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Mapping the glycosyltransferase fold landscape
using interpretable deep learning
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Glycosyltransferases (GTs) play fundamental roles in nearly all cellular processes through the
biosynthesis of complex carbohydrates and glycosylation of diverse protein and small
molecule substrates. The extensive structural and functional diversification of GTs presents a
major challenge in mapping the relationships connecting sequence, structure, fold and
function using traditional bioinformatics approaches. Here, we present a convolutional neural
network with attention (CNN-attention) based deep learning model that leverages simple
secondary structure representations generated from primary sequences to provide GT fold
prediction with high accuracy. The model learns distinguishing secondary structure features
free of primary sequence alignment constraints and is highly interpretable. It delineates
sequence and structural features characteristic of individual fold types, while classifying them
into distinct clusters that group evolutionarily divergent families based on shared secondary
structural features. We further extend our model to classify GT families of unknown folds and
variants of known folds. By identifying families that are likely to adopt novel folds such as
GT91, GT96 and GT97, our studies expand the GT fold landscape and prioritize targets for
future structural studies.
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lycosyltransferases (GTs) are a large family of enzymes

tasked with the biosynthesis of complex carbohydrates

that make up the bulk of biomass in cells!. Prevalent
across the tree of life, these enzymes catalyze the transfer of a
sugar molecule from an activated donor (mostly nucleotide sugars
or dolichol-(pyro)phosphate linked sugars) to a wide variety of
acceptors ranging from proteins and fatty acids to other carbo-
hydrate molecules. The CAZy database? classifies over half a
million GT sequences across organisms into 114 families based
on overall sequence similarity. While sequences within families
share detectable sequence similarity, sequences across families
share little or no similarity?. The extensive diversification of GT
sequences presents a major bottleneck in investigating the rela-
tionships connecting sequence, structure, fold, and function.

As with other large protein families, GTs also exhibit much
higher conservation in 3D structural fold compared to primary
sequences*~0. Across all 114 families, only 3 major folds have
been identified (GT-A, -B, and -C folds) with some families
adopting other unique folds!7:8, Currently, around 34 GT
families are classified as GT-A fold, 32 families as GT-B and 10
families as GT-C. In addition, a large family of peptidoglycan
polymerases of the GT51 family has been known to adopt a
unique lysozyme-type fold®. Recently, we proposed a phyloge-
netic framework relating diverse GT-A fold enzymes leveraging
the common structural features identified through structure-
guided curation of large multiple sequence alignments3. While
such multiple sequence alignment-based approaches have pro-
vided insights into GT-A fold structure and evolution, such
approaches are not scalable to other GT folds for which there is
limited structural data or limited structural homology.

The recent explosion of deep-learning methods, in particular
multilayer neural networks, offer new opportunities for sequence
classification and fold prediction through feature extraction and
pattern recognition in large complex datasets!®!l. The most
recent successful application of these methods has been in the
area of protein structure prediction in which the deep-learning
model extracts residue co-variation from multiple sequence
alignments to predict residue contacts in 3D structures!2-18. Of
note is Alphafold2!?, an attention-based model that significantly
outperformed other structure prediction methods in the biennial
CASP assessment?0. Other related efforts have focused on making
residue level predictions such as disorder, solvent accessibility,
and post-translational modifications?!~2* using evolutionary
information encoded in multiple sequence alignments. In these
applications, the accuracy of predictions relies heavily on the
quality of input multiple sequence alignments and these models
cannot be directly extended for the study of divergent protein
families such as GTs for which generating accurate multiple
sequence alignments is a challenge for reasons mentioned above.
Furthermore, the black-box nature of existing deep-learning
models prevents a direct biological interpretation of sequence or
evolutionary features contributing to structure or fold prediction.

Here, we report a convolutional neural network?® with atten-
tion (CNN-attention)-based model for GT-fold type prediction
solely based on secondary structure annotations as input. These
coarse-grained input features are based on the premise that
protein secondary and tertiary structures are far more conserved
than primary sequences. Our model makes no use of amino acid
physicochemical properties nor does it rely on generating evo-
lutionary or alignment-based information and yet, achieves an
average accuracy of 96% on fold prediction, and 77% on family
classification. In contrast, other methods such as the Hidden
Markov model (HMM)2%, Long Short-term Memory (LSTM)!>,
and other CNN-based methods!® had a much lower accuracy for
both fold and family classification. By using specially designed
attention?” modules, the trained model can generate highly

interpretable activation maps that help locate conserved segments
within sequences that point to the common cores within folds.
We further leverage recent advances in open set recognition?
and use a specially modified reconstruction error loss term to
determine similarities between GTs so as to expand our model
beyond known GT folds. The major advantages of our model are
threefold: (1) We propose an alignment-free method to explore
protein folds by leveraging secondary structure prediction as
input data. (2) We focus on the interpretability of the model to
mine features learned by the model and make meaningful bio-
logical inferences. (3) We extend our trained model to make
predictions on GT families with unknown folds and report the
ones most likely to adopt novel fold types to guide further
research on the discovery of novel glycoenzymes. The approach is
applicable to other broad, heterogeneous protein families where
challenges in primary sequence alignment approaches have hin-
dered the analysis of fold classification and evolutionary
relationships.

