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ABSTRACT
Objective  Capsule endoscopy (CE) is pivotal for evaluation 
of small bowel disease. Obscure gastrointestinal bleeding 
most often originates from the small bowel. CE frequently 
identifies a wide range of lesions with different bleeding 
potentials in these patients. However, reading CE 
examinations is a time-consuming task. Convolutional 
neural networks (CNNs) are highly efficient artificial 
intelligence tools for image analysis. This study aims 
to develop a CNN-based model for identification and 
differentiation of multiple small bowel lesions with distinct 
haemorrhagic potential using CE images.
Design  We developed, trained, and validated a denary 
CNN based on CE images. Each frame was labelled 
according to the type of lesion (lymphangiectasia, 
xanthomas, ulcers, erosions, vascular lesions, protruding 
lesions, and blood). The haemorrhagic potential was 
assessed by Saurin’s classification. The entire dataset was 
divided into training and validation sets. The performance 
of the CNN was measured by the area under the receiving 
operating characteristic curve, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV).
Results  A total of 53 555 CE images were included. The 
model had an overall accuracy of 99%, a sensitivity of 
88%, a specificity of 99%, a PPV of 87%, and an NPV of 
99% for detection of multiple small bowel abnormalities 
and respective classification of bleeding potential.
Conclusion  We developed and tested a CNN-based 
model for automatic detection of multiple types of small 
bowel lesions and classification of the respective bleeding 
potential. This system may improve the diagnostic yield of 
CE for these lesions and overall CE efficiency.

INTRODUCTION
The small bowel is an area of difficult endo-
scopic inspection. Capsule endoscopy (CE) 
provides minimally invasive evaluation of the 
small bowel mucosa. CE is essential for detec-
tion of several small bowel mucosal abnormali-
ties, including blood content, vascular lesions 

(eg, angiectasia), ulcers, or erosions, as well 
as protruding lesions. The clinical value of 
CE has been demonstrated for a wide array of 
diseases, including the evaluation of patients 
with suspected small bowel haemorrhage, 
diagnosis and monitoring of Crohn’s disease 
activity and detection of protruding small 
intestinal lesions.1–4 Nevertheless, reading CE 
videos is a burdensome task.5–7 Each CE video 
produces approximately 50 000 images, with 
a time cost of 30–120 min.8

Obscure gastrointestinal bleeding (OGIB) 
is the most common indication for CE, as in 
most cases the bleeding source is in the small 
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What is already known about this subject?
►► Obscure gastrointestinal bleeding is the most com-
mon indication for capsule endoscopy (CE).

►► Reading CE examinations is a burdensome task 
with risk of missing significant lesions and previous 
studies have demonstrated the value of artificial in-
telligence (AI) for automatic identification of lesions 
in CE images.

What are the new findings?
►► An AI algorithm was developed for automatic de-
tection and characterisation of multiple types of CE 
findings with distinct bleeding potential.

►► For the first time, a convolutional neural network 
model was developed for characterisation of the 
bleeding potential of multiple CE findings.

How might it impact on clinical practice in the 
foreseeable future?

►► The AI model developed in this study may contribute 
to increase the diagnostic rentability of CE.

►► Enhanced diagnostic capacity may allow to earlier 
treatments with impact on patient outcomes.
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bowel.9 10 A classification of the bleeding potential of 
multiple CE findings has been proposed by Saurin et al.11 
This classification divides CE findings in the following 
three categories: no bleeding potential—P0; uncertain/
intermediate bleeding potential—P1; and high bleeding 
potential—P2. The latter category includes large ulcers, 
angiectasia, and varices, whereas small, isolated ulcers, 
and mucosal red spots are P1 lesions.11 The detection 
and reliable classification of the bleeding potential of 
any given lesion is essential to guide the management for 
patients with OGIB. Nevertheless, the diagnostic yield of 
CE for the culprit lesion is poor (approximately 60%) 
and classification of the bleeding potential according to 
the Saurin’s classification has a suboptimal interobserver 
agreement (approximately 60%).10 11

