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Spatial immunophenotypes predict response to
anti-PD1 treatment and capture distinct paths of
T cell evasion in triple negative breast cancer
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Only a subgroup of triple-negative breast cancer (TNBC) responds to immune checkpoint
inhibitors (ICI). To better understand lack of response to ICl, we analyze 681 TNBCs for
spatial immune cell contextures in relation to clinical outcomes and pathways of T cell
evasion. Excluded, ignored and inflamed phenotypes can be captured by a gene classifier that
predicts prognosis of various cancers as well as anti-PD1 response of metastatic TNBC
patients in a phase Il trial. The excluded phenotype, which is associated with resistance to
anti-PD1, demonstrates deposits of collagen-10, enhanced glycolysis, and activation of TGFp/
VEGF pathways; the ignored phenotype, also associated with resistance to anti-PD1, shows
either high density of CD163+ myeloid cells or activation of WNT/PPARy pathways; whereas
the inflamed phenotype, which is associated with response to anti-PD1, revealed necrosis,
high density of CLEC9A+ dendritic cells, high TCR clonality independent of neo-antigens, and
enhanced expression of T cell co-inhibitory receptors.
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riple-negative breast cancer (TNBC) is an aggressive form

of breast cancer (BC) (accounting for 10-20% of all BCs)

that is characterized by the absence of hormone receptors
and has limited therapeutic options. TNBC is considered the
most immunogenic BC subtype based on relatively high numbers
of tumor-infiltrating lymphocytes (TILs), which is reflected by a
higher likelihood of response to immune checkpoint inhibition
(ICI) when compared to other BC subtypes!. Nevertheless,
objective response rates (ORR) to ICI in metastatic TNBC are
variable and do not exceed 24% when administered as
monotherapy?. Clinical benefit has been observed for first-line
treatment with the programmed-cell death ligand (PD-L1)
blocking antibody (atezolizumab) in combination with nab-
paclitaxel, which has been approved by the EMA and FDA for
PD-L1-positive metastatic TNBC. Although this combination
therapy induces survival benefit in PD-L1-positive TNBC?, still a
significant proportion of TNBC patients does not benefit from
ICI. Moreover, preliminary data of primary TNBC treated with
anti-PD1 plus chemotherapy in the neoadjuvant setting suggest
that PD-L1 expression is not associated with the benefit of ICI4>.
Collectively, these findings point toward the need for better
predictive markers and understanding of the underlying immune
cell contextures to select TNBC patients for ICI.

Several studies have examined the predictive value of tumor
mutational burden (TMB) and TIL abundance in TNBC. While a
high TMB has been associated with response to ICI-based
therapies in melanoma, lung cancer, and colorectal cancer®, no
significant association between the TMB and ICI response has
been found for TNBC’-?. TILs are frequently present in primary
TNBC and correlate with good prognosis, as well as response to
neoadjuvant chemotherapy and ICI in the metastatic
setting!-8:10-14, Furthermore, TILs predict overall survival (OS) to
anti-PD1 as a monotherapy independent of PD-L1 expression.
Emerging evidence now suggests that next to the abundance of
TILs, also the cellular composition and activation state of TILs
contribute to clinical outcome. For example, the presence of
tissue-resident memory CD8+ T cells provides more prognostic
information when compared to CD8+ T cells!?, and hallmarks of
an ongoing immune response, such as clonal T cell expansion
correlate to anti-PD1 response8. In addition, the spatial locali-
zation of TILs has prognostic value in TNBC!®17. In this regard,
three main spatial phenotypes have been identified and recog-
nized for their association with clinical outcome in TNBC, as well
as other cancer types!’~1%: inflamed (also reffered to as “hot”;
characterized by the presence of intratumoral lymphocytes),
excluded (also referred to as “altered”; lymphocytes are restricted
to the invasive margin) and ignored (also reffered to as “cold” or
“desert”; characterized by lack of lymphocytes). Immune evasive
mechanisms, including intrinsic, as well as acquired mechanisms,
and their contribution to numbers, cell states, and locations of
TILs have been described?%2!. Such mechanisms include those
that inhibit influx and migration of T cells, antigen recognition by
T cells or suppression of T cell function?>~28. Collectively, the
above studies describe spatial phenotypes in cancers!’-1% how-
ever, so far it has not been studied whether these phenotypes are
predictive of response to ICI and which immune evasive pro-
cesses underpin these phenotypes in TNBC.

Here, we determined spatial immunophenotypes in four large
cohorts of TNBC patients using multiplexed immunofluorescent
imaging and next-generation sequencing (NGS). We demon-
strated that inflamed, excluded and ignored phenotypes can be
accurately assigned by a gene classifier, differentially correlate
with prognosis in TNBC and other tumor types, and predict
response to anti-PD1 treatment in metastatic TNBC and mela-
noma. Importantly, spatial immunophenotypes in primary TNBC

are characterized by distinct immune determinants, as well as
tumor microenvironment (TME) and immune response-
mediated paths of T cell evasion. These immunophenotypes
provide a rationale to develop therapies specifically for spatial
immunophenotypes to enhance response to ICI in TNBC.