Results
A deep-learning framework to identify, classify, and predict
glycosyltransferase folds. We first sought to develop a deep-
learning model that could distinguish the features of glycosyl-
transferase (GT) structural folds from a large amount of readily
available sequence information. To this end, we collected over
half a million GT sequences from the CAZy database and filtered
them based on sequence similarity, length, and other criteria (see
“Methods”) to generate a representative set of 44,620 GT
sequences spanning all folds and families for training. Previous
large-scale analysis of GTs has revealed that the overall organi-
zation of the secondary structures is far more conserved within
folds than primary sequences®2?. Therefore, we identified sec-
ondary structure patterns using NetSurfP2.024 and used them as
the only input to train a six-layer CNN model for multitasking
fold and family classification (Fig. 1 and Supplementary Fig. 1).
After refinement by the addition of attention modules and data
augmentation strategies (“Methods”), the final optimized model
achieves fold prediction with 96% accuracy and family classifi-
cation with 77% accuracy, based on tenfold cross-validation.
Results for this final model highlighting the effects of data aug-
mentation and the addition of multitasking and attention mod-
ules are provided in Supplementary Table 1. We also compared
our model with several other alternative methods that are routi-
nely applied in protein classification problems such as secondary
structure-based HMM searches?® (Supplementary Table 2), a
Long short-term memory (LSTM) model!®, another CNN-based
model!®, and a more recent transformer-based embeddings
model with GDBT classifier!”!8 (Supplementary Table 3). These
comparisons further illustrate the efficiency of our CNN-
attention model both in terms of accuracy and interpretability.
While the transformer model achieves comparable accuracy, its
generated projections do neither separate the GT folds as effi-
ciently (Supplementary Fig. 2) nor is the model interpretable.
The first three layers of our CNN model (Block 1, Fig. 1) learn
different levels of patterns in conserved secondary structure
features guided by the class labels. These features are stored as
layer-specific weights along with their spatial resolution enabling
the use of methods such as Class-specific Activation Maps using
Grad-CAM3931 (CAM) to project them back into the linear
sequences and 3D structures. This projection assigns CAM values
to specific residues within sequences and structures where high
CAM values correspond to residue positions that distinguish
them the most from other class labels (folds and families). Thus,
CAM values can be used to identify the distinguishing features of
a given GT fold recognized by the model. The last three layers
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Fig. 1 Overall schematics of the deep-learning model used. A three-state secondary structure prediction matrix for each sequence is used as input to Block
1. Block T includes the first three sequential one-dimensional convolutional layers with attention for feature maps refinement. Feature maps from Block 1 are
passed through a global average pooling for dimension reduction and fed into Block 2 with three additional convolutional layers, and finally used to make
predictions for both fold and family. Blocks 1 and 2 constitute the deep CNN model for classification. Using Grad-CAM, features from Block 1 are mapped
back into sequences and structures for interpretation. Features from Block 2 are passed to UMAP for dimensionality reduction and visualization. Weights
and features from Block 1 are frozen and used in an encoder that is passed to Block 3 which is the decoder with multiple deconvolution steps that complete
an autoencoder model. Reconstruction error (¢) from this model is used to make predictions of fold type on GT families with unknown folds (GT-u).

(Block 2, Fig. 1) further optimize the associated feature weights
before feeding them into a fully connected multitask classifier to
generate a classification with high accuracy. We extract these
optimized feature embeddings and analyze them using dimen-
sionality reduction by Uniform Manifold Approximation and
Projection (UMAP)3? to visualize the classification (Supplemen-
tary Fig. 3). In contrast to the more prevalent black-box deep-
learning models, this architecture results in a highly interpretable
model®3 with quantitative outputs to evaluate each step with high
scrutiny and draw meaningful insights into secondary structure
patterns associated with GT function and fold.

These two blocks also enable us to classify GT families of
unknown structures into known folds or assign them to novel
folds. To classify GT families of unknown structure or fold, we
integrate an autoencoder framework to our existing model in
which the optimized weights from Block 1 are frozen and used as
a general feature extractor for the encoder. Block 3 (Fig. 1) is then
designed as a decoder with a mirror structure of the CNN model
that performs deconvolution operations. Applying the concepts of
open set recognition framework that aim to extend knowledge
from observed samples (closed set) to unseen samples (open set),
we generate reconstruction errors (RE) using a modified mean
square error, which measures how close a sequence with an
unknown fold is to one of the known GT folds used in training
(“Methods”)3%. This measure is then used to identify GT families
that are most likely to adopt novel folds. We discuss the results
from the three blocks of our model in the following sections.

A landscape of all GT folds reveals distinct clusters within
major fold types. We visualized feature maps generated from the
three layers of Block 2 with the UMAP algorithm32 (Fig. 2a). As
expected, we find separations between all the major GT folds,
highlighting the model’s ability to distinguish them. Sequences
from the same GT family cluster together throughout, indicating
the conservation of secondary structures and the overall fold
within individual families (Supplementary Fig. 4, bottom panel).

NATURE C

Moreover, we find distinct substructures for the GT-A, -B, and -C
fold types. To further analyze these substructures, we first ran
separate UMAP analyses on each of the threefold types and
clustered the resulting projections using the Gaussian Mixture
Model (GMM) algorithm3” to identify clusters within the major
GT fold types. This resulted in two GT-A clusters and three GT-B
and GT-C clusters.

The two distinct GT-A clusters accounted for most of the
families with 17 out of 34 families grouping into a larger GT-A0
cluster. Ten families were grouped into the GT-A1 cluster, while
the remaining seven families did not group and scattered away
from the two central clusters (Fig. 2b). Sixteen out of 32 GT-B
families used in training fall within the central GT-B0 cluster,
while other families are spread out into smaller subclusters (five
families in GT-B1, six in GT-B2, and five families ungrouped)
(Fig. 2¢). Likewise, GT-C sequences are also scattered across three
major clusters (Fig. 2d) with only two out of ten families (Alg10
glucosyltransferases of GT59 and the bacterial GT85 family) not
grouped into any of the three clusters. We discuss the structural
basis for the separation of these GT-A, -B, and -C clusters in the
following sections. In contrast, the lysozyme-type GT fold
sequences (GT-lyso) all cluster into a single compact cluster,
indicating the structural similarity within this fold type and its
stark difference from all the other fold types. A list of families
belonging to each of these identified clusters is provided in
Supplementary Table 4 and their placement in the clusters within
the UMAP projections are labeled in Supplementary Fig. 5. The
2D UMAP projection also shows several outlier sequences that do
not fit within individual clusters. These sequences were either
fragments that lack an entire GT domain or display secondary
structure patterns significantly different from related family
members (Supplementary Fig. 6).

