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Summary

Inflammation-dependent base deaminases promote therapeutic resistance in many malignancies. 

However, their roles in human pre-leukemia stem cell (pre-LSC) evolution to acute myeloid 

leukemia stem cells (LSCs) had not been elucidated. Comparative whole genome and whole 

transcriptome sequencing analyses of FACS-purified pre-LSC from myeloproliferative neoplasm 

(MPN) patients reveals APOBEC3C upregulation, an increased C-to-T mutational burden, and 

hematopoietic stem and progenitor cell (HSPC) proliferation during progression, which can be 

recapitulated by lentiviral APOBEC3C overexpression. In pre-LSC, inflammatory splice isoform 

overexpression coincides with APOBEC3C upregulation and ADAR1p150-induced A-to-I RNA 

hyper-editing. Pre-LSC evolution to LSC is marked by STAT3 editing, STAT3β isoform switching, 

elevated phospho-STAT3, and increased ADAR1p150 expression, which can be prevented by 

*Corresponding author. **Corresponding Author and Lead Contact: Catriona Jamieson, MD PhD, UC San Diego Moores Cancer 
Center, 3855 Health Sciences Drive, La Jolla, California, USA, 92093-0820, cjamieson@health.ucsd.edu.
&Denotes equal contribution
Author contributions: Q.J., J.I., F.H., L.C., C.M., P.M., I.J.M., S.A., W.M., R.D., J.P., E.R., G.P., L.C., M.E.D., L.L., and C.J. 
performed experiments, data analysis and/or experimental planning. L.B.A, Y.H., A.M., G.X., T.W., C.N., R.S., A.B., S.B.R., and 
K.F. performed the computational genomics analyses, including transcriptome, RNA editing, pathway and whole-genome analysis, 
supervised by K.M.F. Q.J., J.I., F.H., I.O., J.C.V., R.A.M., S.C., K.M.F and C.J. wrote the manuscript, which was reviewed and edited 
by all authors. C.J. supervised all aspects of the project.

Declaration of Interests: The authors declare no competing interests.

HHS Public Access
Author manuscript
Cell Rep. Author manuscript; available in PMC 2021 September 28.

Published in final edited form as:
Cell Rep. 2021 January 26; 34(4): 108670. doi:10.1016/j.celrep.2020.108670.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



JAK2/STAT3 inhibition with ruxolitinib or fedratinib or lentiviral ADAR1 shRNA knockdown. 

Conversely, lentiviral ADAR1p150 expression enhances pre-LSC replating and STAT3 splice 

isoform switching. Thus, pre-LSC evolution to LSC is fueled by primate-specific APOBEC3C 

induced pre-LSC proliferation and ADAR1-mediated splicing deregulation.

In Brief

Jiang et al. identify dual APOBEC3C and ADAR1 base deaminase deregulation as an 

inflammation-responsive driver of myeloproliferative neoplasm stem cell evolution to self­

renewing leukemia stem cells that fuel secondary acute myeloid leukemia transformation.

Graphical Abstract

INTRODUCTION

Pro-inflammatory cytokine responsive APOBEC3 (apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide like type 3) and ADAR1 (adenosine deaminase acting on RNA 1) 

base deaminases restrict viral replication (Di Giorgio et al., 2020) and LINE element 

retrotransposition (Mannion et al., 2014; Tan et al., 2017). However, base deaminase 

deregulation has been linked to both genomic and epitranscriptomic (post-transcriptional 

modification) instability (Alexandrov et al., 2013a; Burns et al., 2013b; Han et al., 

2015; Jiang et al., 2017; Jiang et al., 2019; Lazzari et al., 2017; Peng et al., 2018; 

Petljak et al., 2019; Zhang and Slack, 2016; Zhou et al., 2019). In primates, APOBEC3 
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genes (APOBEC3A, APOBEC3B, APOBE3C, APOBEC3D, APOBEC3F, APOBEC3G, 
and APOBEC3H) contribute to maintenance of genomic integrity. Conversely, deregulation 

of APOBEC3 induces genomic instability and distinctive DNA mutational spectra in many 

malignancies (Alexandrov et al., 2020; Alexandrov et al., 2013a; Alexandrov et al., 2013b; 

