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The power spectrum of proteins at high frequencies is remarkably well described

by the flat Wilson statistics. Wilson statistics therefore plays a significant role in

X-ray crystallography and more recently in electron cryomicroscopy (cryo-EM).

Specifically, modern computational methods for three-dimensional map

sharpening and atomic modelling of macromolecules by single-particle cryo-

EM are based on Wilson statistics. Here the first rigorous mathematical

derivation of Wilson statistics is provided. The derivation pinpoints the regime

of validity of Wilson statistics in terms of the size of the macromolecule.

Moreover, the analysis naturally leads to generalizations of the statistics to

covariance and higher-order spectra. These in turn provide a theoretical

foundation for assumptions underlying the widespread Bayesian inference

framework for three-dimensional refinement and for explaining the limitations

of autocorrelation-based methods in cryo-EM.

1. Introduction

The power spectrum of proteins is often modelled by the

Guinier law at low frequencies and the Wilson statistics at high

frequencies. At low frequencies, there is a quadratic decay of

the power spectrum characterized by the moment of inertia of

the molecule (e.g. its radius of gyration). At high frequencies,

the power spectrum is approximately flat. In structural

biology, it is customary to plot the logarithm of the spherically

averaged power spectrum of a three-dimensional structure as

a function of the squared spatial frequency. This Guinier plot

typically depicts the two different frequency regimes. It is not

surprising that these laws are of critical importance in struc-

tural biology, with applications in X-ray crystallography

(Drenth, 2007) and electron cryomicroscopy (cryo-EM)

(Rosenthal & Henderson, 2003). However, while the Guinier

law has a very simple mathematical derivation based on a

Taylor expansion, in the literature we could only find heuristic

arguments in support of Wilson statistics, such as the original

argument provided by Wilson in his seminal one-page Nature

paper (Wilson, 1942). Here we provide a rigorous mathema-

tical derivation of Wilson statistics in the form of Theorem 3

and derive other forms of statistics with potential application

to cryo-EM. The main ingredients in our analysis are a scaling

argument, basic probability theory, and modern results in

Fourier analysis that have found various applications within

mathematics (such as the distribution of lattice points in

domains), but their application to structural biology appears

to be new.

ISSN 2053-2733

Received 18 May 2021

Accepted 22 July 2021

Edited by S. J. L. Billinge, Columbia University,

USA

Keywords: power spectrum; cryo-EM; Wilson

statistics; Fourier analysis; Guinier plot.

http://crossmark.crossref.org/dialog/?doi=10.1107/S205327332100752X&domain=pdf&date_stamp=2021-08-20


1.1. Random bag of atoms

The model underlying Wilson statistics is a random ‘bag of

atoms’, where the random ‘protein’ consists of N atoms whose

locations X1;X2; . . . ;XN are independent and identically

distributed (i.i.d.). For example, each Xi could be uniformly

distributed inside a container � � R3 such as a cube or a ball,

though other shapes and non-uniform distributions are also

possible. The electron scattering potential � : R3
! R of the

protein is modelled as

�ðxÞ ¼
PN
i¼1

f ðx� XiÞ ð1Þ

where f is a bump function such as a Gaussian, or a delta

function in the limit of an ideal point mass. For simplicity of

exposition, we assume that the atoms are identical. Otherwise,

one can use different f’s to describe the scattering from each

atom type. The Fourier transform of (1) is given by

�̂�ð�Þ ¼
PN
i¼1

f̂f ð�Þ expð�2�ih�;XiiÞ ¼ f̂f ð�Þ
PN
i¼1

expð�2�ih�;XiiÞ:

ð2Þ

1.2. Wilson statistics

Wilson’s original argument (Wilson, 1942) uses (2) to

evaluate the power spectrum as follows:

j�̂�ð�Þj2 ¼ jf̂f ð�Þj2
PN
i¼1

expð�2�ih�;XiiÞ

����
����

2

¼ jf̂f ð�Þj2
PN

i;j¼1

exp½�2�ih�; ðXi � XjÞi�

( )

¼ jf̂f ð�Þj2 N þ
P
i6¼j

exp½�2�ih�; ðXi � XjÞi�

( )
ð3Þ

’ Njf̂f ð�Þj2: ð4Þ

Wilson argued that the sum of the complex exponentials in (3)

is negligible compared with N, as those terms wildly oscillate

and cancel each other, especially for high frequency �. We shall

make this hand wavy argument more rigorous and the term

‘high frequency’ mathematically precise. Note that for an ideal

point mass f̂f ð�Þ ¼ 1 and (4) implies that the power spectrum is

flat, i.e. j�̂�ð�Þj2 ’ N.