CAM maps for GT-A clusters highlight differences in shared
structural features. In order to understand the structural features
of the major GT folds and their respective clusters, we mapped
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Fig. 2 UMAP projection shows the separation of the major GT fold types. Dots represent 2D UMAP projection of features for individual sequences.
UMAP plot was generated across a scan of parameters (n_neighbors = 5, 15, 20 and min_dist = 0.001, 0.01, 0.1, 0.5) with three plots for each combination
of parameters to ensure reproducibility (Supplementary Fig. 3). a Dots are colored based on their fold type and show a clear separation. Representative
structures for each fold type are also shown. UMAP was applied separately on each major fold type and the projections for sequences belonging to the GT-
A (b), GT-B (¢), and GT-C (d) folds are shown. Clustering was done on these projections based on a Gaussian Mixture Model (GMM). Gray lines
represent the contour for GMM scores around each cluster. Sequences that belong to a cluster are colored in yellow, magenta, or purple and are labeled
with the cluster name. Sequences that do not belong to any cluster are colored in teal. Source data are provided as a Source Data file.

the CAM values obtained from each of the first three layers of the
CNN model back to their respective sequences. In our previous
work3, we identified a common core shared by all GT-A fold
enzymes. We first mapped the CAM values back to this GT-A
common core alignment (Fig. 3a, b). We find that the regions
with the highest conservation in the GT-A core (such as the DXD
motif, G-loop, and the first two beta-sheets of the characteristic
Rossmann fold) correspond to the regions with the highest CAM
values, indicating that the model is using these conserved regions
to distinguish the GT-A fold from other GT fold types. It is
important to emphasize that while our previous analysis required
a laborious curation of the profiles and alignment to identify these
regions, our current CNN-attention model was able to recognize
and utilize these regions without any prior information or
sequence alignment but only based on the predicted patterns of
conserved secondary structures across sequences.

CAM maps generated from layer 2 were the most informative
and matched well with the core features of the GT-A fold. Layer 1
CAM values correspond to minute regions scattered throughout
the domain and likely indicate local features learned by the model
while CAM values from layer 3 extend over longer contiguous
regions (Fig. 3c), possibly capturing long-range correlations.

UMAP projection and clustering indicate the presence of two GT-
A clusters (Fig. 2b). GT-A cluster 0 (GT-A0) primarily constitutes
large and phylogenetically distinct GT-A families such as GT2 and
GT8 along with their closely related counterparts like GT84 (B-1,2-
glucan synthases), GT21 (ceramide [-glucosyltransferases), and
GT24 (glycoprotein a-glucosyltransferases) (Supplementary Table 4).
This cluster includes more than half of all the GT-A sequences used
in training and represents a consensus secondary structure that most
closely matches the conserved core of the GT-A fold. The GT-Al
cluster includes GT31 and closely related families like GT15 and
GT67. It also includes phylogenetically and functionally diverse
families like GT7, GT77, and GT6. Meanwhile, families such as
GT88 (bacterial Lgtl sequences known to include large multi-helix

insertions®®), GT75 (that includes the self-glucosylating B-glucosyl-
transferases and  UDP-1L-arabinopyranose mutases), GT54
(MGAT4), and a few others are isolated away from the two main
clusters (Supplementary Fig. 5), indicating some distinction in their
secondary structure patterns from other GT-A families.

In contrast to the GT-Al consensus, GT-AO families are
distinguished by helical segments: the first one in the hypervari-
able region 2 (HV2) preceding the G-loop and the second one in
the C-terminal HV3 region following the C-His position (Fig. 3c).
Both of these helices have been previously shown to harbor
family-specific residues directly involved in donor or acceptor
binding’. The ability of our model to cluster the evolutionarily
divergent GT-AO families based on the conservation of these
helices highlights the value of our CNN-attention model in
identifying convergent substrate-binding mechanisms that are
difficult to infer using traditional phylogenetic approaches.

The multiple levels of conserved core in GT-B and GT-C
clusters. Our analysis identified a large central GT-B cluster (GT-
BO) that includes some of the largest GT families such as GT4
with diverse functions and donor substrates, the UDP glucose/
glucuronosyltransferases of GT1, GT5 sequences involved in
glycogen and starch biosynthesis, and lipopolysaccharide GIcNAc
transferases of the GT9 family. Other families that cluster toge-
ther include the fucosyltransferases from GT10 and GT37, tre-
halose phosphate synthases from GT20, the xylosyl-/
glucosyltransferases from GT90 and others. Clearly, families with
a variety of functions including the largest and one of the most
ancient families (GT4, which is also present in Archaea) are
grouped together into a single cluster suggesting shared structural
similarities within the GT-B fold. We additionally identify two
other GT-B clusters, GT-B1 and GT-B2, both of which are
slightly sparser than GT-BO and include fewer families (Supple-
mentary Fig. 5). To further expand on the structural similarities
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Fig. 3 CAM highlights the GT-A fold core. a The activation values from layer 2 are plotted in red line on top of the conserved secondary structures (blue
arrows: beta-sheets; red: helices; green: loops, orange: hypervariable regions) and the conservation scores in blue line. The conservation scores and GT
conserved core schematics were collected from ref. 3. The most conserved regions generally have higher activation values. b CAM values are mapped onto
a structural alignment of the GT-A conserved core. The conserved regions are shown to have a high CAM value indicated by high intensity of green and
low CAM value by purple. ¢ Left: consensus secondary structure for the aligned positions in the two GT-A fold clusters are shown (blue: beta-sheets; red:
helices; green: loops). Average CAM values from layer 2 and layer 3 of the CNN-attention model are shown for each aligned position (higher intensity of
green corresponds to a higher CAM value). Cyan and magenta boxes highlight the secondary structure differences between the two clusters near the HV2
and HV3 region respectively. Right: the regions with differences in secondary structure are shown in representative structures from each cluster (GT-AO:
GT81 family structures 3ckqg, 303p, 4yén; GT-Al: GT6 family structures 5c4b, 5nrb, and GT7 family structures 2ae7, 4lwé) and highlighted in cyan and
magenta. The conserved DXD motif, G-loop and C-His are indicated for reference. Donor and acceptor substrates for GT-AO are shown as sticks. Source

data are provided as a Source Data file.

shared within members of these clusters, we compare the CAM
maps obtained for each of the GT-B fold families.

While it has been especially challenging to generate a GT-B fold-
wide sequence alignment due to the lack of sequence conservation,
in order to understand the patterns obtained from our CNN model,
we generated family-level alignments for each of the GT-B families.
We then calculated a consensus secondary structure and average
layer 2 CAM map (Fig. 4a) for each family. All of these families
reflect the typical two P/a/B Rossmann-fold domains characteristic
of the GT-B fold. The most consistent pattern picked up by the
CNN-attention model is the C-terminal Rossmann fold. Features
associated with its 6 beta-sheets are always significant in
distinguishing GT-B families as indicated by the CAM value maps
(cyan box in Fig. 4a) and the conservation of this C-terminal region
extends beyond GT-B0 to GT-B1, GT-B2, and other ungrouped GT-
B families as well. Further, mapping the CAM values to
representative structures revealed that the C-terminal Rossmann-
fold orientation and structure is well-conserved across GT-B families
with occasional family-specific insertions in the loop regions
(Fig. 4b). Thus, our study supports the C-terminal Rossmann
domain as the common structural feature of GT-B fold families.