Burns et al., 2013a) by deaminating cytidines to thymidines (C-to-T) (Buisson et al., 

2019). Although APOBEC enzymes have been fused to Cas9 nuclease-defective variants 

to induce targeted C-to-T transitions as a stem cell gene therapy strategy (Zafra et al., 2018), 

recent data suggest that APOBEC3 deaminases drive cancer-related hotspot mutagenesis 

(Alexandrov et al., 2020; Buisson et al., 2019). Because primate-specific APOBEC3 

deaminases are activated by pro-inflammatory cytokines, such as IFNα and β, TNF-α, 

IL-1β and IL-6, the effects of enzymatic C-to-T deamination on the genomic landscape 

of cancer are inherently episodic, microenvironmentally dependent, and difficult to model 

(Petljak et al., 2019).

Similarly, pro-inflammatory cytokines activate ADAR1p150-mediated adenosine to inosine 

(A-to-I) deamination of double-stranded RNA (dsRNA), particularly in the context of 

primate-specific Alu sequences (Chua et al., 2020). As a dynamic regulator of mRNA 

and miRNA stability(Jiang et al., 2013b; Lazzari et al., 2017; Tan et al., 2017), ADAR1 

plays a pivotal role in embryonic development and stem cell maintenance as evidenced 

by murine embryonic lethality and reduced hematopoietic stem cell (HSC) multi-lineage 

reconstitution potential following ADAR1 deletion(Hartner et al., 2009; Jiang et al., 2017; 

Jiang et al., 2019; Zipeto et al., 2016). Moreover, a recent study showed that ADAR1 loss 

reduces induced pluripotent stem cell (iPSC) reprogramming efficiency by inducing ER 

stress (Guallar et al., 2020). Additionally, alternatively spliced regions frequently harbor 

A-to-I editing sites whereby ADAR1 deficiency impairs alternative splicing in mouse tissues 

(Kapoor et al., 2020). Deregulation of ADAR1-mediated A-to-I editing alters stem cell 

survival and self-renewal regulatory mRNA and miRNA stability (Chen et al., 2013; Han 

et al., 2015; Jiang et al., 2017; Jiang et al., 2019; Lazzari et al., 2017; Zipeto et al., 2016). 

Although deaminase deregulation has been linked to therapeutic resistance in many tumor 

types(Han et al., 2015; Lazzari et al., 2017), the combinatorial capacity of APOBEC3­

induced DNA mutagenesis and ADAR1-mediated splicing disruption and epitranscriptomic 

instability to fuel pre-LSC transformation into LSC has not been elucidated.

As an important paradigm for understanding molecular drivers of progression to secondary 

acute myeloid leukemia (sAML), myeloproliferative neoplasms (MPNs), including 

polycythemia vera (PV), essential thrombocythemia (ET), myelofibrosis (MF) and chronic 

myeloid leukemia (CML), were the first malignancies shown to harbor somatic stem cell 

mutations(Eide and Druker, 2017; Jiang et al., 2017; Rossi et al., 2008). Recent reports 

suggest that AML transformation is not solely predicted by the baseline driver mutations 

(i.e., JAK2-V617F, CALR, MPL) or additional somatic mutations (i.e., ASXL1, EZH2)

(Tefferi et al., 2018), but has been associated with leukocytosis, constitutional symptoms, 

and pathologically increased cytokines, such as IL8 (Tefferi et al., 2011). Increases in 

pathologically induced cytokines have been found in MPNs (Pardanani et al., 2013), 

and decreases in these cytokines by JAK inhibition (Verstovsek et al., 2012) may well 

be responsible for observed improvements in survival and decreases in risk of leukemic 

transformation (Verstovsek et al., 2017).
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Pre-leukemia stem cells (pre-LSCs) in MPNs arise from clonally mutated hematopoietic 

stem and progenitor cells (HSPCs) that vary in their capacity to become dormant, resist 

therapy (Gishizky et al., 1993; Jamieson et al., 2004; Kleppe et al., 2018; Rossi et al., 