The challenge is to show that there is so much cancellation

that adding OðN2Þ oscillating terms of size Oð1Þ in (3) is

negligible compared with N. For a random walk, the sum of

OðN2Þ i.i.d. zero-mean random variables of variance Oð1Þ is

OðNÞ (the square root of the number of terms). In order to

show that the sum is negligible compared with N, additional

cancellation must be happening. The role that � plays also

needs to be carefully analysed, as for � ¼ 0, clearly

j�̂�ð0Þj2 ¼ N2. What is the mechanism by which j�̂�ð�Þj2 decays

from N2 to N as � increases?

2. Derivation of Wilson statistics

2.1. N1/3 scaling

Since X1; . . . ;XN are i.i.d., one might be tempted to apply

the central limit theorem (CLT) to (2) and conclude that �̂�ð�Þ
is approximately a Gaussian, for which the mean and variance

can be readily calculated as done by Wilson (1949). However,

one should proceed with caution, because if the container � is

fixed, then in the limit N!1, the density of the atoms also

grows indefinitely, whereas the density of atoms in a protein is

clearly bounded. If the density of the atoms is to be kept fixed,

the container � has to grow with N. To make this dependency

explicit, we denote the container by �N. The volume of the

container �N must be proportional to N. The length scale is

therefore proportional to N1=3, that is, �N ¼ N1=3�1 or

Xi ¼ N1=3Yi with Yi � Uð�1Þ in the uniform case, and i.i.d. in

general. The Fourier transform (2) is rewritten as

�̂�ð�Þ ¼ f̂f ð�Þ
PN
i¼1

expð�2�ih�;N1=3YiiÞ; ð5Þ

but now the CLT can no longer be applied in a straightforward

manner, because the summands in (5) are random variables

that depend on N.

2.2. Shape of container and decay rate of the Fourier
transform

The representation (5) facilitates the calculation of any

moment of �̂�ð�Þ. The expectation (first moment) of �̂�ð�Þ is

given by

E½�̂�ð�Þ� ¼ Nf̂f ð�ÞE½expð�2�ih�;N1=3Y1iÞ�

¼ Nf̂f ð�Þ
R
R

3

expð�2�ih�;N1=3yiÞgðyÞ dy

¼ Nf̂f ð�ÞĝgðN1=3�Þ; ð6Þ

where gðyÞ is the probability density function of Y1 and ĝg is its

Fourier transform. The dependency on ĝgðN1=3�Þ and N being a

large parameter together suggest that the decay rate of ĝg at

high frequencies is critical for analysing Wilson statistics.

Different container shapes and choices of g can lead to

different behaviour of its Fourier transform ĝg. Before stating

known theoretical results, it is instructive to consider a couple

of examples.

(i) A uniform distribution in a ball. Here �1 is a ball of

radius 1, denoted B, and the uniform density is

gBðxÞ ¼ ½1=ð4�=3Þ��BðxÞ, where �B is the characteristic func-

tion of the ball. It is a radial function, a property that can

readily be used to calculate its Fourier transform as

ĝgBð�Þ ¼ �
3 cosð2�j�jÞ

4�2j�j2
þ

3 sinð2�j�jÞ

8�3j�j3
: ð7Þ

In particular, (7) implies that jĝgBð�Þj � C=j�j2 for some

constant C.

(ii) A uniform distribution in a cube. Here �1 ¼ ½�
1
2 ;

1
2�

3 is

the unit cube, and gC is a product of three rectangular window

functions whose Fourier transform is the sinc function. As a

result,
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ĝgCð�Þ ¼
Y3

i¼1

sincð�iÞ ¼
Y3

i¼1

sinð��iÞ

��i

: ð8Þ

Taking � along one of the axes, e.g. � ¼ ðj�j; 0; 0Þ gives

ĝgCðj�j; 0; 0Þ ¼ ½sinð�j�jÞ�=�j�j. In this case, jĝgCð�Þj � C=j�j for

some C> 0. Notice that the decay of ĝgC in directions not

normal to its faces is faster. For example, for

� ¼ 1=31=2ðj�j; j�j; j�jÞ we have

ĝgC

1

31=2
ðj�j; j�j; j�jÞ

� �����
���� ¼ j sin3

ð 1
31=2 �j�jÞj

ð 1
31=2 �j�jÞ

3
�

C

j�j3
:

We are now ready to state existing theoretical results about

the decay rate of the Fourier transform for containers of

general shape.