Recently, artificial intelligence (AI) models have demon-
strated high performance levels in the interpretation of 
medical images.12 13 The application of deep learning 
algorithms to endoscopic imaging has shown potential 
for increasing the detection rate of lesions.14 15 Several 
proof-of-concept studies have demonstrated the poten-
tial of the application of these tools for enhanced analysis 
of CE images, with reports of high-performance levels for 
the detection of a wide array of lesions, including blood 
content, angiectasia, ulcers, and protruding lesions.16–20 
Nevertheless, to date, no AI algorithm has been devel-
oped for detection of a wide array of lesions and their 
classification according to their bleeding potential. This 
study aimed to develop an AI system based on a convo-
lutional neural network (CNN) for automatic detection 
and classification of the bleeding potential of common 
findings in CE images.

METHODS
Study design
A multicentric study was conducted for the develop-
ment and validation of a CNN for automatic detection 
and differentiation of several types of enteric lesions in 
CE examinations. CE examinations were retrospectively 
collected from two gastroenterology centres: Centro 
Hospitalar Universitário de São João (Porto, Portugal) 
and ManopH Gastroenterology Clinic (Porto, Portugal). 
Patients submitted to CE at two gastroenterology centres 
(São João University Hospital, Porto, Portugal) between 
2015 and 2020 were included in this retrospective study. 
Data from these examinations were used for develop-
ment, training, and validation of a CNN-based model for 
automatic detection of multiple CE findings and differ-
entiation according to their bleeding potential. The 
full-length CE video of all participants was reviewed. A 
total of 53 555 images of the enteric mucosa were ulti-
mately extracted. The types of lesions admitted for anal-
ysis were lymphangiectasia, xanthomas, vascular lesions 
(including red spots, angiectasia, and varices), ulcers, 
erosions, protruding lesions (polyps, epithelial tumours, 
subepithelial lesions, and nodules), and luminal blood. 
The findings represented on the frames were labelled 

by three experienced gastroenterologists (MMS, HC, 
and APA). Each of these researchers had read >1500 CE 
examinations prior this study. The inclusion and final 
labelling of the frames was dependent on the agreement 
of at least two of the three specialists.

This study was conducted in a retrospective and was 
of non-interventional nature, respecting the declara-
tion of Helsinki. Therefore, there was no interference in 
the conventional clinical management of each included 
patient. Any information deemed to potentially identify 
the subjects was omitted, and each patient was assigned 
a random number to ensure effective data anonymisa-
tion for researchers involved in CNN network develop-
ment. A team with Data Protection Officer certification 
(Maastricht University) confirmed the non-traceability 
of data and conformity with the general data protection 
regulation.

CE protocol
CE procedures were conducted using the following two 
different CE systems: the PillCam SB3 system (Medtronic, 
Minneapolis, MN, USA) and the OMOM HD (Jinshan 
Science & Technology Co, Chonqing, Yubei, China). 
Both systems include the following three major compo-
nents: the endoscopic capsule, a sensor belt connected 
to a data recorder, and a software for image revision. 
The Pillcam SB3 capsule measures 26.2 mm in length 
and 11.4 mm in width. It has a high-resolution camera 
with reported 156° field of view. The capture frame rate 
automatically varies between 2 and 6 frames per second, 
depending on the speed of progression of the endo-
scopic capsule. The estimated battery life of this capsule 
is of ≥8 hours. The images were reviewed using PillCam 
Software version 9 (Medtronic). On the contrary, the 
OMOM HD capsule measures 27.9 mm in length and 
13.0 mm in width. It has a reported field of view of 
172°. This system has an adaptive frame rate varying 
from 2 to 10 frames per second. The images from this 
capsule system were reviewed using the Vue Smart Soft-
ware (Jinshan Science & Technology Co). All obtained 
images underwent processing to assure that possible 
identifying information (name, operating number, and 
date of procedure). Each extracted frame was stored and 
assigned a consecutive number.