Results
Spatial contexture of lymphocytes but not myeloid cells is
prognostic in TNBC. In order to assess tumor-immune inter-
actions in TNBC, CD8+ T cell presence and spatial organization
were studied in 236 untreated, primary TNBC using immuno-
histochemical staining (IHC) of whole slides (Cohort A; for study
design see Supplementary Fig. 1 and for clinical details of cohorts
see Supplementary Table 1). These patients did not receive
adjuvant chemotherapy enabling unbiased testing of the prog-
nostic value of immune markers. We defined three spatial
immunophenotypes: excluded (26%; predominant location of
CD8+ T cells at tumor border, not center); ignored (28%; neg-
ligible presence of CD8+ T cells neither at border nor center) and
inflamed (46%; CD8+ T cells evenly distributed across border
and center) (see M&M section for detailed criteria of spatial
phenotypes) (Fig. la, Supplementary Fig. 2a). These spatial
phenotypes were significantly associated with survival (distant
metastasis-free survival (MFS), disease-free survival (DFS), and
overall survival (OS): p<0.009; n =122 lymph-node negative
TNBC). Tumors with an inflamed phenotype had the best
prognosis (10-year OS: 80%), excluded phenotypes intermediate
(10-year OS: 60%, HR:1.45, 95% CI: 0.84-3.3), and ignored
phenotypes the worst prognosis (10-year OS: 40%; HR:3, 95% CI:
1.5-5.9) (see Fig. 1b for univariate analysis). Prolonged survival of
excluded versus ignored phenotypes was statistically significant
for OS, but not MFS nor DFS. Notably, the prognostic value of
spatial phenotypes was independent of nodal status, tumor size,
or age (see Supplementary Table 2 for multivariable analysis).
In addition to CD8+ T cells, we assessed the presence of other
immune effector cells using multiplexed immunofluorescence
(IF) imaging of 64 tumors (Fig. lc, Supplementary Fig. 2b).
CD4+ T cells and CD20+ B cells generally co-occurred with
CD8+ T cells at the tumor border and center, whereas CD56+
NK cells were hardly present in TNBC (Fig. 1d, Supplementary
Fig. 3a—d). For instance, at the tumor border numbers of stromal
CD20+ B cells, CD4+ and CD8+ T cells did not differ between
excluded and inflamed phenotypes, yet the excluded phenotype
had significantly fewer intratumoral B and T cells (Supplementary
Fig. 3a, c). Moreover, distances between the CD8+ T cells and
tumor cells (CK-positive cells) were significantly larger in
excluded versus inflamed phenotypes (Fig. le, Supplementary
Fig. 3e). Interestingly, despite a lack of lymphocytes in the
ignored phenotype, we did observe stromal and intratumoral
CD68+ macrophages (Fig. 1d, Supplementary Fig. 3a-d).
Notably, densities of stromal CD8+ T cells and intratumoral
CD4+, CD8+ T, and CD20+ B cells, but not CD68+
macrophages, demonstrated significant correlations with OS or
MFS (Supplementary Fig. 3f). Next, we evaluated the presence of
tertiary lymphoid structures (TLS), defined as focal areas that are
positive for CD4+4 T and CD20+ B cells, which are considered
important sites for T cell priming and initiation of an antitumor
immune response?°~32. Interestingly, we observed a high number
of TLS at the border of tumors of both the inflamed and excluded
phenotype, but not in the ignored phenotype (Fig. 1f). Of note,
neither the presence nor abundance of TLS were significantly
associated with survival (tested for OS, MFS, and DEFS in
univariate and multivariable setting), nor when stratified per
spatial immunophenotype (Supplementary Table 2).
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Fig. 1 Spatial immune contexture is prognostic in TNBC. a, b Representative whole slide images of CD8+ T cell spatial phenotypes with the percentage of
patients per phenotype (scalebar corresponds to 5mm) (A) and corresponding Kaplan-Meier curves for metastasis-free survival (MFS), disease-free
survival (DFS), and overall survival (OS) (B, p values show two-sided log-rank test; time is displayed in months, n=122 LNN TNBC, of which n=32
excluded, n= 27 ignored, and n= 61 inflamed). ¢ Representative multiplex IF images of immune effector cells at the tumor border and center of each
spatial phenotype (CD8+: red, CD3+: green, CD20-+:yellow, CD68+: orange, CD56+: magenta, CK:cyan, DAPI: blue; scalebar corresponds to 50 pm).
d Circle plots show mean and SD of immune cell densities (cells/mm?2) at border and center for CD8+ (purple), CD68+ (dark yellow), CD56+ (magenta),
CD4+ (green), CD20+ (pale yellow), (n=64 LNN TNBC, of which n =18 excluded, n =19 ignored, and n =27 inflamed). e Histograms show mean
distances in pum between CD8+ T cells and CD8+ (purple), CD68+ (dark yellow), CD56+ (magenta), CD4+ (green), CD20+ (pale yellow) CK+ (cyan)
cells (x-axis) versus cell densities (cells/mm?, y-axis). f Boxplots show median with 25th-75th percentile, range, and outliers displayed as dots of the total
number of tertiary lymphoid structures (TLS, identified by consecutive stainings of CD20+ B cells (top) and CD4+ T cells (bottom), see black squares in
images, scalebar corresponds to 100 pm; n =134 LNN TNBC, of which n =32 excluded, n = 21 ignored, and n = 61 inflamed). Significant differences are:
***p<0.001; **p<0.01; *p<0.05, NS, p>0.5 (Kruskal-Wallis, one-sided). Source data are provided within the source data file.

A gene classifier of spatial phenotypes predicts outcome to GREMI, SPONI1, FAP and SPOCKI, which were all significantly
anti-PD1 treatment in TNBC patients. We developed a gene- associated with poor MFS (HR > 1, p < 0.05). On the other hand,
expression classifier to be able to assess prognostic and predictive  genes highly expressed in the inflamed phenotype included:
values of the spatial immunophenotypes without the need for =~ WARS, CXCL13, CCL5, GZMB, TRBC1, COROI1A, CCL5, CCL18,
CD8+ T cell stainings. Briefly, we selected the most dis- IL2RG, NKG7, IGHGI, which were all significantly associated
criminative genes (according to differential expression, DE) for ~with better MFS (HR<1, p<0.05) (Supplementary Fig. 4a).
the excluded, ignored, and inflamed phenotypes in a discovery set ~ Assessment of the entire gene-sets of the excluded and ignored
for which both gene expression data and CD8+ T cell stainings phenotypes were associated with poor prognosis (excluded:
were available (Cohort Al, n=101 primary TNBC, Fig. 2a). HR=1.8, CI: 1.2-2.7; ignored: HR=1.6, CI: 1.1-2.4), whereas
Using DE and rank-correlations with phenotypes from the dis- the gene-set of the inflamed phenotype was associated with good
covery set, we assigned spatial phenotypes in an independent prognosis (HR = 0.62, CI: 0.45-0.86) (Fig. 2b). Upon testing the
validation set (Cohort A2, n =43 primary TNBC; gene expres- performance of the gene classifier in a third cohort of primary
sion data and CDS8+ stainings), which resulted in correct TNBC patients (Fig. 2c, Cohort E, n=137), we validated the
assignment of spatial phenotypes in 81% of primary TNBC prognostic value of the spatial-phenotype-classifier (log-rank,
(Table 1; see M&M section for details on classification). Using a  p =0.001). It is noteworthy that among all BC, basal-like BC had
second validation set (Cohort F, n= 12 metastatic TNBC; gene the highest proportion of the inflamed phenotype followed by
expression data and CD8+ stainings), we showed the correct her2 and luminal-B subtypes (Supplementary Fig. 4b).

assignment of spatial phenotypes in 83% of TN lymph-node To test the capacity of the spatial-phenotype-classifier to predict
metastases (Table 2). Subsequently, the prognostic value of this outcome after anti-PD1 treatment in TNBC, we applied the
spatial-phenotype-classifier was tested in an independent cohort  classifier to a dataset of metastatic patients from the TONIC trial®.
of primary, lymph-node negative, systemically untreated BC In this phase II trial, all patients received anti-PD1 after a short
(Cohort B, n = 196 basal-like tumors!?%; only gene expression data (2 week) immune induction treatment with low dose chemotherapy
available). Genes highly expressed in the excluded or ignored or irradiation (cohort D, n =53, biopsies from pre- and
phenotypes included: THBS2, ASPN, COLI10AI, COL5A1 postinduction treatment metastatic lesions, see Supplementary
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Fig. 2 Gene classifier assigns spatial phenotypes of CD8+ T cells and stratifies metastasized TNBC patients according to ICI response. a Heatmap
showing median expression of classifier genes per spatial phenotype in the discovery set (red: high expression, blue: low expression; Cohort A1, n =101 TNBC).

b Forestplots showing HRs and Cls (error bars) of classifier gene-sets (Cohort

B, n =196 basal-like BC). ¢ Kaplan-Meier curves of assigned spatial phenotypes

in primary TNBC patients (Cohort E, n =137 TNBC, p-value shows two-sided log-rank test). d Forestplots showing Odds Ratios (OR) and Cls (error bars) for
response to anti-PD-1 treatment of classifier gene-sets (Cohort D, TONIC trial, n =53 metastatic TNBC). e Boxplots displaying the median with 25th-75th
percentile and range (outliers are displayed as dots) of the average expression of classifier gene-sets in responding (CR + PR + SD > 24 weeks) and

nonresponding (PD) patients (Cohort D, n =53 metastatic TNBC, of which n

=10 CR+PR+PD, and n=43 PD). f ROC curves predicting clinical response

(PR + CR + SD) with areas under the curve (AUC) and Cls for gene sets of excluded-, inflamed- or a combination of the two phenotypes (average expression

of respective gene-sets was used) (first three panels), or for standardly used

predictive markers, such as frequency of stromal TILs and PDL1 positivity of

immune cells (Cohort D) (last two panels). g Proportions of assigned spatial phenotypes (excluded: cyan, ignored: green and inflamed: purple) in patients with
metastatic TNBC responding or not responding to anti-PD-1 treatment (pretreatment biopsies, n = 51) and h corresponding survival curves (Cohort D, p value
shows two-sided log-rank test). Source data are provided within the source data file or can be retrieved under controlled access (see ref. 8 for details).