Theorem 1. (1) (See Stein & Shakarchi, 2011, p. 336.) Suppose

� � Rd is a bounded region whose boundary M ¼ @� has

non-vanishing Gauss curvature at each point, then

j�̂��ð�Þj ¼ Oðj�j�
dþ1

2 Þ; as j�j ! 1: ð9Þ

(2) If M has m non-vanishing principal curvatures at each

point, then

j�̂��ð�Þj ¼ O½j�j�ðmþ2Þ=2
�; as j�j ! 1: ð10Þ

The decay rates previously observed for the three-dimen-

sional ball (d ¼ 3 or m ¼ 2) and the cube (m ¼ 0) are parti-

cular cases of Theorem 1.

Although the decay rate in different directions could be

different (as the example of the cube illustrates), for a large

family of containers (convex sets and open sets with suffi-

ciently smooth boundary surface), the following theorem

asserts that the spherical average of the power spectrum has

the same decay rate as that of the ball.

Theorem 2. (See Brandolini et al., 2003.) Suppose � � Rd is a

convex body or an open bounded set whose boundary @� is

C3=2. Then,

R
Sd�1

j�̂��ðk!Þj
2 d! ¼ O½k�ðdþ1Þ�; as k!1: ð11Þ

Here k ¼ j�j is the radial frequency and Sd�1 is the unit sphere

in Rd.

2.3. Validity regime of Wilson statistics

We are now in position to state and prove our main result

that fully characterizes the regime of validity of Wilson

statistics.

Theorem 3. (1) For the random bag of atoms model, the

expected power spectrum is given by

E j�̂�ð�Þj2
h i

¼ jf̂f ð�Þj2 N þ NðN � 1Þ ĝgðN1=3�Þ
�� ��2h i

: ð12Þ

(2) If the container is a convex body or an open set with a

C3=2 boundary surface, and the atom locations are uniformly

distributed in the container, then the expected spherically

averaged power spectrum satisfies

E
1

4�

Z
S2

j�̂�ðk!Þj2 d!

2
4

3
5 ¼ jf̂f ðkÞj2 N þ oðNÞ½ �; ð13Þ

for k� N�1=12.

(3) If the Fourier transform of the density g satisfies

jĝgð�Þj � Cj�j��, then

E j�̂�ð�Þj2
h i

¼ jf̂f ð�Þj2 N þ oðNÞ½ �; for j�j � N��; ð14Þ

where � ¼ ð2�� 3Þ=6�.

Proof. Starting with Wilson’s original approach, from (5) it

follows that the power spectrum of � is given by

j�̂�ð�Þj2 ¼ jf̂f ð�Þj2
PN

i;j¼1

exp½�2�ih�;N1=3ðYi � YjÞi�

¼ jf̂f ð�Þj2 N þ
P
i6¼j

exp½�2�ih�;N1=3ðYi � YjÞi�

( )
:

Since the Yi’s are i.i.d., the expected power spectrum satisfies

E j�̂�ð�Þj2
h i

¼ jf̂f ð�Þj2 N þ
P
i 6¼j

E exp½�2�ih�;N1=3ðYi � YjÞi�
� � !

¼ jf̂f ð�Þj2

(
N þ

P
i 6¼j

E expð�2�ih�;N1=3YiiÞ
� �

	 E expð2�ih�;N1=3YjiÞ
� �)

¼ jf̂f ð�Þj2 N þ NðN � 1Þ E expð�2�ih�;N1=3YiÞ
� ��� ��2n o

¼ jf̂f ð�Þj2 N þ NðN � 1Þ ĝgðN1=3�Þ
�� ��2h i

; ð15Þ

establishing (12). Assuming f (hence also f̂f ) are radial func-

tions, the expectation of the spherically averaged power

spectrum satisfies

E
1

4�

Z
S2

j�̂�ðk!Þj2 d!

2
4

3
5

¼ jf̂f ðkÞj2 N þ NðN � 1Þ
1

4�

Z
S2

ĝgðN1=3k!Þ
�� ��2 d!