Each patient received bowel preparation in agreement 
with previously published guidelines by the European 
Society of Gastrointestinal Endoscopy.21 Summarily, 
patients were recommended to have a clear liquid diet 
in the day preceding capsule ingestion, with fasting in 
the night before examination. A bowel preparation 
consisting of 2 litres of polyethylene glycol solution was 
used prior to the capsule ingestion. Simethicone was 
used as an antifoaming agent. Prokinetic therapy (10 mg 
domperidone) was used if the capsule remained in the 
stomach 1 hour after ingestion, on image review on the 
data recorder worn by the patient. No eating was allowed 
for 4 hours after the ingestion of the capsule.
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Categorisation of lesions
Each frame was evaluated for the presence of a wide 
range of lesions of the enteric mucosa. Lymphangi-
ectasia were defined as scattered whitish spots of the 
intestinal mucosa; xanthomas were defined as plaque-
like lesions with whitish/yellowish appearance. Vascular 
lesions included red spots, angiectasia, and varices. Red 
spots were defined as punctuate (<1 mm) flat lesion 
with a bright red area, within the mucosal layer, without 
vessel appearance22; angiectasia were defined as well-
demarcated bright red lesions consisting of tortuous 
and clustered capillary dilatations, within the mucosal 
layer. Varices were defined as raised venous dilatation 
with serpiginous appearance. Mucosal erosions were 
defined as minimal loss of epithelial layering surrounded 
by normal mucosa and with a diameter <5 mm. On the 
contrary, ulcers were defined as depressed loss of epithe-
lial covering, with a whitish base and surrounding swollen 
mucosa. Protruding lesions included polyps, epithelial 
tumours, subepithelial lesions, and nodules.

The haemorrhagic potential of these lesions was ascer-
tained according to Saurin’s classification.11 This classi-
fication divides lesions into three levels of bleeding risk, 
P0, P1, and P2, for lesions without, intermediate or high 
haemorrhagic potential, respectively. Lymphangiectasia 
and xanthomas were classified as P0 lesions. Red spots 
were considered P1 lesions, whereas angiectasia and 
varices were classified as P2.11 According to this classifica-
tion, mucosal erosions were classified as P1 lesions. The 
haemorrhagic potential of ulcers depended on their size: 
small ulcers were regarded as P1 lesions; large ulcerations 
(>20 mm) were regarded as P2 lesions.11 23 Protruding 
lesions were considered as P2 when large (≥10 mm), 
ulcerated or when haemorrhagic stigmata were present. 
These lesions were classified as P1 when small (<10 mm) 
and with intact overlying mucosa (eg, subepithelial 
lesions).

Development of the CNN
The methods for this study have been described else-
where.24 From the collected pool of images (n=53 555), 
18 010 contained normal enteric mucosa. The distribu-
tion of the remaining images is shown in figure 1. This 
pool of images was split for constitution of training and 
validation image sets. The training dataset was composed 
by selecting the 80% of the consecutively extracted 
images (n=42 844). The remaining 20% were used as 
the validation dataset (n=10 711). The validation data set 
was used for assessing the performance of the CNN. A 
flowchart summarising the study design and image selec-
tion for the development (training and validation) of the 
CNN is presented in figure 1.

To create the denary CNN, we used the Xception 
model with its weights trained on ImageNet (a large-scale 
image dataset aimed for use in development of object 
recognition software). To transfer this learning to our 
data, we kept the convolutional layers of the model. We 
removed the last fully connected layers and attached 

fully connected layers based on the number of classes 
we used to classify our endoscopic images (10). We used 
two blocks, each having a fully connected layer followed 
by a dropout layer of 0.3 drop rate. Following these two 
blocks, we add a dense layer with a size defined as the 
number of categories (three) to classify. The learning rate 
of 0.0001, batch size of 32, and the number of epochs of 
100 was set by trial and error. We used Tensorflow 2.3 and 
Keras libraries to prepare the data and run the model. 
The analyses were performed with a computer equipped 