Upstream of the C-terminal Rossmann fold, CAM values are also
higher in the secondary structure of the N-terminal Rossmann-fold
region, likely indicating its importance in distinguishing the GT-B
fold with 2 Rossmann folds versus the GT-A fold that has only a
single Rossmann-fold domain. However, these CAM value patterns
are not consistent across families. Most families have a different
number and order of beta-sheets, suggesting variability in the
N-terminal domain, likely reflecting its function of binding different

types of acceptor substrates, as shown in the previous studies!>3”.
This variability is especially prominent in GT-B1 where families
accommodate additional secondary structures in the N-terminal
(e.g., tetratricopeptide repeats in GT41 and coiled coils in GT23)
(Fig. 4a Supplementary Fig. 7). Conversely, all families within the
GT-B2 cluster are found to conserve a minimum of six beta-sheets
and five alpha-helices in the N-terminal Rossmann fold, as
indicated by the CAM values (magenta box in Fig. 4a, b),
highlighting the extension of the GT-B2 core to include both the N-
and the C-terminal Rossmann fold domains. The functional
implications of this extended core conservation in GT-B2 families
is yet to be determined.

GT-Cs present an entirely different fold composed of 8-13
hydrophobic integral transmembrane helices with the active site
and catalytic residues in long loop regions that makes them stand
out from other GT fold enzymes?®. The layer 3 CAM values of
our CNN model responsible for capturing long-range features
recognized this trend and presented a consistent pattern for
distinguishing the GT-C fold families (Fig. 4c). In contrast to GT-
A and GT-B, no other trends in CAM values from layers 1 and 2
exist for the GT-Cs, suggesting that the layer 3 features were the
most important and sufficient in distinguishing sequences
adopting a GT-C fold. We define three major clusters within
the GT-C fold families. The GT-CO cluster families have higher
layer 3 average CAM values toward the N-terminal helices, which
most likely is enough to separate them from GT-C1 and GT-C2.
In contrast, GT-C1 includes families that are generally shorter in
sequence length with little to no contiguous loop segments. The
layer 3 average CAM values for these families stay high
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Fig. 4 CAM maps for the different GT-B and GT-C fold clusters highlight their respective conserved cores. a Consensus secondary structure (blue:
beta-sheets; red: helices; green: loops) and average CAM values (higher intensity of green corresponds to a higher CAM value) from layer 2 are shown for
all families belonging to the three GT-B fold clusters. These average values were generated from sequence alignments within each family. High CAM values
within the cyan box point to the C-terminal Rossmann fold conserved across all GT-B fold members and the magenta box points to the N-terminal
Rossmann fold conserved in GT-B2. b A topological representation of the conserved features of GT-B. The conserved C-terminal Rossmann-like fold region
is shown in the cyan box. The N-terminal Rossmann fold, which is most conserved in members of GT-B2 cluster is shown in the magenta box. Conserved
beta-sheets are shown as blue arrows with labels, and alpha-helices are shown as red boxes. Loop regions that have the most variability across families are
indicated by yellow lines. Purple N-terminal loop and orange C-terminal helix indicate the presence of variable secondary structures preceding the
N-terminal and following the C-terminal Rossmann fold, respectively. € Consensus secondary structure and average CAM values from layer 3 for GT-C
families from clusters GT-CO, GT-C1, and GT-C2. Boxes indicate regions with higher average layer 3 CAM values for GT-CO and GT-C2 in the N-terminal
and the C-terminal regions, respectively. For GT-C1, layer 3 CAM is high throughout the full length of the sequences. Source data are provided as a Source
Data file.

throughout the length of the sequences. Moreover, all members of
the three families in GT-C1 are mannosyltransferases (PigM
family GT50, Alg3 family GT58, and bacterial pimE of GT87),
with PigM and Alg3 also known to share detectable sequence
similarity3. Finally, GT-C2 members are distinct from other
GT-C clusters in the C-terminal region where they share a
distinct region with an a/B/a arrangement. This region has been
identified as a periplasmic domain in a bacterial aminoarabinose

transferase ArnT of the GT83 family3?, which could interact with
the donor substrate. Outside of the GT-C2 cluster, only GT66
family members (oligosaccharyltransferases) in GT-CO have a
similar extended C-terminal domain (Fig. 4c).

Identifying families with novel GT folds using the convolu-
tional autoencoder model. While our CNN model could
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Reconstruction error for GT sequences of unknown folds
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Fig. 5 Fold prediction in GT-u families. Reconstruction error (RE) for the known GT fold families are shown in gray and GT-u in red. a An extreme value
distribution is fitted into RE for known fold to calculate a 95% and a 99% CI (upper limits in brown and pink dotted lines, respectively). The midpoint
threshold RE at 0.127 (“Methods") is marked with green dotted lines. b As examples, RE for unknown fold families GT108 (upper panel) and GT110 (lower
panel) are shown where RE for GT108 is very high and thus predicted to have a novel fold with high confidence. In contrast, the RE for GT110 is low and
close to known fold families, thus predicted to have a known GT fold. ¢ Chart showing the fold prediction results for 30 GT-u families with unknown folds.
Family names are placed based on their likelihood of adopting a novel fold and the confidence in that evaluation and are colored based on their assigned
fold types. d RE for three GT-u families predicted to have a known GT fold is plotted alongside RE for their predicted fold cluster with the highest fold
assignment score (FAS). Left: GT69 versus GT-AT; middle: GT106 with GT-BO; right: GT89 with GT-CO. mRE and FAS scores for all the GT-u families are
provided in Supplementary Table 5. Source data are provided as a Source Data file.

successfully distinguish the known GT fold types, there are 30
CAZy GT families (GT-u) that could not be assigned to a known
fold based on literature review for the standard CNN-attention
workflow. We wanted to extend our model to analyze and predict
the fold types for these unknown families. To this end, we
extended our existing CNN model to build an autoencoder that
allows the calculation of a reconstruction error (RE) for any given
sequence (“Methods”). Sequences similar to the ones used in
training (i.e., one of the known folds) would have a low RE
whereas novel fold sequences would have a large RE. Figure 5a
shows the distribution of RE for sequences with known (GT-A,
-B, -C, and -lyso in gray) and unknown folds (in red). There is
a clear separation with the unknown fold sequences having a
higher RE.

