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An enhanced variant 
effect predictor based 
on a deep generative model 
and the Born‑Again Networks
Ha Young Kim, Woosung Jeon & Dongsup Kim*

The development of an accurate and reliable variant effect prediction tool is important for research 
in human genetic diseases. A large number of predictors have been developed towards this goal, 
yet many of these predictors suffer from the problem of data circularity. Here we present MTBAN 
(Mutation effect predictor using the Temporal convolutional network and the Born-Again Networks), 
a method for predicting the deleteriousness of variants. We apply a form of knowledge distillation 
technique known as the Born-Again Networks (BAN) to a previously developed deep autoregressive 
generative model, mutationTCN, to achieve an improved performance in variant effect prediction. 
As the model is fully unsupervised and trained only on the evolutionarily related sequences of a 
protein, it does not suffer from the problem of data circularity which is common across supervised 
predictors. When evaluated on a test dataset consisting of deleterious and benign human protein 
variants, MTBAN shows an outstanding predictive ability compared to other well-known variant effect 
predictors. We also offer a user-friendly web server to predict variant effects using MTBAN, freely 
accessible at http://​mtban.​kaist.​ac.​kr. To our knowledge, MTBAN is the first variant effect prediction 
tool based on a deep generative model that provides a user-friendly web server for the prediction of 
deleteriousness of variants.

While recent sequencing technologies have resulted in a tremendous amount of sequence variant data, the 
identification of deleterious variants is still a difficult problem. Development of a reliable computational tool to 
predict the effects of sequence variants would aid in the treatment of many human genetic diseases. To achieve 
this goal, many predictors have been developed based on different approaches. Among these methods, super-
vised methods learn from labelled variant data consisting of known deleterious and benign variants, and many 
of them show good predictive ability. However, many supervised methods face the problem of data circularity, 
which can be divided into two types according to Grimm et al.1 The type I circularity arises due to the overlap 
between training data and test data. The type II circularity occurs when all variants in a given gene are labelled 
either all deleterious or all benign, which results in the model predicting the same label for all variants in that 
gene. Previous studies1–3 have suggested that this problem of data circularity can result in an inflation of the 
reported performances of many supervised predictors. On the other hand, unsupervised methods do not learn 
from labelled variant data and learn solely from the evolutionary information contained in multiple sequence 
alignments. A recent study which carried out an extensive comparison of variant effect predictors claimed that 
a class of unsupervised models, namely the deep generative model, is a promising area of research for variant 
effect prediction3.

Here, we introduce MTBAN (Mutation effect predictor using the Temporal convolutional network and the 
Born-Again Networks), an enhanced method to predict the deleteriousness of single amino acid variants. We 
previously developed a method called mutationTCN4 based on a deep autoregressive generative model, and 
showed that it demonstrates state-of-the-art performances on the prediction of functional effects of variants. 
In this work, we apply a knowledge distillation technique called the Born-Again Networks (BAN)5 to the muta-
tionTCN model and develop an improved model called MTBAN. In machine learning, knowledge distillation 
is a process involving the transfer of knowledge learned from one machine learning model to another. Using 
the Born-Again Networks allows the student network to achieve an improved predictive power compared to 
the teacher network. When evaluated on human variant datasets with deleterious and benign variants, MTBAN 
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shows superior predictive performances compared to other variant effect predictors. Our model is fully unsu-
pervised and is not dependent on labelled data for training. This gives the model advantage over supervised 
predictors, for which data circularity is an inherent problem. We also offer a freely accessible web server for using 
MTBAN for variant effect prediction.

Methods
MTBAN model.  We previously developed a deep autoregressive generative model for variant effect predic-
tion, called mutationTCN4. For each protein variant, the model is trained on the multiple sequence alignment of 
the corresponding protein. As it is a generative model, it is trained by maximizing the likelihood of the training 
data, which is equivalent to minimizing the negative log likelihood between the input sequence and the pre-
dicted output. After training, the model can predict the probability of observing a given protein sequence under 
the parameters of the trained model. The deep autoregressive generative model is implemented using the tempo-
ral convolutional network architecture6. Each sequence from the input multiple sequence alignment is encoded 
by representing each amino acid in the sequence as a distinct integer. The input is passed through an embedding 
layer, followed by a series of dilated causal convolution layers, an attention layer, and a fully connected layer 
(Fig. 1). We showed that this model can effectively capture information from evolutionarily related sequences 
and use this information to predict the functional effects of variations in a sequence4.