Figure 1  Study flowchart for the training and validation 
phases. P0L: lymphangiectasia; P0X: xanthomas; P1E: 
mucosal erosions; P1U: P1 ulcers; P2U: P2 ulcers; P1RS: 
P1 red spots; P2V: P2 vascular lesions; P1P: P1 protruding 
lesions; P2P: P2 protruding lesions. The prefixes P0, P1, and 
P2 refer to the haemorrhagic potential according to Saurin’s 
classification. AUROC, area under the receiving operator 
characteristic curve.
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with a 2.1 GHz Intel Xeon Gold 6130 processor (Intel, 
Santa Clara, CA, USA) and a double NVIDIA Quadro 
RTX 4000 graphic processing unit (NVIDIA Corporate, 
Santa Clara, CA, USA).

Model performance and statistical analysis
The primary outcome measures included sensitivity, 
specificity, precision, and the overall accuracy. Moreover, 
we used receiver operating characteristic (ROC) curves 
analysis and area under the ROC (AUROC) curves to 
measure the performance of our model in the distinction 
between the three categories. The network’s classification 
was compared with the diagnosis provided by specialists’ 
analysis, which was considered the gold standard.

In addition to its diagnostic performance, the compu-
tational speed of the network was determined using the 
validation image data set by calculating the time required 
for the CNN to provide output for all images.

For each image, the CNN calculated the probability for 
each of the three categories (normal mucosa, red spots, 
and P2 lesions). A higher probability value translated in 
a greater confidence in the CNN prediction. The cate-
gory with the highest probability score was outputted as 
the CNN’s predicted classification (figure  2). The soft-
ware generated heatmaps that localised features that 
predicted a class probability (figure 3). Sensitivities, spec-
ificities, and precisions are presented as mean scores±SD. 
ROC curves were graphically represented and AUROC 
were calculated. Statistical analysis was performed using 
Sci-Kit learn V.22.2.25

RESULTS
Construction of the CNN
A total of 4319 patients from two gastroenterology centres 
were included for development, training, and validation 

Figure 2  Output obtained during the training and development of the convolutional neural network. The bars represent the 
probability estimated by the network. The finding with the highest probability was outputted as the predicted classification. A 
blue bar represents a correct prediction. Red bars represent an incorrect prediction. P0L: lymphangiectasia; P0X: xanthomas; 
P1E: mucosal erosions; P1U: P1 ulcers; P2U: P2 ulcers; P1RS: P1 red spots; P2V: P2 vascular lesions; P1P: P1 protruding 
lesions; P2P: P2 protruding lesions. The prefixes P0, P1, and P2 refer to the haemorrhagic potential according to Saurin’s 
classification.

Figure 3  Heatmaps obtained from the application of the 
CNN showing different small bowel lesions as identified by 
the CNN. P0L: lymphangiectasia; P0X: xanthomas; P1E: 
mucosal erosions; P1U: P1 ulcers; P2U: P2 ulcers; P1RS: 
P1 red spots; P2V: P2 vascular lesions; P1P: P1 protruding 
lesions; P2P: P2 protruding lesions. The prefixes P0, P1, and 
P2 refer to the haemorrhagic potential according to Saurin’s 
classification. CNN, convolutional neural network.
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of the CNN for detection of several small bowel lesions 
with distinct bleeding potential. These patients under-
went a total of 5793 CE examinations. The Pillcam system 
was used in 4509 examinations. The remaining CE exam-
inations (n=1284) used the OMOM system. From this 
cohort, 53 555 frames were extracted. The performance 
of the CNN was assessed using the validation dataset, 
comprising 20% of all extracted frames (n=10 711). 
The validation dataset was composed by 3602 frames of 
normal mucosa, 1055 images of lymphangiectasia, 374 
images of xanthomas, 422 images of mucosal erosions, 
447 and 495 images of P1 and P2 ulcers, respectively. The 
validation dataset included 663 frames of vascular lesions 
(382 images of P1 red spots and 281 images of P2 vascular 
lesions), 573 images of protruding lesions (362 P1 and 
211 P2) and 3080 images of luminal blood or hematic 
residues (table 1). The CNN evaluated each image and 
predicted a classification which was compared with the 
classification provided by the specialists. With repeated 
data inputs the overall accuracy of the multilayer CNN 
increased, in both training and validation environments 
(figure 4).