To statistically evaluate which GT-u families have a signifi-
cantly higher RE than the known folds, we first fitted an extreme
value distribution to our training data (RE from sequences with
known folds) to calculate 95% and 99% confidence intervals (CI).
We then compare a median RE value (mRE) for each GT-u
family against these CI to make fold predictions. However, we
note that the peak for unknown RE distribution falls within the
95% CI (below 0.107, Fig. 5a), suggesting that a majority of GT-u
sequences adopt one of the known folds. For families that are
predicted to adopt a known fold, we also wanted to identify their
closest known fold type. To achieve this, we further built 9
autoencoder models for each of the two GT-A, three GT-B, three
GT-C, and one GT-lyso clusters and calculated RE. Due to the
low number of sequences in these cluster-specific models, instead
of fitting an extreme value distribution, we used a fold assignment
score (FAS, one for each subcluster totaling nine FAS scorers for
each GT-u family), to evaluate the best match for each of the GT-
u families. We derived the FAS score as a metric that provides a
quantitative measure of how diverse any GT-u family is from all
the known folds. This is done by comparing the RE values for a
GT-u family against the median RE values of a cluster within the

known folds. This comparison is normalized using the RE values
obtained for sequences that do not fall within that same cluster or
that same fold such that a positive and high FAS score indicates
similarity between a given cluster and the GT-u family being
compared. The equation used to calculate this metric is provided
in the Methods section along with additional details. Finally,
based on the mRE and FAS scores for each GT-u family, we
predict their fold status with varying degrees of confidence using
the criteria described in “Methods” (Fig. 5, Supplementary Fig. 8,
and Supplementary Table 5). In short, GT-u families with mRE
less than a threshold of 0.127 (midpoint between the 95%
threshold of 0.107 and the 99% threshold 0.147, details in
“Methods”) and a positive FAS score are designated as a known
fold type and assigned to the fold corresponding to the highest
FAS score. If a GT-u family has an mRE less than 0.127 but no
positive FAS scores, they are designated as a variant fold type.
Finally, families with mRE greater than 0.127 are designated as
novel fold types.

Five families have very high mRE (larger than 0.127), and are
predicted to adopt novel GT folds (Fig. 5¢, Supplementary Fig. 8,
and Supplementary Table 5). The dual-activity mannosyltrans-
ferase/phosphorylases of family GT108 have the highest mRE
(0.281) and have indeed been shown to adopt a unique five-
bladed B-propeller fold that is completely different from the four
GT folds*’. Another family predicted to have a novel fold, GT26,
has a single representative crystal structure for a membrane-
associated GT TagA, from a bacteria T. italicus, which also adopts
a novel fold4!. Here, we predict three additional families,
the fungal B-1,2-mannosyltransferases Bmt/Wry (GT91), plant
peptidyl serine a-galactosyltransferases Sgt (GT96), and bacterial
a-2,6-sialyltransferases (GT97), that likely adopt novel GT folds
as well.

Using the mRE and the FAS scores, we assign seven GT-u
families as having a GT-A type fold (Supplementary Table 5). Out
of these, the GT29 mammalian sialyltransferases have been
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shown to adopt a modified GT-A fold with different orientations
of the beta-sheets in the Rossmann fold while conserving the
overall Rossmann-fold scaffold and specific sialyl motifs*2. The
human glycolipid glycosylphosphatidylinositol -1,4-N-acetylga-
lactosaminyltransferase PGAP4 (GT109) has also been predicted
to adopt a GT-A fold with transmembrane domain insertions*3.
In line with this study, the GT109 family is predicted to have a
GT-A fold with medium confidence. Our analysis further adds
the a-1,3-mannosyltransferases (GT69) to the GT-A fold families
with medium confidence. In addition, we predict that the a-
mannosyltransferases Mnn (GT71), the plant GalS galactan
synthases and other members of the GT92 family, members of
the GT95 family (hydroxyproline B-L-arabinofuranosyltransferase
HPATs), and the B-1,4-xylosyltransferases (Rxyltl/TMEMS5) of
the GT110 family also adopt folds that are similar to the GT-A
type fold.

We also identify four GT-u families that most likely adopt the
GT-B fold (Fig. 5c and Supplementary Table 5). This includes the
bacterial a-1,3-L-rhamnosyltransferase (GT102), the bacterial O-
antigen-polysaccharide  -1,4-N-acetylglucosaminyltransferases
(GT103), the GT106 family of plant rhamnogalacturonan I 4-a-
rhamnosyltransferases, and the GT107 family of KDO trans-
ferases. Similarly, five families have the highest positive FAS score
against GT-C clusters and are predicted to adopt the GT-C fold
(Supplementary Table 5). In agreement with our predictions,
cryo-EM-based structures of representative bacterial Embs of the
GT53 family have revealed a GT-C fold** and recent structural
predictions on the human TMTCs of family GT105 have
suggested that they adopt a GT-C fold*>. In addition to these
two families, we predict that PigVs (GT76), bacterial arabinofur-
anosyltransferases AftBs (GT89), and dpy-19 mannosyltrans-
ferases (GT98) also adopt a GT-C fold. In addition, all of these
five families utilize lipid-linked sugar donor substrates similar to
other known GT-C fold enzymes?”44:46,

The remaining nine families have a negative FAS score for all
the GT-A, -B, -C, and -lyso clusters and thus are not assigned a
specific fold type. However, since they have an mRE below 0.127,
these families are predicted to adopt a variant of the existing fold
types rather than a novel fold type. Among them, families like the
bimodular dual B-glucosyltransferases of GT101 and the multi-
modular bacterial f-KDO transferases of the GT99 family have
representative crystal structures?’#® revealing that they adopt
unique folds consisting of the Rossmann-fold scaffold with the
latter forming a variant of the GT-B fold type. The bacterial toxin
glucosyltransferases of the GT44 family have also been shown to
adopt a slightly modified structure highly similar to a GT-A
fold490. Bacterial Csts from the GT42 family also have been
shown to adopt a variant of the GT-A fold type that is highly
similar to the GT29 sialyltransferases with both families conser-
ving the sialyl motifs®l. Yet, while GT29 scores higher against the
GT-A1 cluster, GT42 does not and is correctly classified as a
variant fold type suggesting key differences in other regions of the
GT-A core. Here, we add variant fold predictions for the GT11
(fucosyltransferases), GT48 (glucan synthases), GT73 (bacterial
KDO transferases), GT74 (includes few a-1,2-1-fucosyltrans-
ferases), and GT100 (bacterial sialyltransferases) families. Addi-
tional details of these predictions are provided in “Methods”, and
the results are summarized in Supplementary Table 5.