2008), and contribute to the generation of LSC that drive sAML transformation (Mesa et 

al., 2017; Shlush et al., 2014). While the propensity of MPNs to transform to sAML has 

been difficult to ascertain based on standard prognostic guidelines (Mesa et al., 2017; Shlush 

et al., 2014), seminal studies demonstrate that MPN initiation is driven by heritable risks 

and that MPNs harbor distinctive mutational profiles that predict progression as well as 

overall survival (Bao et al., 2020; Grinfeld et al., 2018; Miles et al., 2020). Moreover, in 

response to microbial signals, IL-6 production has been shown to promote pre-leukemic 

myeloproliferation in Tet methylcytosine dioxygenase 2 (Tet-2)-deficient mice (Meisel et al., 

2018) thereby underscoring the importance of episodic, proinflammatory cytokine induction 

of MPN progression. However, the primate-specific impact of cytokine-induced enzymatic 

mutagenesis had not been addressed. Thus, we investigated the combinatorial capacity 

of inflammation-dependent, primate-specific APOBEC3 and ADAR1 deaminases to drive 

human pre-LSC evolution to LSCs with the ultimate aim of informing the development of 

effective strategies that predict and prevent transformation to rapidly fatal sAML.

RESULTS

APOBEC3C Deaminase Activation Promotes Human Pre-LSC Proliferation

To identify pre-LSC DNA mutational hierarchies and deaminase mutational signatures, 

whole-genome sequencing analysis (WGS) was performed on CD34+ stem cells purified 

from peripheral blood of 39 individuals with various MPNs, as well as 4 non-MPN controls, 

including 1 chronic lymphocytic leukemia (CLL) (Fig. 1a and Table S1). Somatic mutations 

were identified in the genomes of CD34+ stem cells from the 39 MPN patients using two 

complimentary approaches: (i) ensemble variant calling comparing CD34+ stems cells in 

peripheral blood to bulk saliva; and (ii) identification of somatic mutations, without using 

matched normal tissues, by employing tumor-only somatic variant filtering. These two 

complimentary approaches were used to mitigate the risk of identifying somatic mutations 

in the setting of matched-normal tissue (i.e., saliva) contamination with MPN cells (i.e., 

peripheral blood).

Using this combined approach, we compared the somatic mutations derived using ensemble 

variant calling in our CD34+ MPN stems cells (MCCWG CD34+ MPNs) to the ones derived 

using ensemble variant calling by the PCAWG consortium in MPN bulk peripheral blood. 

Remarkably, the tumor mutational burden was lower in stem cells compared to bulk blood 

with a more than 4-fold depletion of single point mutations observed in CD34+ MPN 

cells (p<0.0012; Fig. 1b). Furthermore, focused interrogation of 69 MPN-associated genes 

(Grinfeld et al., 2018) provided additional confirmation of a low mutational burden in 

MPN stem cells compared to previously published datasets (Fig.1b-c). Overall, these results 

suggest that more slowly cycling pre-leukemic MPN stem cells may be less mutable than 

the more highly proliferative bulk blood cells. Further analysis confirmed that clock-like 

mutational signatures perfectly recapitulate the patterns observed in both PCAWG MPNs 

derived from bulk blood and MCCWG MPNs derived from CD34+ stem cells (cosine 
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similarities: 0.97 and 0.94, respectively). Interestingly, COSMIC signature SBS1, a clock­

like signature associated with cell division, was depleted in pre-leukemic MPN stem cells 

compared to proliferative bulk blood; while COSMIC signature SBS5, a clock-like signature 

putatively associated with circadian rhythm, was highly prominent in MPN CD34+ stem 

cells (Fig. 1b).

Subsequently, single nucleotide variant, copy number variant and structural variant analyses 

were performed on all samples, employing tumor-only somatic variant filtering on the 

peripheral blood samples and subtracting structural and copy number variants found in 

the non-MPN samples as common germline variants (Fig. S1a). Mutations were found in 

inflammation-related genes, such as IL1A (SNP) and IRF1 (duplication in 1 PV and 4 MF 

patients) (Fig. S1a), a known driver of APOBEC3 activation. Except for patients presenting 

with high-risk MF, the genes JAK2, CALR, ASXL1/3 and KMT2C were mutated in MPN 

CD34+ stem cell populations (Fig. 1c) at a lower frequency than bulk peripheral blood 

samples (Fig. 1c). Some high-risk MF patients with mutations in MPN-associated genes 

harbored another malignancy or progressed to AML following sample collection indicative 

of genomic and/or transcriptomic instability, as has been described for malignancies with 

APOBEC3-related mutational signatures and ADAR1 activation (Fig. 1c; Fig. S1b-f; Table 

S1).