Overall performance of the CNN
The distribution of results is displayed in table 2. Overall, 
the mean sensitivity and specificity for the automatic 
detection of various abnormalities were 87.8%±8.1% 
and 99.4%±3.7%, respectively. The PPV and NPV were 
86.8%±9.0% and 99.4%±3.9%, respectively. The CNN 
provided accurate prediction in 98%±6.1%.

CNN performance for the detection and distinction of various 
enteric lesions with different bleeding potentials
We aimed to evaluate the performance of the CNN for 
the detection and distinction of different types of enteric 
lesions with dissimilar bleeding potential, as assessed by 

the Saurin’s classification. The results are summarised in 
table 2. The ROC analyses and respective AUROCs are 
shown in figure 5. The algorithm detected lymphangiec-
tasias and xanthomas with a sensitivity of 88% and 85%, 
respectively, and a specificity of >99%. The AUROC for 
detection of these lesions was 0.99. Mucosal erosions were 
detected with a sensitivity and specificity of 73% and 99%, 
respectively, whereas mucosal ulcers were identified with 
a sensitivity of 81% for P1 lesions and 94% for P2 lesions. 
The AUROC for detection of mucosal breaks was 0.97 
for erosions, 0.99 for P1 ulcers, and 1.00 for P2 ulcers. 
Vascular lesions with high-bleeding potential were iden-
tified with a sensitivity and specificity of 91% and 99%, 
respectively (AUROC 0.99), whereas mucosal red spots 

Table 1  Confusion matrix of the automatic detection versus experts’ classification

CNN’s prediction

Experts’ classification

N P0L P0X P1E P1U P2U P1RS P2V P1P P2P Blood

N 3313 65 40 43 34 7 52 9 14 2 23

P0L 52 932 3 16 4 0 2 3 5 2 1

P0X 25 1 319 0 1 0 0 1 0 1 0

P1E 38 8 0 307 27 4 4 0 1 0 2

P1U 13 0 1 38 362 9 2 0 0 0 0

P2U 7 0 0 5 11 466 3 0 0 0 1

P1RS 56 1 2 9 4 2 303 8 0 0 2

P2V 27 4 1 1 0 4 15 255 1 1 8

P1P 56 43 8 3 3 2 1 4 338 5 2

P2P 4 0 0 0 0 0 0 1 3 199 1

P3 11 1 0 0 1 1 0 0 0 1 3040

Total 3602 1055 374 422 447 495 382 281 362 211 3080

The prefixes P0, P1, and P2 refer to the haemorrhagic potential according to Saurin’s classification.
CNN, convolutional neural network; N, normal mucosa; P1E, mucosal erosions; P0L, lymphangiectasia; P1P, P1 protruding lesions; P2P, P2 
protruding lesions; P1RS, P1 red spots; P1U, P1 ulcers; P2U, P2 ulcers; P2V, P2 vascular lesions; P0X, xanthomas.

Figure 4  Evolution of the accuracy of the convolutional 
neural network during training and validation phases, as the 
training and validation datasets were repeatedly inputted in 
the neural network.
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were detected with a sensitivity of 79% and a specificity 
of 99% (AUROC 0.98). Enteric protruding lesions were 
detected with high sensitivity (93% and 94% for P1 and 
P2 lesions, respectively) and specificity (99% and 100% 
for P1 and P2 lesions). The diagnostic performance of 
the CNN for these lesions was high, with AUROCs of 0.99 
for P1 and P2 protruding lesions. Blood vestiges in the 

enteric lumen were detected with a sensitivity and speci-
ficity exceeding 99% (AUROC 1.00).