Discussion

It has been well-established that the structural folds of GTs, much
like in many other large protein families, are far more conserved
than primary sequence>®. The functional diversification of GTs
through extensive sequence variation and insertion of variable
loops and disordered regions presents a major challenge for broad

sequence or structural classification using alignment-based
approaches. This inability to create a larger framework of GT
structural classification has impeded understanding of the evo-
lutionary relationships among GTs during the expansion of gly-
can diversity in all domains of life>>°3. Although GTs primarily
adopt three major fold types, each has its own distinct features.
GT-A and GT-B enzymes employ single or paired Rossmann
folds, respectively, for donor and acceptor binding during cata-
lysis. Less is known about GT-C fold enzymes that employ dis-
tinct features composed of multiple transmembrane helical
domains. Identifying and distinguishing the GT-A and GT-B
folds in the absence of solved structures is quite challenging and
nontrivial, more so when the starting fold type is not known as is
the case for multiple GT-u families. To overcome these challenges
and produce reliable fold predictions, we use a CNN-attention-
based deep-learning model that implements a completely
alignment-free approach relying simply on secondary structure
patterns to classify all GT families into either the known fold
types or predict novel fold types. As far as we know, this is the
first attempt at utilizing this simple coarse-grained, dependable
form of input for analyzing such a large group of enzymes using
deep learning. As such, our proposed method provides a novel
approach for fold classification by using the secondary structural
features that can be useful in studying evolutionarily divergent
families such as GTs. We successfully built a model that classified
known folds and families with 96% and 77% accuracy, respec-
tively. In addition, we focus the design of our model on inter-
pretability, where each layer generates outputs in the form of
CAM maps (Block 1), features for UMAP visualization (Block 2),
and reconstruction errors (Block 3) for biological interpretation
and understanding of the model.

By mapping the features learned by the model using UMAP,
we identified clusters of families within the major fold type that
were found to share distinct regions of similarity, as revealed by
their CAM maps. Each of the two clusters within the GT-A fold
include phylogenetically diverse families? yet each shares a unique
set of secondary structural features within the hypervariable
regions that distinguish the clusters and likely contribute to
substrate recognition. Because such features shared by evolutio-
narily divergent families are difficult to detect through traditional
phylogenetic approaches, the CNN model provides a valuable
alternative tool for inferring such shared structural mechanisms.
These new insights into the common secondary structural fea-
tures can serve as valuable starting points for informed testing of
hypotheses regarding GT-A fold evolution, enzymatic specificity,
and function.

In the GT-B fold families, where previous attempts of sequence
and structural alignments have proven difficult, we identify a
central GT-BO cluster that points to a limited conserved core in
the C-terminal Rossmann fold, with insertions in the loop
regions. We show that this conservation extends across the large
and diverse GT-BO cluster to other GT-B clusters as well (Fig. 4a
and Supplementary Fig. 7). In the smaller GT-B2 cluster, CAM
maps point to additional structural similarities in the N-terminal
Rossmann domain within this cluster. By virtue of these shared
features, we present an alignment of predicted secondary struc-
tures across GT-B fold families providing a comparative basis for
cross-cluster analyses (Fig. 4). Similarly, we identify a subset of
GT-C fold families (GT-C1) consisting entirely of mannosyl-
transferases where the CAM features extend throughout the
entire length of the sequences (Fig. 4c).

More importantly, we deploy an autoencoder model using the
features from the CNN-attention model to make reliable pre-
dictions for GT-u families that are most likely to adopt a novel
GT fold. The 16 GT-u families found to adopt known folds
(Fig. 5¢) provide a comparative basis for understanding their
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functions and associations. On the other hand, five GT-u families
are predicted to adopt novel folds. Three out of the five families
(GT91, GT96, and GT97) do not have a representative crystal
structure. Coincidentally, each of these three families is found in
select taxonomic groups (fungi, plants, and bacteria, respectively)
and has different functions. Moreover, out of the 12 families that
are predicted to adopt variant folds, only 4 (GT42, 44, 99, and
101) have representative crystal structures, all of which point to
unique structural adaptations and variations*’=>!, Our predic-
tions for other families that lack representative structures provide
informed targets for focused structural studies that could reveal
divergent GT folds with different mechanisms and modes of
regulation to expand the GT fold space and uncover unique
aspects of GT function, regulation, and evolution.

We use a combination of metrics (RE, FAS, number of
sequences) to assign confidence levels for our predictions pro-
viding researchers with meaningful metrics of reliability for
guiding future efforts. These predictions are based on the family
level and utilize secondary structure predictions on a large
number of sequences from each family, thus providing robust
results. However, interpretations for families such as GT78 (A
fold), GT18 (B fold), GT103, or GT97 (novel fold) with very few
unique sequences should be done with caution.

Finally, our approach employs a simple training dataset that is
straightforward to prepare and is surprisingly adaptable for
understanding fold diversity in any large protein family. Indeed,
preliminary application of our model to the classification of
protein kinases demonstrates that the features learned by the
model can successfully distinguish the protein kinase fold
sequences from non-protein kinase fold sequences with ~99%
accuracy. Furthermore, similar to GTs, the model also separate
the major kinase groups with 83% accuracy (Supplementary
Fig. 9), suggesting that the model is capable of finding small
structural differences to distinguish protein kinases at the group
level. Contrary to most “black box” deep-learning models, the
output of this workflow is a highly interpretable deep-learning
model that generates accurate fold predictions with quantitative
outputs that provide meaningful biological insights without the
need for primary sequence or structural alignment. Thus, the
approach adds a powerful tool to the repertoire for computational
and evolutionary analyses of large protein families.