The most commonly observed mutations in MPN CD34+ cells were C-to-T transitions 

(approximately 50%) followed by T-to-C changes (approximately 20%) (Fig. 1c-d). 

Frequent C-to-T mutations have been reported following activation of APOBEC3 

(Alexandrov et al., 2013a; Burns et al., 2013b). Therefore, we examined the expression 

of APOBEC3 and other transcripts in MPN stem and progenitor populations by RNA-seq 

(Fig. 1e and Fig. S2a-e). Notably, APOBEC3C was upregulated in national comprehensive 

cancer network (NCCN) panel guideline-defined intermediate-risk (Int-MF) and high-risk 

myelofibrosis (HR-MF) stem cell-enriched samples, suggesting a role for APOBEC3C in 

pre-LSC propagation (Fig. 1e and Fig. S2e). Consistent with this hypothesis, we observed 

proliferation of CD34+ hematopoietic stem and progenitor cells (HSPCs) following lentiviral 

APOBEC3C overexpression as well as expansion of the stem cell population following 

MF progression to AML (Fig. 1f). Following lentivirally enforced APOBEC3C expression 

in CD34+ cord blood stem cells, WGS revealed a pattern of mutations similar to that 

of MPN CD34+ cells (cosine similarity: 0.96; Fig. 1b and Fig. S1b) suggesting that 

APOBEC3C contributes to MPN stem cell mutagenesis. In contrast to an editase-deficient 

mutant APOBEC3C, lentiviral APOBEC3C wild-type overexpression in CD34+ cord blood 

cells resulted in expansion of a progenitor population that lacks replating capacity and 

skews toward the erythroid lineage as evidenced by increased erythroid colony formation 

(Fig. 1g-h, Fig. S1c and S1f). Lentiviral overexpression of another inflammation-responsive 

deaminase, ADAR1, induced expansion of a CD19+ B cell population (Fig. S1e). These 

results indicate that APOBEC3C and ADAR1 play regulatory roles in hematopoietic cell 

fate determination. While APOBEC3 deaminases are drivers of somatic mutagenesis in 

many human cancers (Burns et al., 2013b), this report provides a mechanistic link between 

APOBEC3C and pre-LSC generation and identifies the differential roles of APOBEC3C and 

ADAR1 in human HSPC expansion and cell fate determination.
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Inflammatory Pathway Activation in Pre-LSC

To comprehensively investigate inflammation-dependent deaminase induction of pre-LSC 

evolution, a comparative WGS and RNA-seq analysis pipeline (Fig.1a and Fig. S2a-e) 

was established to exclude naturally occurring single nucleotide polymorphisms and 

enable detection of previously unreported editing sites in the setting of deaminase 

activation. To detect inflammatory pathway activation during MPN progression, RNA-seq 

analyses was performed on 113 FACS-purified stem cell (CD34+CD38-Lin) and progenitor 

(CD34+CD38+Lin−) populations from 54 MPN and AML patients and 24 young and aged 

healthy controls (Fig. 1a, Fig. S2a and Fig. S2b). A gene expression signature emerged 

that distinguished MPN and AML progenitors from stem cells in normal young and aged 

samples (Fig. S2b). A comparison between AML and MF samples elucidated 987 and 678 

differentially expressed genes in stem cells and progenitors, respectively (Fig. S2d). Notably, 

transcripts involved in regulation of inflammation, including CTSA (cathepsin A) and 

inflammatory cytokine receptor genes (CD97 and EFHD2), were increased in AML stem 

cells and progenitors relative to MF, suggesting that deregulated inflammatory pathways 

may contribute to pre-LSC transformation into LSCs (Fig. S2d and Fig. S3a-h).