Overall, the deep learning algorithm was able to detect 
and differentiate lesions with distinct bleeding potential. 
The sensitivity and specificity for detection of P0, P1, and 
P2 lesions were, respectively, 88% and 100%, 87% and 
97%, and 94% and 99%. The CNN accurately differenti-
ated P0 from P1 lesions (sensitivity 95%, specificity 98%), 
P0 from P2 lesions (sensitivity 100%, specificity 99%) and 
P1 from P2 lesions (sensitivity and specificity of 97%).

Computational performance of the CNN
The CNN completed the reading of the validation dataset 
in 611 s. This translates into an approximated reading 
rate of 18 frames per second.

DISCUSSION
CE has revolutionised the etiologic investigation of 
patients with suspected small bowel disease. OGIB is 
currently the most common indication for CE.10 It has 
been shown that is superior to most alternative non-
invasive diagnostic methods and provides the most cost-
effective approach to these patients.26 Given the uniquely 
diagnostic role of CE, the interpretation of the bleeding 
potential of each lesion is essential to guide further diag-
nostic and therapeutic strategy. Thus, clinical use of a 
pragmatic tool such as the Saurin’s classification may be 
helpful to take management decisions.

Table 2  CNN performance for detection and differentiation of multiple small bowel lesions with distinct haemorrhagic 
potential

Sensitivity Specificity PPV NPV

Overall, mean %±SD 87.8±8.1 99.4±3.7 86.8%±9.0% 99.4%±3.9%

P0L vs all, % 88.3 99.1 91.4 98.7

P0X vs all, % 85.3 99.7 91.7 99.5

P1E vs all, % 72.7 99.2 78.5 98.9

P1U vs all, % 81.0 99.4 85.2 99.2

P2U vs all, % 94.1 99.7 94.5 99.7

P1RS vs all, % 79.3 99.2 78.3 99.2

P2V vs all, % 90.7 99.4 80.4 99.7

P1P vs all, % 93.4 98.8 72.7 99.8

P2P vs all, % 94.3 99.9 95.7 99.9

B vs all, % 98.7 99.8 99.5 99.5

P0 vs all, % 87.9 99.6 97.2 98.2

P1 vs all, % 86.9 97.1 84.1 97.7

P2 vs all, % 93.8 99.1 91.0 99.4

P0 vs P1, % 95.2 98.0 97.8 95.7

P0 vs P2, % 99.6 99.2 99.4 99.5

P1 vs P2, % 97.3 96.5 97.6 96.0

The prefixes P0, P1, and P2 refer to the haemorrhagic potential according to Saurin’s classification.
CNN, convolutional neural network; NPV, negative predictive value; P1E, mucosal erosions; P0L, lymphangiectasia; P1P, P1 protruding 
lesions; P2P, P2 protruding lesions; PPV, positive predictive value; P1RS, P1 red spots; P1U, P1 ulcers; P2U, P2 ulcers; P2V, P2 vascular 
lesions; P0X, xanthomas.

Figure 5  ROC analysis of the network’s performance in 
the detection of small bowel lesions with different bleeding 
potential. P0L: lymphangiectasia; P0X: xanthomas; P1E: 
mucosal erosions; P1U: P1 ulcers; P2U: P2 ulcers; P1RS: 
P1 red spots; P2V: P2 vascular lesions; P1P: P1 protruding 
lesions; P2P: P2 protruding lesions. The prefixes P0, P1, and 
P2 refer to the haemorrhagic potential according to Saurin’s 
classification. B, blood or haematic residues; ROC, receiver 
operating characteristic.
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Reading CE examinations is a burdensome and time-
consuming task. Significant lesions may be easily missed 
as they’re often small and may only appear in a small 
number of frames.27 28 The development of automated 
intelligent systems for automatic image analysis has 
been on the focal point of medical literature over the 
last decade. Particularly, the application of multilayered 
CNNs for automatic analysis of CE images has provided 
interesting results.29 Besides allowing to improve the 
diagnostic yield of CE for the detection and characteri-
sation of several types of gastrointestinal lesions as well 
as reducing the time costs associated with reading CE 
examinations, automated algorithms based on AI may 
be of value in improving other shortcomings of CE, 
including image quality, capsule, and lesion localisation. 
Additionally, parallel computing mechanisms developed 
to support this progress may also provide assistance in 
managing the high volume of data produced in every CE 
procedure.29The automatic detection of lesions of the 
small bowel mucosa (eg, angiectasia), as well as automatic 
estimation of their clinical significance (eg, estimating 
the bleeding potential show promise in improving the 
management of patients requiring investigation by CE).