Methods

Data collection and preprocessing

Sequence retrieval and secondary structure prediction. We retrieved GenBank>* IDs
for GT sequences from the CAZy database (accessed May 4, 2020). Sequences for
these IDs were then collected from the NCBI GenBank database. These sequences
were first filtered using the USEARCH> method to remove sequences that share
>60% similarity for large GT families (with >5000 members listed in CAZy), 80%
similarity for GT families with 500-5000 members, and 95% similarity for smaller
GT families (with <500 members) to balance the number of sequences across
families and to avoid overfitting. We predicted the secondary structures of our
filtered dataset of 44,620 sequences using NetSurfP2.0%4. NetSurfP predicts both
three-state and eight-state secondary structures based on DSSP definitions>®. Here,
we only use the three-state predictions as input features since these are reported
with higher accuracy. In addition, we make our predictions on the family level,
which accounts for persistent secondary structure predictions in multiple closely
related sequences from the same family that makes our method robust to small
inconsistencies in secondary structure prediction for individual sequences.

Sequence length filtering. To allow batch training for neural networks, these
sequences were padded to a consistent length of 798. We set this threshold by
modeling the distribution of GT-A-, B-, C-, and -lyso sequence lengths to a
Gaussian distribution and setting our maximum length cutoff at u + 30. However,
for a subset of sequences that extend beyond 798 amino acids, we eliminated
sequences flanking the GT domain through domain mapping via Batch CD-
search®’. Sequences with multiple GT domains were labeled separately and treated
as different sequences. Sequences lacking an annotated GT domain or with an
annotated GT domain longer than 798 amino acids were removed. Sequences
shorter than 798 amino acids were padded to this length by adding a vector [0,0,0]

for each padded position. Our final padded dataset contained 12,316 GT-A, 20,397
GT-B, 1518 GT-C, 5482 GT-lyso, and 4258 GT-unknowns where each sequence is
represented by a 798X3 matrix of secondary structure predictions and padding.

Data augmentation for balancing datasets across families. Skewed datasets can
hinder the convergence of neural networks and negatively impact generalization.
To mitigate this issue, we balanced our training dataset using data augmentation.
Our data augmentation procedure randomly changes 5% of secondary structure
positions to coil/loop, excluding the padding region. This procedure can sometimes
produce no changes, such as if only coil/loop positions are randomly chosen. In
these cases, the procedure is repeated until at least one change is made. To generate
our balanced training set, we used this data augmentation strategy to increase the
number of sequences to 2000 sequences for each of the GT-A, GT-B, and GT-C
fold families. For the single GT51 family of GT-lyso fold, we randomly selected
only 5000 sequences after performing the sequence similarity filtering. For two
families with a very large number of sequences, GT2 and GT4, we selected 2000
divergent representatives from each family. This balanced training set was gener-
ated once and reused for parameter optimization unless otherwise indicated.

CNN model for fold and family classification. The model architecture involves an
attention-aided deep CNN model with six blocks. The first three blocks (Block 1,
Fig. 1) sequentially use a one-dimensional convolutional layer, followed by a
pooling layer and a batch normalization layer. This feeds into an attention?” layer
that performs a refinement of the generated feature maps. The convolution kernel
sizes were set to 3, 7, and 15 with kernel numbers set to 256, 512, and 512,
respectively, for the first three blocks. Since pooling operations lead to a loss of
spatial information for the feature maps, such an operation is not applied on any of
the first three layers, thus enabling mapping of the attention maps back to the
sequence for interpretation.

The feature maps from these three layers are downsampled using a global
average pooling layer and then passed through three additional blocks before
making the final prediction. In contrast to the first three layers that carry spatial
information, these three layers (Block 2, Fig. 1) use global max pooling operations
that compute a single maximum value for each of the input channels, thus
providing a single linearly independent representation for each sequence,
regardless of sequence length. These representations can be transformed into high-
dimensional vectors which can then be used by downstream clustering algorithms.

For the multitasking of fold and family classification, two separate fully
connected layers were added with dropout. The model was trained on a single
NVIDIA RTX 2080Ti graphic card for 6 h. The dropout rate was set to 0.5 during
training. Adam optimizers with a learning rate of le-4 and weight decay with a rate
of le-5 were deployed during training.

Comparison to other methods. For the Transformer model, we used ESM-1b!7 to
generate embeddings for each sequence. Mean values were calculated across all
positions to generate one vector of shape (1280,1) for all sequences. We used
UMAP for dimensionality reduction and visualization. The embedding vectors
were also taken as input by the gradient boosting decision tree (GBDT) model for
fold- and family-level classification. For the LSTM model, we used a single-layer
biLSTM model with 64 hidden units. For the ProtCNN model, we followed the
original code implementation with two residual blocks. Overall, our model
demonstrated advantages in three aspects: (1) better overall accuracy, (2) ability to
classify GT-u families, and (3) better interpretability. A detailed comparison can be
found in Supplementary Table 3. For the comparison with the HHsearch method,
HHM profiles were generated along with secondary structure predictions for all the
GT families of known folds and used to build a HHsearch database. Multiple
sequence alignments of sequences within each GT-u family were then used as
queries to search the known GT fold database. The top three results with an -value
less than le-2 were selected for fold assignment for any given GT-u family. The
results are provided in Supplementary Table 2.

Autoencoder framework for identification of novel fold GT-u families. We
adopted a recent advancement in the machine-learning field named open set
recognition?8 to extend the trained classifier’s ability to distinguish an unseen
pattern of secondary structure from the seen dataset of known GT folds. In
application, this framework is targeted to real-world scenarios where new classes
(unknown classes), unseen during training, appear in the testing phase and requires
the classifier to not only accurately classify seen classes but also effectively deal with
unseen classes in testing?8. This translates well to our problem of distinguishing GT
families that most likely adopt a previously unseen fold which is considerably
different from the GT-A-, B-, C-, and -lyso folds that the model is trained on, while
efficiently recognizing families that could adopt one of these known folds. We
propose a CNN-based autoencoder framework to accomplish this task, which is
capable of reconstructing the known GT folds that it has learned on but unable to
do so if a given sequence is quite different, resulting in a high reconstruction error.
The autoencoder (Block 3, Fig. 1) comprises two parts: an encoder and a
decoder. The encoder reused Block 1 of the CNN model trained on GT-A, -B, -C,
and -lyso as a general feature extractor. Then, a mirror structure of the CNN model
that includes multiple deconvolution operations and instance normalization is
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connected to the encoder to generate a reconstruction of the inputs. The similarity
between the seen and unseen classes is measured by calculating a reconstruction
error (RE) of the input samples (Fig. 5a). A modified loss function was proposed to
calculate RE in order to omit the effects of padding regions in the reconstruction of
sequences as follows:

.
Masked MSE = —— 5 (¥ — 1)’ (1)
n—2piip
where p is the padding length at both ends of the sequence, n is the sequence
length, Y is secondary structure input, Y is the predicted secondary structure
output.

