protein H3K27me3, thereby reducing the expression of downstream gene, DNA 
(cytosine-5)-methyltransferase 3A (DNMT3A)[10]. EZH2-H3K27me3-DNMT3A is the 
key factor of regulating cervical total stimulus molecule Tim-3/galectin-9, which 
results in immune escape in the process of malignant transformation[10]. It is 
reasonable to speculate that the interaction between histone methylation and other 
epigenetic modifications may also play a role in PC. This opinion draws some 
inspiration and reference to future research of PC.

CONCLUSION
This review focuses on the mechanism of histone methylation in PC. Histone 
methylation is mainly regulated by writer, reader and eraser. Writer refers to histone 
methyltransferase, eraser refers to histone demethylase and reader refers to the 
modification domain of histone methyltransferase and demethylase. Reader can be an 
independent polypeptide or a component of methyltransferase and demethylase. On 
the one hand, histone methyltransferase can promote the proliferation and invasion of 
PC cells. On the other hand, histone methyltransferase can inhibit the proliferation of 
cancer cells. Histone demethylase promotes the occurrence of PC and is related to 
apoptosis. Reader domain plays a role in guiding related methyltransferases and 
demethylases to identify corresponding sites during the methylation and 
demethylation process.
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