Research on the performance of AI tools for applica-
tion to CE has mainly focused on the detection of a single 
category of lesions. In this regard, deep learning systems 
have demonstrated high performance levels for the 
detection of enteric ulcers, protruding lesions, angiec-
tasia and luminal blood, and locating lesions throughout 
the gastrointestinal tract.17–20 30 However, identification 
and differentiation of multiple CE findings using a single 
CNN has been scarcely reported and, to date, additional 
automatic assessment of the bleeding potential through a 
validated classification has not been performed.

In this study, we developed a complex CNN model 
which was able to detect multiple abnormalities 
frequently found in CE examinations. Furthermore, 
our model was able to differentiate lesions with distinct 
bleeding potential. Thus, we believe that this work 
has several highlights. First, to our knowledge, this is 
the first study evaluating the performance of a deep 
learning system for automatic detection of multiple 
findings in CE and to simultaneously predict their 
respective bleeding potential. Second, this is the first 
study to develop a CNN system for CE using images 
from two different and widely used CE systems, partic-
ularly the Pillcam and OMOM systems. Indeed, our 
CNN showed excellent performance results using 
a dataset including images from two different CE 
systems, with distinct specifications and optical perfor-
mances. Opposite to current evidence, where results 
are only applicable to a single CE system, our proof-of-
concept results are promising regarding the general-
isability of our model to multiple CE systems. Second, 
our CNN system was trained and validated on a large 
pool of images. Third, our algorithm demonstrated 
high performance levels in the identification and clas-
sification of bowel lesions according to the Saurin’s 

classification. In fact, the AUROCs for the detection 
of the different types of lesions varied between 0.97 
and 1.00.

To date, two studies have assessed the potential of 
deep learning algorithms for diagnosis of multiple types 
of small bowel lesions. Ding and co-workers31 produced 
a multicentre retrospective study documenting the 
development of a CNN model for automatic detection 
of several small bowel abnormalities. Their system was 
designed for detection of mucosal abnormalities which 
were subsequently classified by a gastroenterologist. 
Although recognising the important role of CE in the 
setting of OGIB, the impact of this CNN system for assess-
ment of the bleeding risk associated with each finding 
was not evaluated. More recently, Aoki et al32 shared their 
experience with the development of a combined CNN 
for detections of various mucosal abnormalities. Their 
system showed high performance levels. Although OGIB 
was the most common indication for CE in their study, 
the assessment of the bleeding potential of each lesion 
was not provided. Although these new systems are a 
clear step forward for increasing the diagnostic yield of 
CE, assessing the clinical significance of a given mucosal 
abnormality in the setting of OGIB may help to stratify 
patient who may require further evaluation. The develop-
ment of automatic systems providing such evaluation may 
lead to future gains regarding adequate management of 
healthcare resources.

This study has several limitations. First, this was a 
retrospectively conducted study. Second, although this 
multicentre study included over 5000 patients and 50 000 
frames, larger studies are required to assess the clin-
ical impact of these technologies. Third, although our 
model included images from two distinct CE systems, 
the number of CE examinations using the OMOM this 
system was relatively low (22% of the total number of 
exams). Third, our CNN was developed using still frames. 
Clinical implementation of this model requires previous 
studies evaluating the performance of this model using 
full-length videos.

In conclusion, we have constructed a CNN-based 
model capable of diagnosing multiple types of small 
bowel lesions and differentiating their haemorrhagic 
potential using a widely used scale. Our system achieved 
high levels of diagnostic performance. This system has 
the potential to increase the diagnostic rentability of CE 
while simultaneously providing inputs regarding the clin-
ical significance of detected lesions.
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