In addition to this main autoencoder model, nine additional autoencoder
models were built with the same architecture but trained separately on the nine
clusters of GT folds: two GT-A, three GT-B, three GT-C, and one GT-lyso clusters.
RE against each of these clusters were used to derive a fold assignment score (FAS)
that was used as a measure to indicate which known fold a given GT family would
adopt, if it was predicted to adopt a known fold. The FAS score was calculated
using the following equation:

(00C, — RE,) x (OO, — 00C;)
OOF, — RE,

FAS,, = < — thres) x 100 2)
where FAS,, is the fold assignment score for GT-u family a against cluster b, RE,
is the median RE for sequences in family a, RE, is the median RE for sequences
in cluster b, OOC, is the average RE for sequences with the same fold as
sequences in cluster b but are not grouped in cluster b (called out of cluster
(00CQ)), OOF,, is the average RE for sequences from a different fold than
sequences in cluster b (called out of fold (OOF)), and thres is a threshold score
for fold prediction. Since GT-lyso had only one cluster, 20% of sequences were
left out of training, unseen by the model and used to calculate OOC,,. The
threshold thres was set to 0.014 based on the RE distributions to account for the
differences in RE ., across different clusters. Distributions of RE, OOC and
OOF for each of the nine clusters are provided in Supplementary Fig. 10. In all of
these autoencoder models, a smaller set of 200 sequences each for the GT2 and
GT4 families were used so that these models did not overfit the two large GT
families. For all other GT families, all non-augmented sequences used in training
the CNN model were used.

Model interpretation

Structural mapping of layer-wise activation maps. To fully understand how the
CNN-attention model classifies GT fold types, we analyze feature maps generated
from Blocks 1 and 2 using two different methods:

1. For all three layers of Block 1, we rely on making weakly supervised class-
specific localization through a label-guided method named class-specific
activation mapping using Grad-CAM3 (CAM) that uses gradient descent to
generate feature maps that target-specific families. The attention layers
inserted in Block 1 further enhance these activation values. These Grad-
CAM results were used to generate activation maps that conserve spatial
information and can be mapped back into the sequence to identify the most
contributing secondary structure and sequence regions for fold classification
and thus represent the core conserved features.

2. For the three layers of Block 2, we generate saliency maps that highlight
activations by extracting the feature map values. These maps do not
conserve spatial information but are used to generate representation vectors
that are then subjected to dimensionality reduction using UMAP3? to
generate manifolds for visualization and clustering of the known GT fold
types. To identify the major clusters within GT fold types, we clustered the
2D UMAP projections using the GMM algorithm3>. UMAP was performed
with multiple sets of parameters to find families that most consistently
grouped together (Supplementary Fig. 3). For the GT2 and GT4 families
that have a very high number of sequences, we used the same 200
representative sequences used in the autoencoder models for UMAP
visualization. When implementing the GMM algorithm, an appropriate
cutoff for the GMM score was selected independently for each fold type in
order to generate clusters robust to changes in parameters of UMAP.

Evaluation of the reconstruction error to identify novel fold type families. Since the
RE for most training sequences would be very low, the RE distribution for the
training data from the main autoencoder was first fitted to an extreme value
distribution using the scipy®® package. This was then used to evaluate a 95% CI and
a 99% CI. Median RE (mRE) calculated for each GT-u family was then compared
to these two CI limits to statistically evaluate their likelihood of adopting a novel
fold. In addition, the FAS scores were used for fold assignments of the families
predicted to adopt known folds. A positive FAS score indicates that the RE value
for that family scores better against a given cluster than RE values for families that
are from a different cluster or a different fold, suggesting similarity between that
family and cluster. Thus, an appropriate mRE threshold should separate all families
that have a positive FAS scores from families with all negative FAS scores. The
value 0.127 that marks the midpoint for the interval between the upper limits of the

95% and the 99% CI (0.107 and 0.147, respectively) was found to be an appropriate
cutoff and used as a threshold for predicting GT-u families that adopt a novel fold
(higher mRE than 0.127) or a variant of the known folds (mRE lower than 0.127).
Further evaluation of the prediction was done using the FAS scores as follows:

1. For families with mRE lower than 0.107 (95% CI), the highest FAS score was
always positive, and the GT-u family was assigned to the fold with the
highest FAS score. Families with an mRE score lower than 0.1 and an FAS
score higher than 1 were considered high confidence, while others were
considered medium confidence).

2. For families with mRE between 0.107 and 0.127, if the FAS scores were
positive, they were assigned to the fold with the highest FAS scores with low
confidence. If the FAS scores were all negative, those families were assigned
as variants of known folds. Higher mRE scores corresponded to an increase
in confidence.

3. For families with mRE higher than 0.127, FAS scores were always negative.
These families were designated as novel fold types with an increase in mRE
scores corresponding to higher confidence.

The code and related datasets for conducting these analyses are made available
at https://doi.org/10.5281/zenodo.5173136°°.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

For the sequences used in this study, the IDs were collected from the CAZy database
(http://www.cazy.org/Glycosyl Transferases.html) and using those IDs, the sequences
were obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/protein/) using
batch Entrez (https://www.ncbi.nlm.nih.gov/sites/batchentrez). All the sequences and
their secondary structure predictions that were used for training and testing both the
CNN-attention and the autoencoder models have been made available through https://
github.com/esbgkannan/GT-CNN. A list of GenBank IDs for all the GT sequences used
in this study is also provided in Supplementary Dataset 1. The sequence and secondary
structure prediction data, along with the code used in this study are available in
Zenodo®. Source data are provided with this paper.

Code availability

The code used to train and implement the deep-learning framework described here was
written in Python 3.7 and is available as Jupyter notebooks, along with detailed
requirements and steps, from https://github.com/esbgkannan/GT-CNN. The published
version of the code with the manuscript is available at https://doi.org/10.5281/
zenodo.5173136°°.
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