MPN stem cells harbored only 24 common differentially expressed genes relative to 

healthy aged bone marrow (ABM) (Fig. S3a). Notably, interferon stimulated gene (ISG) 

activators of ADAR1, such as IRF9 and IFITM1, were overexpressed in PV stem cells 

(Fig. S3b). In MF progenitors, expression of CSNK1γ2, a WNT-β-catenin self-renewal 

pathway regulator, was elevated relative to ABM (Fig. S3d, h). In AML stem and progenitor 

cells, both IER2 and CSF1R were upregulated, which have been associated with increased 

cytokine responsiveness as well as release of pro-inflammatory chemokines promoting 

invasion and metastasis (Fig. S3b, d, g, h). Lastly, comparative RNA-seq analyses revealed 

that the top enriched signaling pathways in sAML compared with MF were related to 

inflammation, autoimmunity and WNT signaling further underscoring the importance of 

inflammatory cytokine signaling and WNT/β-catenin self-renewal pathway activation in 

pre-LSC evolution to LSC (Fig. S3b-f).

Inflammation-Dependent ADARp150 and APOBEC3C Promote Pre-LSC Evolution

The predominance of inflammatory signatures detected in pre-LSC led us to examine the 

combined roles of inflammatory cytokine-inducible ADAR1 and APOBEC3 deaminases in 

MPN progression to AML. Initial hierarchical clustering of RNA-seq analyses, including 

the top 1% of genes ranked by variance across the dataset, revealed distinct gene (Fig. S2b) 

and splice isoform expression patterns between normal, MPN and AML hematopoietic stem 

cell (HSC) and progenitor samples (Fig. 2a). A predominance of interferon- or inflammatory 

cytokine-related transcripts, including a pro-inflammatory IL6ST isoform, was observed 

in MPN and sAML progenitors relative to ABM controls (Fig. 2b). Moreover, MPN and 

AML progenitors displayed a splice isoform switch favoring expression of the inflammatory 

cytokine-responsive ADAR1 p150 isoform over the constitutively active ADAR1 p110 

isoform (Fig. 2c).

Because of the observed upregulation of inflammatory cytokine-related genes capable of 

activating innate immune deaminases in MPNs, we interrogated the differentially expressed 
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genes by performing Signaling Pathway Impact Analysis (SPIA) comparing normal ABM 

with MPN and AML progenitors (Fig. 2d). Comparison of MPN with ABM revealed 

activation of pathways involved in regulation of chemokine signaling, RNA transport and 

transcriptional deregulation in cancer (Fig. 2d). Notably, approximately 70% of the genes in 

the influenza A pathway were differentially expressed in ET, PV and AML when compared 

to normal samples (Fig. 2d). Moreover, both Epstein Barr virus (EBV) and Influenza A viral 

infection-related pathways were activated in AML compared with ABM indicating that anti­

viral pathway activation is associated with LSC generation (Fig. 2d). To investigate whether 

ADAR1 contributed to pre-LSC transformation (Jiang et al., 2017), we performed RNA-seq 

following lentiviral transduction of cord blood stem or progenitor cells with ADAR1 wild­

type (ADAR1 WT) or a deaminase-inactive mutant (ADAR1E912A) (Jiang et al., 2019). 

SPIA analysis revealed that two KEGG pathways activated by ADAR1 WT overexpression 

in both cell types were involved in cancer and viral carcinogenesis (Fig. 2e) thereby 

mirroring the viral pathway activation signature typical of ADAR1-overexpressing AML 

progenitors (Fig. 2d). Together, these data suggest that inflammatory cytokine-inducible 

ADAR1p150 expression contributes to pre-LSC maintenance and LSC generation.

While activation of ADAR1 has been linked to cancer progression (Jiang et al., 2013a; Jiang 

et al., 2017; Peng et al., 2018), the combinatorial role of APOBEC3C and ADAR1p150 

in pre-LSC evolution to LSC had not been examined. Both ADAR1p150 and APOBEC3C 

transcripts were elevated by RNA-seq analyses in high-risk MPN stem cells (Fig. 2f and 

Table S1). Co-immunoprecipitation analysis revealed that APOBEC3C and ADAR1p150 

bind to each other in HEK293T cells (Fig. 2g). Moreover, confocal fluorescence microscopy 

revealed that co-localization of ADAR1p150 and APOBEC3C in AML cells was reduced by 

robust lentiviral ADAR1 shRNA knockdown (Fig. 2h and Fig. S2C). These data suggest that 

activation of both APOBEC3C and ADAR1p150 fuel pre-LSC evolution.