Table 1 Performance of gene classifier in primary TNBC.
Gene classifier (as described in Results section and Fig. 2a)
was tested for correct assignment of spatial
immunophenotypes in primary TNBC (Cohort A, n =43).

Spatial immunophenotype (gene-classifier)

Table 2 Performance of gene classifier in LN metastases.
Gene classifier (as described in Results section and Fig. 2a)
was tested for correct assignment of spatial
immunophenotypes in TNBC lymph-node metastases.

Spatial immunophenotype (gene-classifier)

Excl Ign Infl total Sensitivity Excl Ign Infl total Sensitivity
CD8 stainings  Excl 18 0 0 18 1.0 CD8 stainings  Excl 1 1 0 2 0.5
Ign 4 5 0 9 0.56 Ign 0 3 1 4 0.75
Infl 3 0 12 15 0.8 Infl 0 0 6 1 1.0
Total 25 5 12 43 Total 1 4 7 12
Specificity 0.72 10 10 Specificity 1.0 0.75 0.85

Table 1 for details). We observed significantly higher frequencies of
the excluded (41%) and ignored phenotypes (37%), and decreased
frequencies of the inflamed (21%) phenotypes when metastasized
TNBC was compared to primary TNBC. This was not dependent
on biopsy sites, which supports the prognostic nature of the

classifier (Supplementary Fig. 5a, b). Expression of the excluded
gene-set was significantly higher in nonresponding (progressive
disease (PD) patients) patients (odds-ratio (OR): 3.5; CI: 1.2-11.9),
whereas expression of the inflamed gene-set was significantly higher
in responding patients (complete response (CR) + partial response
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Table 3 Clinical validation of gene classifier. Gene classifier
(as described in Results section and Fig. 2a) was tested for
prediction of response to anti-PD1 treatment. PPV positive
predictive value, NPV negative predictive value.

Spatial immunophenotype (gene-classifier)

Excl & Ign Infl Total
Anti-PD1 treatment Nonresponder 35 4 39
Responder 4 6 10
Total 39 10 49
NPV 0.9
PPV 0.6

(PR) + stable disease (SD) for >24 weeks according to iRECIST
criteria®?) (OR: 0.4; CI: 0.18-0.92) (Fig. 2d, e). No association with
therapy response was found for the ignored gene-set (OR = 0.9; CI:
0.5-1.85). When assessing receiver operating characteristic (ROC)
as a measure of predictive value of the excluded, inflamed, or
combined gene-sets, we observed areas under the curve (AUC) of
0.72 (CI: 0.52-0.89), 0.73 (CIL: 0.54-0.94), and 0.75 (CL 0.55-0.95),
respectively. In comparison, PD-L1 expression on immune cells, a
biomarker that is currently used in the clinical setting had an AUC
of 0.66 (CI: 0.51-0.82) (Fig. 2f). The AUC for sTIL, another marker
considered to stratify patients was 0.67 (CI: 0.48-0.82) (Fig. 2f). In
addition, nonresponder patients showed enrichment for the
excluded and ignored phenotypes (90% of cases), whereas in anti-
PD1-responders the inflamed phenotype was enriched (60% of
cases, Chi-square, p=0.007, Fig. 2g). In fact, using the spatial-
phenotype-classifier we were able to predict outcome after anti-PD1
treatment, i.e., the negative predictive value (NPV) of the inflamed
phenotype to therapy response is 0.9, while the positive predictive
value (PPV) is 0.6 (Table 3). In line, patients with the excluded and
ignored phenotypes had shortened OS when compared to the
inflamed phenotype (log-rank, p = 0.05, Fig. 2h). Notably, spatial
phenotypes predict clinical outcome independent of immune cell
PD-L1 but not sTIL (Supplementary Fig. 6).

Prognostic and predictive value of spatial phenotypes in mul-
tiple cancers. We applied the spatial-phenotype-classifier to other
tumor (sub-)types to assess the prognostic and predictive value in
a pan-cancer setting. Spatial phenotypes were significantly
prognostic not only in invasive breast cancer BRCA (all subtypes,
including ER+) but also in bladder cancer (BLCA), skin cuta-
neous melanoma (SKCM), cervical squamous cell carcinoma, and
endocervical adenocarcinoma (CESC), head and neck squamous
cell carcinoma (HNSC) and kidney cancer (KICH), but despite
similar trends not in prostate (PRAD), pancreatic (PAAD), lung
(LUAD) or colon cancer (COAD) (Cohort E, Supplementary
Fig. 4c). Although spatial immunophenotypes have been descri-
bed for various cancers?>34, they have not directly been related to
response to ICI treatments. Here we demonstrate that tumors
generally responding poorly to ICI, such as PRAD and PAAD,
had the highest proportions of the excluded or ignored pheno-
types, while tumors generally responding well to ICI, such as
SKCM and LUAD, had the highest proportions of the inflamed
phenotype (Supplementary Fig. 4b). In line with TNBC, in
advanced and metastatic melanoma, where RNAseq data of ICI-
treated patients is publicly available3>3%, we observed that
expression of the gene-set of the excluded phenotype was sig-
nificantly increased in tumors of patients not responding to ICI,
and the gene-set of the inflamed phenotype was significantly
increased in tumors of patients responding to ICI (Supplementary
Fig. 4d). Moreover, the spatial-phenotype-classifier outperformed
other, publicly available gene-classifiers that are recognized for

capturing lymphocyte activity and location, and for predicting
anti-PD1 response in melanoma, such as IFNy-response, T cell
exclusion, and TLS signatures (Supplementary Fig. 7).

