Table 5.
Model performance comparison with fixed hyperparameters.
| Model | Accuracy (%) | Precision (%) | Recall (%) | F1 (%) |
|---|---|---|---|---|
| SSA-PNN | 59.14 ± 10.84 | 71.82 ± 13.32 | 41.30 ± 10.89 | 63.01 ± 10.51 |
| Extreme gradient boosting | 58.27 ± 11.67 | 65.47 ± 13.59 | 43.73 ± 12.18 | 60.15 ± 12.14 |
| K neighbors classifier | 57.43 ± 11.59 | 64.44 ± 13.60 | 43.96 ± 12.81 | 59.12 ± 12.04 |
| Gradient boosting classifier | 57.71 ± 11.82 | 66.62 ± 14.31 | 43.44 ± 13.05 | 60.04 ± 11.98 |
| Random forest classifier | 56.99 ± 11.72 | 66.10 ± 15.00 | 43.04 ± 12.98 | 59.32 ± 11.90 |
| Ada boost classifier | 56.97 ± 11.69 | 66.71 ± 14.42 | 42.25 ± 12.64 | 59.61 ± 11.78 |
| Ridge classifier | 56.69 ± 10.94 | 64.29 ± 12.48 | 39.65 ± 9.95 | 59.22 ± 11.15 |
| SVM—linear kernel | 56.51 ± 11.55 | 62.79 ± 13.44 | 44.32 ± 13.71 | 57.88 ± 11.98 |
| Linear discriminant analysis | 56.18 ± 11.24 | 63.24 ± 12.74 | 41.27 ± 12.72 | 58.47 ± 11.42 |
| Logistic regression | 55.44 ± 11.47 | 61.71 ± 13.56 | 43.44 ± 12.91 | 56.68 ± 11.97 |