A-to-I RNA Editing Signatures Distinguish Pre-LSC from LSC

To further evaluate the impact of ADAR1 activation on pre-LSC evolution to LSC, we 

analyzed epitranscriptomic alterations observed in our samples that are present in the 

REDIportal atlas of A-to-I RNA editing that contains over 16 million events curated from 

RNAseq analyses derived from 549 individuals (https://academic.oup.com/nar/advance­

article/doi/10.1093/nar/gkaa916/5940507). We identified known and previously unknown 

RNA editing events in MPN and AML (secondary and de novo) as well as normal young 

bone marrow (YBM) and ABM samples. Each MPN subtype and untreated sAML possessed 

significantly elevated levels of RNA editing compared to ABM controls as measured 

by the median variant allele frequency (VAF) (Fig. 3a). Inflammatory cytokine-inducible 

ADAR1p150 expression positively correlated with editing activity in MPN and sAML 

progenitors suggesting that inflammatory cytokine signaling promotes malignant editing in 

pre-LSC and LSC (Fig. 3b, Fig. S3a-h, Fig. S4a). To determine the frequency of RNA 

editing in different transcriptomic regions, we analyzed the VAF associated with A-to-I 

editing changes in ABM, YBM, MPN and AML progenitors (Fig. 3c). Compared with 

ABM and YBM, MPN progenitors harbored higher levels of A-to-I editing that resulted in 

non-synonymous changes (Fig.3d). Notably, 3’ UTR editing increased in MF and persisted 

in untreated sAML (Fig. 3d). Thus, ADAR1p150 induces A-to-I editing events that may 
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prevent transcript targeting by microRNAs in 3’ UTR regions and thereby enhance transcript 

stability in MF and sAML(Jiang et al., 2019).

Current RNA editing databases are primarily based on cell line or bulk tumor cell RNA-seq 

data that may mask the cell type and context-specific RNA editing events that trigger pre­

LSC evolution into LSC. To identify RNA editing sites specific to pre-LSC, we compared 

RNA-seq variants with matching WGS data (Fig. 1a-c) and quantified non-synonymous 

editing events using REDIportal and two other established RNA editing databases (Kiran 

and Baranov, 2010; Ramaswami and Li, 2014) (Fig. 3e). We observed a strikingly different 

editing pattern between MPN stem cells and progenitors and ABM and YBM control 

samples. While missense editing of CDK13, a splicing and cell cycle regulatory gene, 

occurred in 84% of MPN samples, missense editing was not detected in ABM and YBM 

(Fig. 3e). Moreover, CDK13 transcript levels were elevated in MF (p<0.0001) and sAML 

stem cells (p<0.0001) and progenitors (Fig. 3f). Additionally, increased CDK13 transcript 

levels correlated with ADAR1 overexpression (Fig. 3g). Furthermore, confocal fluorescence 

microscopy revealed CDK13 upregulation and increased ADAR1 in myeloid leukemia cells 

consistent with CDK13 transcript stabilization and subsequent increased translation as a 

result of ADAR1 upregulation (Fig. 3h). While A-to-I RNA editing and stabilization of 

CDK13 transcripts have been linked to a worse prognosis in hepatocellular carcinoma (Dong 

et al., 2018), CDK13 targeting with a covalent inhibitor, THZ531, has potent anti-tumor 

activity suggesting that this approach may have further utility in LSC targeting (Iniguez 

et al., 2018). Conversely, a SUMF2 missense (recoding) editing was more prevalent in 

normal controls than MPN samples (Fig. 3e and Fig. S4b, h-j). While previous studies 

indicate that ADAR1-mediated A-to-I editing events occur predominantly in Alu repetitive 

element containing dsRNA structures (Jiang et al., 2017), our MPN stem and progenitor 

cell-enriched RNA-seq analysis of the nonsynonymous editing events reveal that recoding 

events also occur in non-Alu regions (Fig. 3e). Together these data suggest that distinctive 

RNA editing events predict MPN initiation and progression.