Spatial phenotypes differ in TCR repertoire skewness and
mutational signatures but not mutational burden. In order to
test for potential drivers of spatial phenotypes, we first studied
clinicopathological and genomic features in lymph-node negative,
systemically untreated, primary TNBC (Cohorts A and C). Spatial
phenotypes were not associated with mitotic activity index (MAI),
tumor grade, tumor stage, or histological subtypes, except for
tumors with medullary features that were (as expected) solely
comprised of the inflamed phenotype (Supplementary Fig. 8). In
addition, following assignment of spatial phenotypes to Cohort C
(n=66; RNAseq and WGS data), we observed that spatial phe-
notypes did neither differ with respect to frequency of BRCAI or
BRCA2 germline mutations (Fig. 3a), frequency of p2 Micro-
globulin loss (Fig. 3b) nor TMB or types of genomic alterations,
including nonsynonymous SNV (passenger and driver mutations
combined), exonic frameshifts, indels (Fig. 3¢c) or predicted neo-
antigens (Fig. 3d). In contrast, spatial phenotypes did differ with
respect to mutational signatures and TCR clonality (Fig. 3e-i).
For instance, mutational signature-3 (related to homologous
recombination deficiency) was enriched in the inflamed pheno-
type and signature-5 (related to age) was significantly enriched in
the ignored and excluded phenotypes (Fig. 3f, g). The highest
TCR-V} diversity, as well as the most skewed TCR-Vf repertoire
(harboring clonally expanded reads) were observed in the
inflamed phenotype, and both these parameters were equally low
in the excluded and ignored phenotypes (Fig. 3h, i).

Spatial phenotypes are characterized by distinct immune eva-
sive pathways. Next, we studied whether spatial phenotypes capture
different modes of immune-evasion (Cohort A, Figs. 4 and 5).
Immune cell deconvolution by Cibersort?” confirmed the above
observations (Fig. 1d) with respect to the abundance of immune
effector cells and particularly revealed differential frequencies of
plasma cells, activated memory T cells, follicular helper T cells,
activated dendritic cells (DC), and M1- and M2 macrophages
(Fig. 4a). Subsequently, we evaluated the expression of gene-sets
related to various mechanisms of T cell evasion!%, complemented
with Ingenuity Pathway Analysis (IPA®) and verified with gene-set
enrichment analysis. Using this approach, we observed that the
excluded phenotype was characterized by enhanced expression of
genes associated with endothelial barrier, glycolysis, serine protease
inhibition (SPI), and extracellular matrix (ECM) remodeling
(Fig. 4b-d, see Fig. 4c for examples of individual genes, Supple-
mentary Fig. 9a, Supplementary Fig. 10); notably all these pathways
were inter-linked with the TGFf pathway (Fig. 4d, 4e, Supplementary
Fig. 9a, b, Supplementary Fig. 10). One of the most upregulated genes
in the excluded phenotype (compared to the inflamed phenotype)
was COL10AI (Fig. 4c), the expression of which was strongly cor-
related to the TGFB- and VEGF- signaling pathways while being
inversely correlated to the expression of CD8A (Fig. 4e, h). The
ignored phenotype was characterized by increased expression of
genes associated with P-oxidation (Fig. 4b) as well as the WNT,
PPAR, LXR/RXR, and MAPK pathways (Fig. 4c, d, Supplementary
Fig. 10). Moreover, the ignored phenotype showed enhanced gene
expression of SI00A7 (Fig. 4c), a molecule that has been reported to
promote oncogenesis and act as a chemo-attractant for M2 macro-
phages and other suppressive myeloid cells?®. Of the above oncogenic
pathways in particular WNT was inversely correlated with the
expression of CD8A as well as CD163 (Fig. 4f, h Supplementary
Fig. 9b). Last, the inflamed phenotype showed enhanced expression
of genes associated with necrosis, TNF-signaling, type-I and type-II
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Fig. 3 Genomic features of spatial phenotypes. The following parameters were tested for differential presence in spatial phenotypes (determined by the
gene-classifier) in TNBC: a BRCA status (proportion, BRCA1: purple, BRCA2: yellow, WT: cyan). b Loss of p2-microglobin (copy number, B2M-loss: yellow,
B2M-wt: cyan). ¢ Total number of different types of mutations (passenger mutations: cyan, driver mutations: magenta, structural rearrangements: purple,
indels: yellow). d Total number of predicted neo-antigens. e Proportions of most abundant mutational signatures. f, g Frequencies of signatures-3 and 5.
h TCR repertoire skewness (based on the gini-simpson index). i Total number of different TCR-Vf reads. For all above parameters Cohort C (n =66 TNBC,
comprising n =13 excluded, n = 29 ignored, and n = 24 inflamed) was used, spatial phenotypes were assigned according to the classifier. All boxplots
display the median with 25th-75th percentile, range, and outliers are displayed as dots. Significant differences are: ***p <0.001; **p < 0.07; *p < 0.05, NS,
p>0.5 (Kruskal-Wallis, one-sided). Source data are provided within the source data file.

IFN, antigen processing and presentation, T cell co-stimulation, but
also co-inhibition (Fig. 4b, ¢, Supplementary Fig. 10a, b), which were
all inter-related (Supplementary Fig. 9b). Importantly, the inflamed
phenotype showed high gene expression of the T cell chemo-
attractants CXCL9 and CXCLI10 (Fig. 4c), which according to our
immune cell deconvolution and pathway analyses are derived from
activated (BATF3/CLEC9A-positive) conventional DC (cDCl,
Fig. 4g). CD163 and T cell co-inhibition?”, generally down-stream of
an immune response, were correlated with the expression of CD8A
(Fig. 4h).

Multiplex IF demonstrated that collagen-10 was deposited into
stromal areas between the tumor and immune cells at the tumor
center in the excluded phenotype, (Fig. 5a, b). To assess how the
entry of T cells may be affected by such a physical barrier, we
evaluated the presence of high endothelial venules (HEV, identified

via MECA-79 stainings), and observed that these were present at
high numbers at the border, as well as the center of excluded
phenotypes (Fig. 5d). In the ignored phenotype, IF showed (albeit
only in subset of ignored tumors) that very high SI00A7 expression
by tumor cells (highest of all spatial phenotypes) was accompanied by
high frequencies of CD163+ macrophages (Fig. 5a, middle panel, b).
Even though tumor-associated macrophages were not unique for the
ignored phenotype, and were present at particularly high densities in
the center of inflamed and to a lesser extent in excluded phenotypes,
nearest-neighbor analysis revealed that macrophages and myeloid
cells showed relatively low distances to CD8+ T cells, regardless of
frequencies and spatial phenotypes (Fig. 5c). CD66b+ neutrophils
(another immune cell type that has been reported for its immune-
suppressive effects in the TME3?) co-occurred with macrophages and
myeloid cells and were found to be present at high numbers in the
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Fig. 5 Spatial immunophenotypes are characterized by distinct T cell evasive mechanisms. a Representative images of cells and molecules related to
spatial phenotypes (spatial phenotype panel) at the tumor border and center (CD11b (orange), CD163 (green), CD8 (red), CK (cyan), CLEC9A (yellow), or
S100A7 (magenta); scalebar corresponds to 50 pm). b Circle plots show mean and SD of cell densities at border and center regions per mm? for CD11b
(orange), CD163 (green), CD8 (purple), CK (cyan), CLEC9A (yellow), or SIOOA7 (magenta); Collagen-10 (pink) is displayed as positive tissue area in
um2/100 for visualization purpose (n = 68 TNBC comprising n = 20 excluded, n = 22 ignored, and n = 26 inflamed). ¢ Histograms show mean distances in
pm between CD8+ T cells and CD11b (orange), CD163 (green), CD8 (purple), CK (cyan), CLEC9A (yellow), or SI0O0A7 (magenta) (x-axis) versus cell
densities (y-axis) (n =68 TNBC of which n =20 excluded, n =22 ignored, and n = 26 inflamed). d Boxplots show median with 25th-75th percentile and
range (outliers are displayed as dots) of numbers of high endothelial venules (HEV, identified via MECA-79 staining, black arrow) and MHC-II expression
of tumor cells for excluded (cyan), ignored (green), and inflamed (purple) TNBC (no distinction between border and center, pink arrow: tumor cells; yellow
arrow: adjacent normal breast lobules; green arrow: immune cells, scalebar corresponds to 100 pm, n =20 TNBC, of which n = 6 excluded, n = 4 ignored,
and n =10 inflamed). e Boxplots show median with 25th-75th percentile and range (outliers are displayed as dots) of neutrophil densities (CD66b+) at
border and center for excluded (cyan), ignored (green), and inflamed (purple) TNBC and the representative image is shown, scalebar corresponds to
100 pm, (n =32 TNBC, of which =11 excluded, n =10 ignored, and n =11 inflamed). f Boxplots show median with 25th-75th percentile and range (outliers
are displayed as dots) of numbers of different T cell markers stained on consecutive slides, and representative images (CD8 (purple), CD4 (green), 41BB
(cyan), and ICOS (yellow); scalebar corresponds to 100 pm, n =20 TNBC, of which n= 6 excluded, n=4 ignored, and n =10 inflamed). Significant
differences are: ***p <0.001; **p<0.01; *p<0.05, NS, p>0.05 (Kruskal-Wallis, one-sided). Source data are provided within source data file.