2
4

3
5: ð16Þ

Theorem 2 with d ¼ 3 implies
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NðN � 1Þ
1

4�

Z
S2

ĝgðN1=3k!Þ
�� ��2 d! ¼ OðN2=3k�4

Þ: ð17Þ

This term is negligible compared with N in (16) for

k� N�1=12, proving (13). Finally, if jĝgð�Þj � Cj�j��, then

NðN � 1ÞjĝgðN1=3�Þj2 = OðN2�2�=3j�j�2�
Þ, which is oðNÞ for

j�j � N�½ð2�Þ=3�1�=2�. &

Note that (16) and (17) suggest that the spherically aver-

aged power spectrum decays to its high-frequency limit as k�4.

This decay rate at high frequencies is reminiscent of Porod’s

law in SAXS (small-angle X-ray scattering) (Porod, 1951,

1982). At first, the 1/12 exponent of the cutoff frequency

k0 ¼ OðN�1=12Þ might seem mysterious. In hindsight, it is

simply the product of the dimension d ¼ 3 that resulted in the

scaling of N1=3 and the decay rate exponent of k�4.

2.4. Spherical averaging and statistical fluctuation

Note that in our derivation of Wilson statistics, we first took

expectation with respect to the atom positions followed by

spherically averaging the power spectrum. On the other hand,

spherically averaging (3) first gives

1

4�

Z
S2

j�̂�ðk!Þj2 d! ¼ jf̂f ðkÞj2 N þ
X
i6¼j

sinð2�kjXi � XjjÞ

2�kjXi � Xjj

" #

ð18Þ

as in Debye’s scattering equation (Debye, 1915), due to the

identity

1

4�

Z
S2

expð�2�ihk!; xiÞ d! ¼
sinð2�kjxjÞ

2�kjxj
: ð19Þ

Although the 1=k decay of the sinc function in (18) sheds some

light on the mechanism by which the sum over atom pairs

decreases with k, it does not seem to provide a good starting

point for a rigorous derivation of Wilson statistics, nor does it

provide a clear path for the generalizations considered later in

this paper.

While Theorem 3 characterizes the expected power spec-

trum, one may wonder whether the statistical fluctuations of

the power spectrum could overwhelm its mean. This turns out

not to be the case. Similar to the derivation of Wilson statistics,

one can show that if jĝgð�Þj � Cj�j�2 then

E j�̂�ð�Þj4
h i

¼ N2
jf̂f ð�Þj4 þ oðN2

Þ; for j�j � N�1=12: ð20Þ

Since E½j�̂�ð�Þj2� = Njf̂f ð�Þj2 þ oðNÞ for j�j � N�1=12, it follows

that for j�j � N�1=12

Var½j�̂�ð�Þj2� ¼ E j�̂�ð�Þj4
h i

� E j�̂�ð�Þj2
h i2

¼ oðN2Þ: ð21Þ

In other words, the standard deviation of the power spectrum

is oðNÞ, so the fluctuation is smaller than the mean value.

3. Theoretical Guinier plots and cutoff frequencies

A realistic estimate of the density of atoms in proteins gives

rise to theoretical Guinier plots and prediction of the cutoff

frequency above which Wilson statistics holds. The protein

density is approximately � ’ 0.8 Da Å�3 (Henderson, 1995).

The number of carbon atom equivalents, using 9.1 carbon

equivalents per amino acid of molecular weight 110 is

Nc ¼ MWð9:1=110Þ, where MW is the molecular weight. For a

spherically shaped protein of radius R, the molecular weight

and number of carbon atom equivalents are given by

MW ¼ ð4�=3ÞR3� and Nc ¼ ð4�=3ÞR3�ð9:1=110Þ, respectively.

In particular, Nc ¼ 2:77	 105 and MW = 3.3 MDa for R =

100 Å, while Nc ¼ 4:3	 103 and MW = 52 kDa for R = 25 Å

[see Table 2 of Henderson (1995)].

Theoretical Guinier plots of the logarithm of the expected

power spectra [using (12) and (7)] as a function of the squared

spatial frequency for these representative cases are shown in

Fig. 1. The effect of the atomic structure factor is not included

in Fig. 1 for which f̂f ð�Þ ¼ 1. Also not included is the modifi-

cation due to solvent contrast. The low-frequency signal is

modified by the partial contrast-matching of solvent. In the

work of Rosenthal & Henderson (2003) the remaining

contrast is estimated to be 0.42, so the low-frequency spectral

density should be modified by this.

The theoretical Guinier plots qualitatively resemble

experimental Guinier plots, such as Fig. 8 of Rosenthal &
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Figure 1
Theoretical Guinier plots as predicted by Theorem 3 for realistic uniform
density of atoms in balls of radius 25 Å and 100 Å.