MTBAN combines this model with a knowledge distillation technique in machine learning, known as the 
Born-Again Networks (BAN)5. Knowledge distillation is a process of transferring the knowledge from one 
machine learning model to another7. In this scheme, the former is referred to as the “teacher” model and the latter 
is referred to as the “student” model. Typically, knowledge is transferred from a larger model to a smaller model, 
which allows for the reduction of model size while maintaining similar predictive power as the original model. In 
the setting of BAN, the student network is of the same capacity as the teacher network, which enables the student 
network to outperform the teacher network5. We found that the BAN framework in which both the teacher and 
the student network is implemented with mutationTCN outperforms the original mutationTCN model.

The model structure of MTBAN is shown in Fig. 1. In the first step, only the teacher network is trained, with 
the loss function being the label loss, which refers to the cross entropy loss between the input sequence and the 
softmax output distribution of the teacher network. In the next step, only the student network is trained, with 
the loss being the sum of the label loss and the teacher loss. Here, the label loss refers to the cross entropy loss 
between the input sequence and the softmax output of the student network. The teacher loss refers to the cross 
entropy loss between the softmax output of the student network and the softmax output of the teacher network. 
The softmax output distribution pi of the teacher network can be expressed as follows:

pi =
exp( ziT )∑
j exp(

zj
T )

Figure 1.   MTBAN model structure. We implemented BAN with mutationTCN as both the teacher and the 
student network. In the first step, only the teacher network is trained, with the loss function being the label 
loss (red arrow), which refers to the cross entropy loss between the input sequence and the softmax output 
distribution of the teacher network. In the second step, only the student network is trained, with the loss being 
the sum of the label loss (red arrow) and the teacher loss (blue arrow). Here, the label loss refers to the cross 
entropy loss between the input sequence and the softmax output of the student network. The teacher loss 
refers to the cross entropy loss between the softmax output of the student network and the “softened” output 
distribution of the teacher network.
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where zi is the logit computed for each class and T is the temperature parameter, which is typically set to 
17. Using higher temperatures leads to more “softened” output distributions. According to Hinton et al.7, these 
softened output distributions contain the “dark knowledge,” which is the hidden knowledge learned by the 
teacher network. In BAN, the transfer of this “dark knowledge” from the teacher to the student contributes to the 
improved performance of the student network. In our implementation, we used a temperature of 4. We trained 
both teacher and student networks for 500,000 iterations using the mini-batches with the size of 128. For both 
teacher and student networks, the learning rate is set to 0.001 when the number of training iterations is smaller 
than 3000, and 0.0001 when it is greater than 3000.

We computed the predictions of MTBAN for a total of 1605 human protein alignments provided by Hopf 
et al.8 These pre-computed predictions on the Hopf dataset were used for evaluating the model on the test set. 
According to Hopf et al., their alignment generation protocol involves multiple iterations of profile HMM homol-
ogy search in an attempt to ensure that there are enough sequences in the alignment and that the alignment 
coverage of the target protein sequence domain is sufficient8. This allows us to obtain an alignment that contains 
as much evolutionary information as possible.

Model outputs.  For a given variant, the model outputs the log probability score, the z-score, the probability 
of deleteriousness, and the predicted label. First, the log probability score is given by the following:

where p(xmutant |θ) and p(xwild-type|θ) are the probability assigned to the mutant sequence and the wild-type 
sequence, respectively, by the generative model with parameters θ . The log probability score is easily computed 
from the loss function, as the model loss function is the negative log likelihood4. The smaller the score, the more 
likely the variant has a deleterious effect. Second, the z-score is computed by normalizing the distribution of 
log probability scores for all possible missense variants against the target protein sequence. This normalization 
process is done due to the variations in the score distributions across different proteins. Third, the probability of 
deleteriousness for each variant, ranging from 0 to 1, is computed. This is determined from the set of variants in 
the Humsavar database (release 03/2020)9 which overlap with our pre-computed model predictions for the Hopf 
dataset, which are 1221 deleterious and 1221 benign variants. We obtained the z-score distribution for this set of 
variants, divided the distribution into equal-length z-score intervals, and calculated the proportion of deleterious 
variants in each z-score interval. Finally, using the same z-score intervals, we determined a z-score cutoff which 
maximizes the classification accuracy (Supplementary Fig. S1). This cutoff is used to assign a predicted label, 
either deleterious or benign, to a given variant.