same subset of the ignored phenotype (Fig. 5¢). Notably, the ignored
phenotypes that did not show high M2 and neutrophil densities were
characterized by enhanced expression of WNT targets. In the
inflamed phenotype, IF revealed significantly enhanced numbers of
stromal, as well as intratumoral CLEC9A+ DC (Fig. 5a, b).
Interestingly, and despite overall low abundances of these cells
(regardless of spatial phenotype), CLEC9A+ DC were found in
relatively close proximity to CD8+ T cells (Fig. 5¢), and their cell
densities significantly correlated with those of CD8+ T cells
(Supplementary Fig. 9c), pointing to the recognized immune-
enhancing action governed by cDCl cells**. Nevertheless, and
despite high densities of T cells and TLS, only a small fraction of
CD4+ and CD8+ T cells in the inflamed phenotype expressed the
co-stimulatory receptors ICOS or 41BB, which co-ocurred with a
significantly decreased MHC-II expression by tumor cells (Fig. 5d, f).

8

Discussion

In this study, using cohorts of in total 681 patients with TNBC,
2706 with other types of BC, and 4003 with other cancers, we
have analyzed spatial immunophenotypes in relation to prognosis
and response to anti-PD1 treatment, as well as genomic features
and T cell evasion. Our results, present that spatial immuno-
phenotypes predict response to ICI in TNBC, and are char-
acterized by distinct T cell evasive pathways that provide a
rationale to develop spatial phenotype-specific therapies for ICI-
refractory TNBC.

We have developed and validated a spatial-phenotype-classifier
that accurately predicts spatial localization of CD8+ T cells in
primary as well as metastasized TNBC. Next to its prognostic
value in TNBC, this classifier has prognostic value in various
tumor types (BC, CESC, HNSC, KICH, BLCA, SKCM), which is
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in line with recent reports!7-1841, and suggests that the classifier

may be applied to different histologies. Strikingly, we found that
this classifier predicts resistance to anti-PD1 treatment in meta-
static TNBC, as well as melanoma. In case of TNBC, we report an
NPV as high as 0.9, which is not achieved with the currently used
predictor PD-L1. In fact, the spatial immuophenotype classifier
acts independently of PD-L1 (Supplementary Fig. 6¢c) and out-
performs alternative classifiers that relate to lymphocyte activity
and location (Supplementary Fig 7). Notably, TLS, whether
captured by staining (as performed in this study) or a gene sig-
nature, was neither significantly associated with survival nor anti-
PD1 response, irrespective of stratification per spatial immuno-
phenotype (Supplementary Table 2, Supplementary Fig. 7),
indicating that further research is needed to determine the exact
role of TLS in shaping antitumor immune responses in TNBC.

Although not excluding CD8 stainings, our observations imply
that gene-based classification of spatial immunophenotypes
would enable early identification of non-responders and facilitate
decision-making by clinical oncologists with respect to the
treatment of TNBC patients with ICI. Improved decision-making
would prevent non-responding patients to receive ineffective and
expensive treatment, and potentially challenge the diagnostic
need for tissue stainings, which require whole tissue sections that
are often not available, as well as uniform staining protocols and
training of pathologists. Regarding the diagnostic implementation
of the gene classifier, expressions from those genes that are part of
our gene classifier could be developed into a routine tool. Alter-
natively, NGS-techniques, expected to become part of systemic
evaluations of tumor tissues for targetable alterations in the near
future at departments of Pathology of Medical Centers, could be
used towards the application of the gene classifier.

The excluded and ignored phenotypes do not respond to anti-
PD1 and can be considered variants of cold tumors. In addition to
the predictive value of spatial phenotypes, in the TONIC trial, we
observed that proportions of the inflamed phenotype increase
following induction treatment with cisplatin and doxorubicin
(Supplementary Fig. 5¢), suggesting that spatial phenotypes show
plasticity and that cold TNBC (ie. excluded and ignored) can be
primed for treatment with ICL In this regard, the distinct paths of
T cell evasion that characterize these phenotypes provide
actionable targets in order to prime for treatment with ICI

(illustrated in Fig. 6, and discussed below). In case of the excluded
phenotype, we argue that inhibitors of TGFp, such as the
bifunctional anti-PDL-1 mAb/TGFf trap M7824, and inhibitors
of VEGF receptor kinases, such as cediranib, both being in clin-
ical development for TNBC*2>%3 and the latter being FDA-
approved for other malignancies*#*>, can potentially prime for
ICI. In case of the ignored phenotype, blockers of the WNT
pathway, such as WNT974 and/or drugs that target M2 macro-
phages, such as pexidartinib, a CSF1R inhibitor that depletes M2
macrophages, are of interest, and are currently being tested in
TNBC?, The inflamed phenotype, being enriched in patients
responding to anti-PD1 treatment, would be the phenotype of
choice to start combination ICI treatment. In case ICIs are not
effective, this phenotype could potentially benefit from combining
multiple ICIs or priming with CSF1R inhibitors that target M2
macrophages. Another mode of priming the inflamed phenotype
could be reactivation of type I/II IFN pathways, thereby re-
boosting antigen presentation, as well as recruitment and func-
tion of intratumoral CD8 T cells?’; to this end, an option could be
the epigenetic drug decitabine that is approved for other indica-
tions and has shown promising results in preclinical studies of
TNBCY.