Figure 2
A closer look at the Fourier transform of the uniform density in the unit
ball ĝgB given by (7). The radial frequency k ¼ j�j is dimensionless here.



Henderson (2003). For the larger molecule with R = 100 Å the

power spectrum is approximately flat above k2 = 0.01 Å�2

corresponding to 10 Å resolution, whereas for the smaller

molecule with R = 25 Å the transition occurs closer to k2 =

0.015 Å�2, or 8.2 Å resolution.

The notable oscillations in the Guinier plots are due to the

oscillations of ĝgB given by (7). Fig. 2 shows ĝgB and k2ĝgB (the

latter is multiplied by 10 in order to make the two plots

comparable in scale). We see that jĝgBðkÞj � 0:081=k2 [i.e. the

constant C in jĝgBðkÞj � C=k2 can be taken as C ¼ 0:081]. It is

important to keep in mind that proteins are not perfectly

spherically symmetric. Although oscillations in the Guinier

plot are still expected (and are indeed observed), their

magnitude and periodicity are shape dependent.

Theorem 3 implies that the transition to Wilson statistics in

the Guinier plot occurs at k0 ¼ OðN�1=12
c Þ, and for higher

radial frequencies the spherically averaged power spectrum is

approximately flat. The cutoff frequency can be determined by

balancing the two terms in (12). Specifically, we require the

second term of (12) to be at most 0:3Nc. This criterion, toge-

ther with the bound jĝgBðkÞj � C=k2 with C ¼ 0:081 imply

N2
c

C

ðN
1=3
c k0Þ

2

� �2

¼ 0:3Nc;

or k0 ¼ 0:3�1=4C1=2N�1=12
c . The radius R0 of the unit cell (that

occupies a single atom on average) satisfies Ncð4�=3ÞR3
0 =

ð4�=3ÞR3. Therefore, R0 ¼ N�1=3
c R, and the dimensional cutoff

frequency kc (in Å�1) is given by

kc ¼ k0=R0 ¼ 0:3�1=4C1=2N�1=12
c N1=3

c R�1

¼ 0:3�1=4C1=2N1=4
c R�1

¼ 0:3�1=40:0811=2 4�

3
R3�

9:1

110

	 
1=4

R�1

¼ 0:279R�1=4; ð22Þ

in terms of the radius, or equivalently

kc ¼ 0:3�1=4C1=2N1=4
c R�1

¼ 0:3�1=40:08011=2 MW

9:1

110

	 
1=4
4�

3
�M�1

W

	 
1=3

¼ 0:309M
�1=12
W ; ð23Þ

in terms of the molecular weight. The cutoff frequency

decreases with the size of the molecule, but the decrease is

quite gradual due to the small exponent 1/12 in (23). For

example, the cutoff frequency increases by just 47% when the

molecular weight decreases by a factor of 100. For a large

macromolecule with MW = 3.3 MDa and R = 100 Å the cutoff

frequency is kc = 0.088 Å�1 corresponding to 11.3 Å resolu-

tion. For a smaller macromolecule with MW = 52 kDa and R =

25 Å the cutoff frequency is kc = 0.125 Å�1 corresponding to

8.0 Å resolution. These predictions are in agreement with our

previous estimates for the cutoff frequencies that were

obtained by observing Fig. 1. Fig. 3 illustrates the cutoff

frequency as a function of the molecular size with radius

extremes of 20 to 150 Å. The cutoff frequency is relatively

stable and varies only a little across a wide range of molecular

sizes (from 7.5 to 12.5 Å resolution). This behaviour and

resolutions are in agreement with empirical evidence about

the validity regime of Wilson statistics (Rosenthal &

Henderson, 2003).

4. Generalizations and applications to cryo-EM

4.1. Existing applications to cryo-EM

A common practice in single-particle cryo-EM is to apply a

filter to the reconstructed map. The filter boosts medium and

high frequencies such that the power spectrum of the shar-

pened map is approximately flat and consistent with Wilson

statistics (Rosenthal & Henderson, 2003; Fernandez et al.,

2008). The filter is an exponentially growing filter whose

parameter is estimated using the Guinier plot. The boost of

medium- and high-frequency components increases the

contrast of many structural features of the map and helps to

model the atomic structure. This is the so-called B-factor

correction, B-factor flattening or B-factor sharpening. It is a

tremendously effective method to increase the interpretability

of the reconstructed map. In fact, most map depositions in the

Electron Microscopy Data Bank (EMDB) only contain shar-

pened maps (Vilas et al., 2020). Map sharpening is still an

active area of research and method development (see e.g.