Evaluation datasets.  To evaluate the ability of the model to classify human protein variants as deleteri-
ous or benign, we created a test dataset by combining the variants from the datasets used by Grimm et al.1 and 
Mahmood et al.2 Details regarding the datasets can be found in Table 1. We used the HumVar dataset from 
Grimm et al., which contains human protein variants that are known to be disease-causing or neutral1. Also, we 
used the UniFun, BRCA1-DMS, and TP53-TA datasets from Mahmood et al., which contain deleterious and 
benign protein variants determined from direct in vitro functional assays, such as the deep mutational scan-
ning experiment2. Mahmood et al. pointed out that commonly used disease-related variant datasets often over-
lap with the training data used by supervised predictors2. Because of this reason, they created the functionally 
determined variant datasets in order to avoid the problem of data circularity and establish an independent test 
set for benchmarking2. Another study3 also supports this claim and uses the data from deep mutational scan-
ning experiments to benchmark a large number of variant effect predictors. Also, it is reported that the Critical 
Assessment of Genome Interpretation (CAGI), which aims to perform an unbiased assessment of variant effect 
predictors, uses data from deep mutational scanning experiments as part of their benchmark dataset10. There-
fore, we use the functionally determined variant data from Mahmood et al. in addition to the disease-related 
variant data for comparing MTBAN with other predictors.

log
p(xmutant|θ)
p(xwild-type|θ)

Table 1.   Test datasets used and the number of deleterious and benign variants for each dataset used for 
evaluation. ND stands for the number of deleterious variants, and NB stands for the number of benign 
variants.

References Dataset Description ND NB

Grimm et al.1
HumVar Disease-causing mutations from UniProtKB and common single nucleotide polymorphisms with major allele frequency > 1%1 1230 1230

Total 1230 1230

Mahmood et al.2

UniFun Deleterious and benign variants in UniProt which are derived from functional assays2 25 25

BRCA1-DMS Deleterious and benign variants derived from deep mutational scanning experiment measuring homology-directed DNA repair 
and tumor suppression activity2 41 41

TP53-TA Deleterious and benign variants derived from transactivation assay2 413 413

Total 479 479

Total 1709 1709
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We compared the performance of our model with mutationTCN and other commonly used variant effect 
predictors, SIFT11, PolyPhen-212, MutationAssessor13, fathmm-MKL14, MPC15, GenoCanyon16, phastCons17, 
DANN18, GERP++19, and phyloP20. The predictions of the commonly used predictors on the test dataset were 
obtained from dbNSFP21 via the Ensembl variant effect predictor22. Since the score cutoffs for phyloP, DANN, 
phastCons, GERP++, MPC, and GenoCanyon were not provided by dbNSFP, we computed the cutoffs for each 
predictor using the Humsavar database (release 03/2021) as described in “Methods” section.

We found variants among the datasets from Grimm et al. and Mahmood et al. for which MTBAN predictions 
exist in the pre-computed Hopf dataset, and used those variants for comparison with other methods. Since the 
number of deleterious variants was significantly larger than that of benign variants, we randomly selected vari-
ants from the deleterious variant data to match the data size of the deleterious variants and the benign variants. 
This resulted in a balanced test set consisting of 1709 deleterious and 1709 benign variants in total.

Evaluation criteria.  The following metrics were used for evaluating the classification ability of the vari-
ant effect predictors: ROC-AUC (Receiver Operating Characteristic Area Under Curve), PR-AUC (Precision-
Recall Area Under Curve), accuracy, Matthews Correlation Coefficient (MCC), precision, specificity, sensitivity, 
F-score, and Negative Predictive Value (NPV). For MTBAN, ROC-AUC and PR-AUC were calculated using 
z-scores, and other evaluation metrics were calculated using the predicted label. The following equations were 
used for computing the evaluation metrics:

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives, and false negatives, 
respectively.