The above-mentioned targets are part of larger immune net-
works that were revealed upon integrative analyses of TNBC
samples using NGS and multiplexed IF. The charting of these
larger networks enabled the identification of TME- and immune
response-mediated paths of T cell evasion and their relationship
to ICI response. Following this approach, we observed that the
excluded phenotype was characterized by CD4+, CD8+, CD20+,
and CD56+ lymphocytes that were preferentially located at the
tumor border at large distances from tumor cells. This phenotype
had high expression of collagen-10, which is not present in
normal tissues*8, is associated with epithelial-to-mesenchymal
transition??, as well as poor survival in TNBC and various other
tumor types®?. Recently, it has been suggested, based on collagen
fiber density (not further specified) and in silico modeling of T
cell influx, that T cell exclusion in TNBC is regulated by che-
morepellents rather than barriers of extracellular matrix®!. In
contrast, our gene expression and in situ stainings (Figs. 4c, h and
5a, b) strongly suggest that T cell exclusion is due to collagen-10
deposition, possibly hinting toward a unique role of collagen-10
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imposing a physical barrier to T cell influx. Next to the collagen
barrier, our data point to enhanced tumor cell glycolysis, which
has been reported to suppress T cell-mediated apoptosis of TNBC
in vitro®2, and which may further promote T cell exclusion. In
addition, several serpins and other protease inhibitors, such as
SERPINEI, SPINK1, and SLPI, demonstrated high gene expres-
sion. These enzyme inhibitors limit the activity of matrix metal-
loproteases or granzymes, thereby again potentially inhibiting T
cell influx or T cell-mediated apoptosis of tumor cells>3. All
immune evasive pathways associated with the excluded pheno-
type are inter-related (Supplementary Fig. 9b) and strongly cor-
relate to the expression of TGFB and VEGF pathways (Fig. 4e),
which most likely represent upstream regulators that contribute
to TME-mediated T cell evasion. Interestingly, a study by Mar-
iathasan and colleagues showed that T cell exclusion in bladder
cancer patients was attributed to stromal remodeling via TGF(
and revealed in a mammary mouse model that pharmacological
blockade of TGFB promotes T cell inflammation>.

The ignored phenotype was characterized by no or very low
densities of CD8+ T cells and either showed high expression of
target genes of the WNT and PPARG/RXR pathways or contained
CD163+ macrophages and CD66b+ neutrophils. Activation of
the WNT pathway promotes T cell exclusion in bladder cancer?*
and melanoma, and in the latter, the mechanism has been
attributed to the failure of cDCI recruitment?®. In line with these
data, we found inverse correlations between WNT pathway
activity and the presence of CLEC9A+ DC and CD8+ T cells, as
well as TCR repertoire skewness. Also activation of the PPARG/
RXR pathway has been related to T cell exclusion and resistance
to ICI in bladder cancer>?, suggesting that the occurrence of both
WNT and PPAR pathways are representative of pan-cancer
mechanisms of TME-mediated T cell evasion. Notably, we
observed strong inverse correlations with either pathway and the
abundance of CD163+ cells (Fig. 4f), and argue that the presence
of M2 macrophages represents a second immune escape
mechanism of the ignored phenotype. Murine models of BC
revealed that S100A7 expression induced M2 macrophage
recruitment and promoted metastasis3®. In the current study with
patient materials, however, we found that numbers of SI00A7+
tumor cells, as well as CD163+ cells, located at the border, were
positively correlated with MFS (Supplementary Fig. 11) and (low)
frequencies of CD8+ T cells, arguing that recruitment of these
myeloid cells is part of a negative-feedback loop that follows an
initial immune response.

Finally, the inflamed phenotype was characterized by high
numbers of intratumoral CLEC9A+ DC and lymphocytes. The
prognostic value of TILs was mainly attributed to T and B cells
located in tumor regions, a finding that is in line with earlier
observations showing that proximity to tumor cells is a pre-
requisite for the effective anti-tumor activity of lymphocytes*!.
The inflamed phenotype had a high TCR clonality independent of
the level of neo-antigens and showed the highest expression of
genes associated with immunogenic cell death, type I/II IFNs, and
chemo-attractants. Interestingly, we observed that gene sets
associated with necrosis, but not any other form of cell death,
strongly correlated with densities of CD8+ T cells (Supplemen-
tary Fig. 9¢), suggesting that immunogenic cell death may be a
trigger of the cDCl-initiated adaptive immune response. Despite
high numbers of DCs, TILs in the inflamed phenotype over-
expressed genes encoding for various immune checkpoints and
only a minority of TILs expressed ICOS or 41BB (Fig. 5f). In fact,
a large fraction of the inflamed phenotype showed genetic
alterations in MHC-I (Fig. 3b) and downregulated expression of
MHC-II by tumor cells (Fig. 5d). All the above changes are again
inter-related (Supplementary Fig. 9b) and considered part of an
immune response-mediated negative-feedback loop, and may

contribute to the relatively low frequency of sustained clinical
responses to ICI even in the inflamed phenotype.

Our study has a number of limitations. For instance, the pre-
dictive value of our classifier is based on relatively small numbers
of patients in a phase II trial. In addition, the performance of the
gene classifier in other patient subsets, tumor sites, or tumor
types, such as those that rely exclusively on TCGA data, might be
less accurate and requires validation with IHC. Another limita-
tion is that multiplex-IF analysis was performed using digital
image analysis of defined regions which may not fully reflect
tumor heterogeneity, and despite vigorous manual verification,
computed assignments of compartments and immune cells may
harbor a certain degree of misclassification. Last, the proposed
spatial phenotype-specific treatments require functional and
clinical validation.

In conclusion, our study has resulted in the development and
validation of a gene-classifier that accurately assigns spatial
immunophenotypes in TNBC and metastatic TNBC, and is asso-
ciated with prognosis in TNBC and various other cancers. This
spatial-phenotype-classifier predicts patient response to anti-PD1
independently of currently used clinical markers and outperformes
other gene-signatures, thereby addressing an urgent clinical need.
Finally, in-depth analysis of NGS, immunologic and clinical sets of
patient data points toward actionable targets that may proof ben-
eficial for phenotype-stratified ICI therapy in TNBC.

Methods

Cohorts of patients. Cohort A: Node negative, primary TNBC from patients who
did not receive adjuvant treatment. FFPE resection materials were used for: whole
tissue stainings for CD8 stainings (# = 228); stainings for multiple immune cells/
molecules on consecutive sections (n = 30); multiplexed stainings for immune
effector cells (n = 64) and cells/molecules related to spatial phenotypes (n = 68);
microarray gene expression analysis (n = 101, A1); as well as RNAseq data analysis
(n =43, A2); Complete clinicopathological records were available with >10-year
follow up (n=122).

Cohort B: Node-negative, primary BC from patients who did not receive
adjuvant treatment (n = 867 of which n = 196 basal-like BC) with microarray data
retrieved from gene expression omnibus GSE2034, GSE5327, GSE11121, GSE2990,
and GSE7390. Details of combined cohort have been described previously!?.

Cohort C: Primary BC with RNAseq and WGS data (n = 347 of which n=66
TNBC)®¢ accessible through European genome-phenome archive
EGAS00001001178.

Cohort D: Metastatic TNBC from patients treated with anti-PD1 antibody in
the TONIC-trial (n = 53 of which n = 44 paired samples)® with processed
transcriptome data of pre- and postinduction treatment biopsies retrieved via
controlled access (available through EGAS00001003535). Stromal TILs were scored
independently by RS and HH, according to an accepted international standard
from the International Immuno-Oncology Biomarker Working Group (see
www.tilsinbreastcancer.org for all guidelines on TIL assessment in solid tumors).
PD-L1 stainings (22C3 assay) were assessed independently by RS and HH and the
percentage of positive tumor-infiltrating immune cells was scored.