Jakobi et al., 2017; Kaur et al., 2021 and references therein).

Wilson statistics is also used to reason about and extrapolate

the number of particles required to high resolution (Rosenthal

& Henderson, 2003).

4.2. Generalization of Wilson statistics to covariance with
application to three-dimensional iterative refinement

We now highlight a certain generalization of Wilson statis-

tics with potential application to three-dimensional iterative

refinement, arguably the main component of the computa-

tional pipeline for single-particle analysis (Singer & Sigworth,

476 Amit Singer � Wilson statistics and cryo-EM Acta Cryst. (2021). A77, 472–479

research papers

Figure 3
The cutoff resolution k�1

c as a function of the radius R of a spherical
protein with uniform distribution of atoms as given by (22).



2020). Specifically, the Bayesian inference framework under-

lying the popular software toolbox RELION (Scheres, 2012b)

requires the covariance matrix of �̂� and approximates it with a

diagonal matrix (Scheres, 2012a). For tractable computation,

the variance (the diagonal of the covariance matrix) is further

assumed to be a radial function.

The random bag of atoms model underlying Wilson statis-

tics provides the covariance matrix

Cov½�̂��ð�1; �2Þ ¼ E½�̂�ð�1Þ�̂�ð�2Þ� � E½�̂�ð�1Þ�E½�̂�ð�2Þ� ð24Þ

in closed form as

Cov½�̂��ð�1; �2Þ ¼ Nf̂f ð�1Þf̂f ð�2Þ

	 ĝg½N1=3
ð�1 � �2Þ� � ĝgðN1=3�1ÞĝgðN

1=3�2Þ
� �

:

ð25Þ

Before proving this result, note that it implies a vast reduction

in the number of parameters needed to describe the covar-

iance matrix. In general, for a three-dimensional map repre-

sented as an array of L3 voxels, the covariance matrix is of size

L3 	 L3 which requires OðL6Þ entries, which is prohibitively

large. However, (25) suggests that the covariance depends on

only OðL3Þ parameters. Furthermore, approximating ĝgð�Þ by a

radial function implies that the covariance depends on just

OðLÞ parameters, the same number of parameters in the

existing Bayesian inference method for three-dimensional

iterative refinement. Moreover, comparing the two terms in

(25), the decay of ĝg implies that jĝg½N1=3ð�1 � �2Þ�j �

jĝgðN1=3�1ÞĝgðN
1=3�2Þj whenever j�1j; j�2j � N�1=3. Therefore,

for j�1j; j�2j � N�1=3

Cov½�̂��ð�1; �2Þ ¼ Nf̂f ð�1Þf̂f ð�2Þĝg½N
1=3
ð�1 � �2Þ�½1þ oð1Þ�: ð26Þ

Since ĝg½N1=3ð�1 � �2Þ� is largest for �1 ¼ �2 and decays with

increasing distance j�1 � �2j, it follows from (26) that the

covariance matrix restricted to frequencies above N�1=3 is

approximately a band matrix with bandwidth OðN�1=3Þ, such

that the diagonal is dominant and matrix entries decay when

moving away from the diagonal. Note that N�1=3 is a very low

frequency corresponding to resolution of the size of the

protein (as implied by the N1=3 scaling). Therefore, the

covariance is well approximated by a band matrix with a very

small number of diagonals. This serves as a theoretical justi-

fication for the diagonal approximation in the Bayesian

inference framework (Scheres, 2012a), as correlations of

Fourier coefficients with j�1 � �2j � N�1=3 are negligible. On

the flip side, correlations for which j�1 � �2j 
 N�1=3 should

not be ignored and correctly accounting for them could

potentially lead to further improvement of the Bayesian

inference framework (Scheres, 2012a).