Results
Evaluation on human protein variant datasets.  We assessed MTBAN and other variant effect pre-
dictors on the task of classifying human protein variants as deleterious or benign. As described in “Methods” 
section, our test dataset combines the disease-associated variants from Grimm et al.1 and functionally deter-
mined variants from Mahmood et al.2, resulting in a total of 1709 deleterious and 1709 benign variants. When 
compared with 11 other variant effect predictors in terms of ROC-AUC and PR-AUC, our model outperformed 
all other predictors, achieving a ROC-AUC of 0.883 and a PR-AUC of 0.878 (Fig. 2, Table 2). Even though our 
model is fully unsupervised, its predictive ability outperforms the supervised predictors including PolyPhen-2, 
whose training dataset has overlapping variants with the dataset from Grimm et al.1 Also, MTBAN achieved the 
highest accuracy, MCC, and F-score among all compared variant effect predictors. In addition, our model dem-
onstrates a good balance between specificity and sensitivity, unlike fathmm-MKL or phyloP which demonstrate 
good performance in only one of the two measures.

In addition, we conducted further assessment using only the disease-associated variant data from Grimm 
et al.1, and using only the functionally determined variant data from Mahmood et al.2 When tested on the data 
from Grimm et al. consisting of 1230 deleterious and 1230 benign variants, our model achieved the highest 
ROC-AUC, PR-AUC, accuracy, MCC, and F-score (Supplementary Table S1). Also, when tested on the data 
from Mahmood et al. consisting of 479 deleterious and 479 benign variants, our model achieved the highest 
ROC-AUC, accuracy, MCC, and F-score (Supplementary Table S2). Overall, MTBAN shows an outstanding 
classification ability in both disease-associated variant data and functional assay-derived variant data.

Web server.  We offer a user-friendly web server which predicts variant effects using MTBAN (Supplemen-
tary Fig. S2). The server takes in as input a protein UniProt accession and a list of amino acid variants. Upon 
receiving input, it determines the target protein sequence region, and checks if pre-computed predictions exist 

Accuracy =
TP+ TN

TP+ FN+ TN+ FP

Matthews Correlation Coefficient (MCC) =
TP× TN− FP× FN

√
(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)

Precision =
TP

TP+ FP

Specificity =
TN

FP+ TN

Sensitivity (Recall) =
TP

TP+ FN

F-score = 2
Precision× Recall

Precision+ Recall

Negative Predictive Value (NPV) =
TN

TN+ FN
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for the given variants. If they exist, the server immediately returns predictions to the user. Otherwise, it checks 
if a multiple sequence alignment of the target protein sequence region is present in the database. If an alignment 
is present, it uses that alignment for subsequent computations. If an alignment is not present, it generates one 
using a profile HMM homology search tool23 and saves it in the database. During the computation, alignment 
columns that have more than 30% gaps are dropped. If some of the input variants belong to these un-aligned 
columns in the alignment, those variants are excluded from prediction and are indicated in the results. The next 
step is the computation of sequence weights, based on the similarity of sequences in the alignment. This step is 
included to reduce any sequence bias present in the multiple sequence alignment4. Afterwards, the prediction 
model is trained, and the server returns predictions to the user. After job processing, the predictions are saved so 
that the server can immediately return the results when the same set of mutations are later submitted as input. In 
the web server implementation, due to time constraints, the MTBAN teacher network and student network are 
both trained for 200,000 iterations, with learning rate 0.001.

Figure 2.   ROC Curves and Precision-Recall Curves for MTBAN and other predictors on the test dataset. (a) 
MTBAN achieved a ROC-AUC (Receiver Operating Characteristic Area Under Curve) of 0.883, which is the 
highest among 12 variant effect predictors. (b) MTBAN achieved a PR-AUC (Precision-Recall Area Under 
Curve) of 0.878, outperforming all other variant effect predictors.

Table 2.   Performances of MTBAN and other predictors on the test dataset consisting of 1709 deleterious 
and 1709 benign variants. Since the score cutoffs for phyloP, DANN, phastCons, GERP++, MPC, and 
GenoCanyon were not provided by dbNSFP, we computed the cutoffs for each predictor using the Humsavar 
database (release 03/2021) as described in “Methods” section. The highest values for each evaluation metric are 
indicated in bold. ROC-AUC, Receiver Operating Characteristic Area Under Curve; PR-AUC, Precision-Recall 
Area Under Curve; MCC, Matthews Correlation Coefficient; NPV, Negative Predictive Value. a PhyloP100way_
vertebrate from dbNSFP. b PhastCons100way_vertebrate from dbNSFP.