Cohort E: TCGA data®’, as well as sample annotation data of TNBC were
retrieved from the USCS xena browser (n = 5194 of which 1284 BC of which in
turn 137 TNBC). Transcriptome data of anti-PD1 pretreatment biopsies from
melanoma patients (n = 28) or treated with anti-PD1 antibody (n = 65) were
retrieved from GSE782203%and GSE910613°.

See Supplementary Table 1 and Supplementary Fig. 1 for clinical details and
application of these cohorts.

Cohort F: Metastatic TNBC with whole tissue CD8 stainings and RNAseq
(n =12 lymph-node macrometastases).

Ethics statement. This study has been approved by the Medical Ethical Com-
mittee at Erasmus MC (MEC.02.953, MEC-2020-0090), and was performed
according to the Declaration of Helsinki and the Code for Proper Secondary Use of
Human Tissue in The Netherlands (version 2002, update 2011) of the Federation of
Medical Scientific Societies in The Netherlands (http://www.federa.org/), the latter
granting authorized use of coded spare tissue (from Cohort A and Cohort F) for
research. For details on previously published, publicly available datasets see
respective references provided in methods and supplementary table 1.

Tissue stainings and image analysis

Immunohistochemistry (IHC). IHC was performed on TNBC whole tissue sections
(FFPE) comprising different histological subtypes, which were assigned by
experienced pathologists (Supplementary Fig. 8d). IHC stainings were performed
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following heat-induced antigen retrieval for 20 min at 95 °C. After cooling to RT,
staining was visualized by the anti-mouse EnVision+ ® System-HRP (DAB)
(DakoCytomation). The following primary antibodies were used: CD8 (C8/C144B,
Sanio, 1:100, pH 9); CD3 (PS1, Sigma, 1:25, pH 6); CD4 (4B12, DAKO, 1:80, pH 9),
CD137 (BBK-2, Santa Cruz, 1:80, pH 6), CD278 (SP98, Thermo Fisher, 1:50, pH 9),
CD66b (80H3, BIO-RAD, 1:100, pH 9), MECA-79 (C111-6, Santa Cruz, 1:50, pH
9), and MHC-II (LN3, Thermo Fisher, 1:50, pH 9).

Multiplexed immunofluorescence (IF). Multiplexed IF was performed using OPAL
reagents (Akoya Biosciences) on whole slides (using a randomly selected subset of
cohort A with comparable fractions of all spatial phenotypes). In brief, stainings
included multiple cycles of antigen retrieval (15 min boiling in antigen retrieval
buffer, pH 6 or pH 9 depending on primary antibodies) followed by cooling,
blocking, and consecutive staining with primary antibodies, HRP-polymer, and
Opal fluorophores; cycles were repeated until all markers were stained. Finally,
nuclei were stained with DAPL

Immune effector panel (number indicates position of primary antibody). 1. CD56
(MRQ-42, Sanbio, 1:500)—OPAL620; 2. CD3 (SP7, Sigma, 1:350)—OPAL520; 3.
CD20 (126, Sanbio, 1:1000)—OPAL650; 4. CD8 (C8/144b, Sanbio, 1:250)—
OPAL570; 5. CD68 (KP-1, Sanbio, 1:250)—OPAL540; 6. Cytokeratin-Pan (AE1/
AE3, Thermofisher, 1:200)—OPAL690; 7. DAPI.

Spatial phenotype panel (number indicates position of primary antibody). 1.
CLEC9A (sheep polyclonal*, R&D Systems, 1:600)—OPAL570; 2. S100A7
(47C1068, Biotechne, 1:1000)—OPAL650; 3. CD11b (EP1345Y, Abcam, 1:200)
—OPAL690; 4. CD8 (C8/144b, Sanbio, 1:250)—OPAL540; 5. CD163 (MRQ26,
Cell Marque, 1:50)—OPAL520, 6. COL10A1 (X53, Life Technologies, 1:50)—
OPAL620; 7. Cytokeratin-Pan (AE1/AE3, Thermofisher, 1:200)—Coumarin;
8. DAPL

* Sheep IgG VisUCyte HRP polymer (R&D Systems) was used as the secondary
antibody.

Manual scoring. THC was scored for the frequency of CD8+ T cells at the border
and in the center by DH and AMT, independently of each other (illustrated in
Supplementary Fig. 2a). The border region included the invasive margin, and
covered ~50% tumoral area (tumor cells and stroma) and ~50% peritumoral area
(no or only isolated tumor cells, particularly in case of ILC subtypes), whereas the
center region included non-necrotic regions, and covered tumor and stroma. In
case of LN metastases, only border regions that were not surrounded by lymphoid
tissue were evaluated. The spatial phenotype of CD8+ T cells was determined using
whole slide scans (Hamamatsu slide scanner) at 1x magnification and using at least
8 regions of interest at 20x magnification in border and center. Scoring criteria
were as follows: inflamed: almost equal frequencies of CD8+ T cells at the border
and center; excluded: >10 times more CD8+ T cells at the border compared to
center; and ignored: hardly any CD8+ T cells present at the border and center. All
immune markers stained on consecutive slides were scored at 20x magnification (at
border and center) and reported as the percentage of positive cells (of total nuclei).
TLS were identified as dense clusters of CD4+ T cells and CD20+ B cells on
consecutive slides (as shown in Fig. 1f), whereas HEV were identified as vessels that
were MECA-79 positive (frequently found in TLS), and both the TLS and HEV
were reported as total number per tumor.

Digital image analysis. Following whole slide scans using VECTRA 3.0 (Akoya
Biosciences), at least eight stamps (regions of interest; stamp size: 670 x 502 um?;
resolution: 2 pixels/pm?; pixel size: 0.5 x 0.5 tm?) were set in non-necrotic areas at
the tumor border (containing 50% peritumoral region) and center (both the
comprising tumor, as well as stroma compartments, illustrated in Supplementary
Fig. 3b). In case parts of the tissue were disrupted or lost due to repeated staining
cycles, fewer stamps were set or tissues were excluded from analysis (in case of
<3 stamps at either border or center regions). Tissue-segmentation was performed
according to cytokeratin and DAPI staining; cell-segmentation and phenotyping of
individual cells were performed according to individual markers and presence of
DAPI using Inform software; and enumerations at border (tumor and stroma) and
center regions (tumor and stroma) were summarized for all stamps per sample.
Spatial phenotypes were determined according to median CD8+ T cell density at
border and center as follows: inflamed, >200 cells/mm? at border and ratio between
border and center <10; excluded, >200 cells/mm? at border and ratio between the
border and center >10; ignored <150 cells/mm? at border and center. All scans
fulfilled either of these 3 spatial phenotypes. Collagen-10 was identified through
tissue seqmentation and quantified as collagen-10-positive tissue area. Nearest-
neighbor analysis was performed in R using the PhenoptR package (Akoya
Bioscience), to which end, the number of non-CD8+ T cells within a 10 pm radius
of CD8+ T cells were calculated from the Inform-derived cell-segmentation files in
Phyton.