To prove (25), we evaluate the two terms in the right-hand

side of (24) separately. The second term is directly obtained

from (6) as

E½�̂�ð�1Þ�E½�̂�ð�2Þ� ¼ N2 f̂f ð�1Þf̂f ð�2ÞĝgðN
1=3�1ÞĝgðN

1=3�2Þ: ð27Þ

To evaluate the first term, we substitute �̂�ð�1Þ and �̂�ð�2Þ by (5),

separate the summation into diagonal terms (i ¼ j) and off-

diagonal terms (i 6¼ j) as in Wilson’s original argument, and

use that Yi’s are i.i.d., resulting in

E½�̂�ð�1Þ�̂�ð�2Þ�

¼ f̂f ð�1Þf̂f ð�2ÞE

"PN
i¼1

expð�2�ihN1=3�1;YiiÞ

	
PN
j¼1

expð2�ihN1=3�2;YjiÞ

#

¼ f̂f ð�1Þf̂f ð�2ÞE

hPN
i¼1

exp½�2�ihN1=3ð�1 � �2Þ;Yii�

þ
P
i6¼j

expð�2�ihN1=3�1;YiiÞ expð2�ihN1=3�2;YjiÞ

i

¼ f̂f ð�1Þf̂f ð�2Þ

(
Nĝg½N1=3ð�1 � �2Þ�

þ NðN � 1ÞĝgðN1=3�1ÞĝgðN
1=3�2Þ

)
: ð28Þ

Subtracting (27) from (28) proves (25). This is a generalization

of Wilson statistics, as setting �1 ¼ �2 reduces (28) to (12).

Note that the diagonal of the covariance matrix satisfies

Var½�̂�ð�Þ� ¼ Cov½�̂��ð�; �Þ ¼ Njf̂f ð�Þj2 1� jĝgðN1=3�Þj2
� �

: ð29Þ

The variance vanishes for � ¼ 0 because �̂�ð0Þ ¼ N regardless

of the atom positions. The small variance at very low

frequencies shares the same origins as Guinier law.

In existing Bayesian inference approaches (Scheres, 2012a),

the mean of each frequency voxel is assumed to be zero.

However, comparing (6) and (29) for the mean E½�̂�ð�Þ� and the

variance Var½�̂�ð�Þ�, we see that the variance dominates the

squared mean only for j�j � N�1=12, which is the validity

regime of Wilson statistics. It follows that it is justified to

assume a zero-mean signal only for high frequencies, but not

at low frequencies. Including an explicit (approximately

radial) non-zero mean in the Bayesian inference framework

may therefore bring further improvement.

4.3. Generalization of Wilson statistics to higher-order
spectra with application to autocorrelation analysis

Autocorrelation analysis, originally proposed by Kam

(1977, 1980), has recently found revived interest for experi-

ments using X-ray free-electron lasers (XFEL) (von Ardenne

et al., 2018; Kurta et al., 2017; Liu et al., 2013) and cryo-EM

(Sharon et al., 2020; Bendory et al., 2018, 2019). In auto-

correlation analysis, the three-dimensional molecular struc-

ture is determined from the correlation statistics of the noisy

images. Typically, the second- or third-order correlation

functions are sufficient in principle to uniquely determine the

structure (Bandeira et al., 2017; Sharon et al., 2020). It is

therefore of interest to derive a third-order statistics analogue

of (12). Specifically, E½�̂�ð�1Þ�̂�ð�2Þ�̂�ð�3Þ� is given by
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E �̂�ð�1Þ�̂�ð�2Þ�̂�ð�3Þ

h i
¼ f̂f ð�1Þf̂f ð�2Þf̂f ð�3Þ

	 E

" PN
i;j;k¼1

expð�2�ih�1;N1=3YiiÞ expð�2�ih�2;N1=3YjiÞ

	 expð�2�ih�3;N1=3YkiÞ

#

¼ f̂f ð�1Þf̂f ð�2Þf̂f ð�3Þ

(
Nĝg N1=3

ð�1 þ �2 þ �3Þ
� �

þ NðN � 1Þĝg N1=3
ð�1 þ �2Þ

� �
ĝg N1=3�3

� �
þ NðN � 1Þĝg N1=3

ð�1 þ �3Þ
� �

ĝg N1=3�2

� �
þ NðN � 1Þĝg N1=3ð�2 þ �3Þ

� �
ĝg N1=3�1

� �
þ NðN � 1ÞðN � 2Þĝg N1=3�1

� �
ĝg N1=3�2

� �
ĝg N1=3�3

� �)
:

ð30Þ

This result is obtained by separating the sum over all triplets

i; j; k into five groups: i ¼ j ¼ k, i ¼ j 6¼ k, i ¼ k 6¼ j, j ¼ k 6¼ i

and i 6¼ j 6¼ k 6¼ i.