Predictor ROC-AUC​ PR-AUC​ Accuracy MCC Precision Specificity Sensitivity F-score NPV

MTBAN 0.883 0.878 0.787 0.585 0.739 0.686 0.887 0.806 0.859

mutationTCN 0.873 0.87 0.763 0.548 0.706 0.624 0.902 0.792 0.865

SIFT 0.856 0.861 0.77 0.55 0.728 0.671 0.868 0.792 0.833

MutationAssessor 0.855 0.849 0.763 0.535 0.722 0.686 0.843 0.778 0.819

PolyPhen-2 0.853 0.856 0.759 0.537 0.703 0.637 0.885 0.783 0.851

fathmm-MKL 0.844 0.812 0.743 0.518 0.681 0.567 0.918 0.782 0.873

phyloPa 0.836 0.838 0.753 0.532 0.865 0.905 0.602 0.71 0.693

DANN 0.814 0.775 0.753 0.51 0.722 0.68 0.825 0.77 0.794

phastConsb 0.789 0.829 0.749 0.506 0.711 0.657 0.84 0.77 0.803

GERP++ 0.778 0.74 0.714 0.435 0.757 0.795 0.635 0.69 0.684

MPC 0.772 0.762 0.68 0.369 0.73 0.772 0.591 0.653 0.644

GenoCanyon 0.742 0.748 0.657 0.323 0.626 0.53 0.783 0.696 0.708
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Discussion
Here, we have introduced MTBAN, an improved method for predicting the deleteriousness of single amino acid 
variants. As demonstrated in our previous work4, the deep autoregressive generative model is a powerful tool for 
learning the distribution underlying the evolutionarily related sequences of a protein and predicting the effects 
of variations in a sequence. Combining the deep autoregressive generative model with a knowledge distillation 
method known as the Born-Again Networks (BAN) further improves the predictive power of the model, by 
transferring the knowledge learned by the model to the second model of the same capacity. We conducted an 
assessment using the test set combining the disease-related variants from Grimm et al.1 and the functionally 
determined variants from Mahmood et al.2, and further assessment using each of the two variant sets. In all 
cases, MTBAN consistently shows outstanding predictive ability compared to other prediction tools. The results 
indicate that MTBAN is a reliable method for predicting the deleteriousness of human protein variants.

Previous works1–3 have pointed out concerns regarding the problem of data circularity in many supervised 
predictors, which can lead to an inflation of the reported performances of these tools. Due to the fully unsu-
pervised nature of MTBAN, it is not hindered by the problem of data circularity and can be considered to have 
higher generality compared to supervised models. Moreover, while we only considered human protein variants 
in this work, it is possible to predict the effects of protein variants in any other species if a multiple sequence 
alignment is available.

As previously mentioned, the BAN involves the transfer of the “dark knowledge” hidden in the softened 
output distribution of the teacher network to the student network. We speculate that due to the large size and 
the high complexity of the training set used in this study, the student equipped with the teacher’s knowledge 
can better model the distribution of the training data, compared to the teacher alone. In other scenarios where 
the model is of high capacity and the training data is limited in size, the student network may possibly perform 
worse due to overfitting.

One potential limitation of MTBAN and mutationTCN is that they can only make predictions for variants 
which correspond to the conserved positions in the multiple sequence alignment of a protein. However, when we 
analyzed all of the 9935 human protein multiple sequence alignments in the Hopf dataset, approximately 88% of 
the target sequences were conserved, which is a considerably large proportion. Another potential limitation of 
MTBAN is that the training time is longer compared to mutationTCN alone for prediction. Although MTBAN 
takes a longer time to train, it shows a higher predictive performance compared to the previous model.

The results of our work show that the deep generative model is a powerful tool for predicting the effects of 
sequence variations. We expect that deep generative models will continue to play an important role in discover-
ing the effects of genetic variants. In addition, to our knowledge, MTBAN is the first variant effect prediction 
tool based on a deep generative model that provides a user-friendly web server for the prediction of deleterious-
ness of variants. This method is expected to be a useful tool for the prioritization and identification of variants 
involved in human genetic diseases.

Data availability
The datasets generated during and/or analyzed during the current study are available at https://​github.​com/​
ha019​94/​MTBAN.
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