Gene expression and DNA mutational analysis
RNA sequencing. RNAseq data were collected from fresh frozen TNBC using
150 bp paired-end with LncRNA library (Ribo-zero RNA) on Illumina HiSeq. RNA

was isolated from FFPE using the RecoverAll Total Nucleic Acid Isolation Kit for
FFPE (Thermofisher). RNA was sequenced using the FFPE sample Eukaryotic
RNA-seq Library (250 ~ 300 bp insert strand specific library with rRNA removal)
on the Illumina Novoseq6000 platform at Novogene. Although FFPE starting
material yielded poorer quality of RNA when compared to FF samples, we still
captured sequencing data of n =12 out of n =15 samples with sufficiently high
quality: i.e., these samples contained <50% duplicated reads (ranging from 20 to
45%); >50% mapped reads (ranging from 55 to 95%); and expressed >75% of
classifier genes.

Data normalization. Microarray data were normalized using fRMA>8 and corrected
for batch effects using ComBat>. RNAseq data (cohorts A2, C, D E (TNBC)) were
aligned with GRCh38 using the STAR algorithm® (version 2.4.2a) and geTMM
normalized®! for DE analyses. For pan-cancer analyses (Supplementary Fig. 5)
preprocessed data was used (i.e., TCGA other than BRCA: EB + + Adjusted; and
ICI-treated melanoma patients: FPKM normalized).

TCR repertoire, neo-antigen, and mutational signature analysis. TCR clonality was
estimated using the MIXCR algorithm®2; output was processed with tcR package®?
in R and reported as TCR diversity (total number of TCR-V reads per sample)
and TCR repertoire skewness (Gini-Simpson index of TCR-V reads per sample).
Prediction of neo-antigens was performed with netMHCv3.4%* as described
previously!%-65. In brief, 17-mer peptides containing a mutated amino acid derived
from a nonsynonymous mutation at the center position were run through the
online prediction server Net-MHC to predict EC50 values of all possible 9-mer
peptides for HLA-class I molecules, and a peptide with a predicted EC50 < 50 nM
was considered a possible neo-epitope. Mutational signatures were identified
through the Wellcome Trust Sanger Institute mutational signatures
framework>6:66,

Differential gene-, pathway-, and immune cell subset analyses. Differential gene
expression (DE) analysis was performed in R using limma/voom. Differentially
expressed genes (p <0.05, logFC > 1) were used for ingenuity pathway analysis
(IPA software, core analysis). Spatial phenotypes were also interrogated for DE of
gene-sets related to T cell evasion!?. The expression of a gene-set was determined
as an average expression of all genes in the respective set. Immune cell frequencies
were estimated using the CIBERSORT algorithm®” in absolute mode. Gene-set
entichment analysis for Hallmark and Kegg datasets (v7.2) was performed using
GSEA 4.1.0 software®® using weighted signal-t- noise ranking with 1000
permutations.

Gene classifier to assign spatial phenotypes. In a discovery set (Cohort Al,

n =101 primary TNBC), we selected the top differentially expressed genes among
inflamed, excluded and ignored phenotypes (>1logFC among all 3 phenotypes;
Pagj < 0.05) of samples with microarray data and corresponding CD8+ T cell
staining data (Fig. 2a). Expressions for each classifier gene were averaged for each
of the three spatial phenotypes, ranks of gene expressions were calculated per
spatial phenotype (Supplementary Data 1), and assignments were based on the
highest Spearman rank-correlations between the unknown samples and ranked
expressions of classifier genes per spatial phenotypes of the discovery set. In a
validation set (Cohort A2, n =43 primary TNBC), RNAseq data of independent
samples with corresponding CD8+ T cell staining data were used to assign phe-
notypes based on the highest rank-correlations with the discovery set (A1), and
yielded 81% accuracy (Table 1). Correct assignment of unknown samples from
Cohort B (RNAseq data) was verified by comparison of T cell characteristics, such
as TCR-V repertoire diversity and numbers of intratumoral T cells, with those of
Cohort A2 (RNAseq and CD8+ T cell stainings), and the classifier-assigned
samples were found non-different compared to those from the validation set
(Supplementary Fig. 4a, b). An additional validation set (Cohort F, n =12
metastasized TNBC) with RNAseq data and corresponding CD8+ T cell staining
data showed 83% accurate assignment of spatial immunophenotypes in TN lymph-
node metastases (Table 2). Clinical validation was done using metastasized lesions
from TNBC patients treated with anti-PD1 antibody (Cohort D, pretreatment),
from which 3 out of 53 samples were excluded because of equally high rank
correlations. Assignment of spatial phenotypes in metastatic lesions did not depend
on lesion site. We did observe significantly different proportions (decreased fre-
quency of inflamed, as expected) in the metastasized (cohort D) versus primary
setting (Cohorts Al and C) (Supplementary Fig. 4d, ). Predictive value of classifier
gene-sets was determined by fitting ROC curves for anti-PD1 response. Responders
(CR, PR, SD > 24 weeks) and nonresponders (PD) were separated using the pROC
package in R. Excluded and inflamed gene-sets were calculated as average scores of
all respective genes, and PD-L1 and sTIL scores were scored as described beforeS.

Statistical analysis. Statistical analysis was performed in R version 3.5.1 or
GraphPad Prism 6. Log-rank test for trend was used to compare Kaplan-Meier
curves; Cox-regression analysis was used to assess HR of immunophenotypes,
clinical parameters (age, grade, and size which were used as continuous variables),
cell types or gene-sets; and Logistic regression was used to determine OR of gene-
sets (glm.OR function). Multiple testing correction was performed for differential
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gene expression analysis using the Benjamini-Hochberg method. Kruskal-Wallis
test was used to assess differences in gene expression and immune cell densities
among spatial phenotypes; Pearson-correlation was used to assess linear relation-
ships between continuous variables; and Chi-Square test or Fishers’ exact test (in
case of small sample sizes) were used to assess relationships among factorial
variables. The following significance levels were used: *p < 0.05; **p < 0.01;

*HEp < 0.001; ¥FF¥*p < 0.0001; NS, p>0.5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All WGS, RNAseq and microarray data are available at the Gene-Expression Omnibus
(GEO), European-Genome Phenome Archive and USCS Xena browser: RNAseq data
from Cohort A is available through at GEO (GSE177043). Microarray data from Cohort
A is available at GEO (GSE12276; GSE47389 and GSE27830, for individual sample
accession codes see Supplementary Data 2). For processed imaging and
immunogenomics data of Cohort A see Supplementary Data 2. Raw imaging data is
available upon request. Microarray data from Cohort B is available at GEO (GSE2034,
GSE5327, GSE2990, GSE11121 and GSE7390 %°-73). RNAseq data from Cohort C is
available at EGA (EGAS00001001178 6). RN Aseq data from Cohort D is available under
controlled access at EGA (EGAS00001003535 8). Cohort E has been retrieved from
https://xenabrowser.net/ (data generated by the TCGA Research Network: https://
www.cancer.gov/tcga.), and from GEO (GSE78220, GSE91061 35:39). Classifier gene
expressions and THC scores from Cohort F are provided in Supplementary Data 3. The
remaining data are available within the article, supplementary information or source data
file. Source data are provided with this paper.
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