Similar to the power spectrum j�̂�ð�Þj2 which is the Fourier

transform of the autocorrelation function, the bispectrum

�̂�ð�1Þ�̂�ð�2Þ�̂�½�ð�1 þ �2Þ� is the Fourier transform of the triple-

correlation function. The bispectrum, like the power spectrum,

is also shift-invariant. As such, it plays an important role in

various autocorrelation analysis techniques. The expected

bispectrum under the random bag of atoms model is obtained

by setting �1 þ �2 þ �3 ¼ 0 in (31)

E �̂�ð�1Þ�̂�ð�2Þ�̂�ð�3Þ

h i
¼ f̂f ð�1Þf̂f ð�2Þf̂f ð�3Þ

	

h
N þ NðN � 1Þ ĝg N1=3�1

� ��� ��2
þ NðN � 1Þ ĝg N1=3�2

� ��� ��2þNðN � 1Þ ĝg N1=3�3

� ��� ��2
þ NðN � 1ÞðN � 2Þĝg N1=3�1

� �
ĝg N1=3�2

� �
ĝg N1=3�3

� �i
;

ð31Þ

for �1 þ �2 þ �3 ¼ 0.

The bispectrum drops from N3 for �1 ¼ �2 ¼ �3 ¼ 0 to N at

high frequencies. This drop is even more pronounced than that

of the power spectrum that decreases from N2 to N. This may

lead to numerical difficulties in inverting the bispectrum as it

has a large dynamic range, e.g. it spans eight orders of

magnitude for N ¼ 104.

The terms in the first two lines of (31) have similar beha-

viour to the power spectrum (12). The last term depends on

the decay rate of ĝg. If jĝgð�Þj � Cj�j�2 as for the ball, then

E �̂�ð�1Þ�̂�ð�2Þ�̂�ð�3Þ

h i
¼ Nf̂f ð�1Þf̂f ð�2Þf̂f ð�3Þ þ oðNÞ; ð32Þ

for j�1j; j�2j; j�3j � 1, which can be regarded as a general-

ization of Wilson statistics [e.g. (13)] to higher-order spectra.

However, for higher-order spectra such as the bispectrum the

behaviour at high frequencies is more involved. For example,

taking �1 and �2 to be high frequencies does not imply

�3 ¼ �ð�1 þ �2Þ is necessarily a high frequency, as can be

readily seen by taking �2 ¼ ��1 for which �3 ¼ 0. For this

particular choice of �2 ¼ ��1 the expected bispectrum is

always greater than N2.

5. Discussion

This paper provided the first formal mathematical derivation

of Wilson statistics, offered generalizations to other statistics,

and highlighted potential applications in structural biology.

The assumption underlying Wilson statistics of independent

atom locations is too simplistic as it ignores correlations

between atom positions in the protein. It is well known that

the power spectrum deviates from Wilson statistics at

frequencies that correspond to interatomic distances asso-

ciated with secondary structure such as �-helices which

produce a peak at 10 Å and beta-sheets which produce a peak

at 4.5 Å. A more refined model that includes such correlations

is beyond the scope of this paper.

From the computational perspective, we note that numer-

ical evaluation of Fourier transforms and power spectra

associated with Wilson statistics involves computing sums of

complex exponentials of the form (1). These can be efficiently

computed as a type-1 three-dimensional non-uniform fast

Fourier transform (NUFFT) (Dutt & Rokhlin, 1993). The

computational complexity of a naı̈ve procedure is OðNMÞ,

where M is the number of target frequencies, whereas the

asymptotic complexity of NUFFT is OðN þMÞ (up to loga-

rithmic factors). These considerations will be taken into

account in future computational work for numerical validation

of the theoretical predictions including comparison with the

power spectra and bispectra of density maps created from

atomic models (Sorzano et al., 2015).

Wilson statistics is an instance of a universality phenom-

enon: all proteins regardless of their shape and specific atomic

positions exhibit a similar spherically averaged power spec-

trum at high frequencies. From the computational standpoint

in cryo-EM, this universality is a blessing and a curse at the

same time. On the one hand, it enables one to correct the

magnitudes of the Fourier coefficients of the reconstructed

map so they agree with the theoretical prediction. On the

other hand, it implies that the high-frequency part of the

spherically averaged power spectrum is not particularly useful

for structure determination, as it does not discriminate

between molecules. The generalization of Wilson statistics to

the higher-order spectra shows that the bispectrum also

becomes flat at high frequencies. These observations may help

explain difficulties of the autocorrelation approach as a high-

resolution reconstruction method (Bendory et al., 2018).
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