Subsequently, we examined the expression of all 1295 differentially edited genes in MPN, 

AML and ABM stem and progenitor cells. Hierarchical clustering of the gene expression 

values for differentially edited genes revealed that MPN samples clustered together when 

compared with normal young and aged controls (Fig. 4a). Notably, AML samples tended to 

cluster closer to normal samples indicative of reversion to stemness typical of aggressive 

malignancies. Further analysis of the differentially edited genes propagated over the 

STRING (Szklarczyk et al., 2017) interactome and clustered with Louvain clustering 

revealed that in both AML and MF progenitors A-to-I RNA edited transcripts were 

significantly enriched for genes involved in chromatin organization, transcription and 

mRNA splicing (Fig. 4b-c). Interestingly, AML progenitors demonstrated differential editing 

of ribosomal regulatory genes compared to ABM thereby suggesting that disruption of 

translational control by ADAR1p150 activation may fuel pre-LSC transformation.

To further investigate the role of ADAR1 in clonal evolution, we performed single cell 

RNA-seq (scRNA-seq) of CD34+ cord blood cells transduced with a lentiviral backbone 

control (shCTRL) or lentiviral shRNA targeting ADAR1 (shADAR1) (Fig. S4c and Table 

S2). In keeping with a ribosomal regulatory role for ADAR1, tSNE analysis revealed 
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differential ribosomal gene editing following ADAR1 knockdown (Fig. S4d)(Solomon et 

al., 2017). Notably, ribosomal transcripts were also differentially edited in MF and AML 

compared with normal age-matched progenitors (Fig. 4b-c and Fig. S4e-g). These editing­

induced changes in ribosomal gene expression suggest that ADAR1 activation may alter 

protein turnover rates in LSC. These observations correspond with previous reports showing 

disruption of proteostasis (i.e. protein turnover) as a driver of LSC propagation in mouse 

models of leukemia (Signer et al., 2014) and ADAR1-induced proteomic diversity as a 

contributor to therapeutic resistance in a broad array of malignancies (Chua et al., 2020; 

Peng et al., 2018).

RNA Editing-Induced STAT3 Splice Isoform Switching Induces Pre-LSC Evolution to LSC

While the overall A-to-I RNA editing events increased in MPN progenitors compared with 

their normal counterparts, progression of MF and sAML was marked by increased editing 

of specific regions, including in lincRNA and in 3’UTR (Fig. 3d), as well as of selective 

transcripts (Fig. 4a-c). Notably, STRING interactome analysis revealed that a transcriptional 

activator of ADAR1 and embryonic self-renewal agonist, STAT3, was differentially edited 

and overexpressed in AML compared to normal progenitors (Fig. 4c). Previously, we 

reported that the JAK/STAT signaling pathway activates malignant A-to-I RNA editing in 

stem cell regulatory transcripts and increases LSC self-renewal capacity in CML (Zipeto 

et al., 2016). Since A-to-I RNA editing can remove the 3’ splice acceptor adenosine, 

we investigated whether ADAR1 activity is linked to pre-mRNA splicing changes and 

expression of alternative STAT3 isoforms.

Alternative splicing in STAT3 exon 23 generates two isoforms, STAT3α and STAT3β (Fig. 

5a and Fig. S5a-h). A previous report showed that intronic RNA editing of STAT3 favored 

increased expression of the relatively rare STAT3β splice isoform (Goldberg et al., 2017). 

In AML, 4 out of 7 samples harbored A-to-I RNA editing at previously validated STAT3 

intronic editing sites whereas only one ABM sample possessed these STAT3 RNA editing 

events (Fig. 5b). The expression of alternatively spliced STAT3β increased in MPN and 

AML stem cells and progenitors with elevated ADAR1p150 expression compared to ABM 

controls (Fig. 5c and Fig.S5a-b). Following exposure to inflammatory cytokines, Western 

blot analyses revealed that ADAR1p150 levels were elevated in sAML (pt.255 and pt.705) 

CD34+ cells compared to MF (pt. 749) or normal CD34+ cord blood cells (Fig. 5d). Notably, 

expression of the ADAR1 RNA editing-induced phospho-STAT3β isoform increased in 

sAML compared to normal controls (Fig. 5d and Fig. S5a-b). In keeping with ADAR1 

induction of alternative STAT3 splice isoform usage, lentiviral ADAR1 overexpression in 

primary MPN progenitors was associated with increased STAT3β splice isoform expression 

(Fig.5f and Fig. S5h). Conversely, treatment with selective JAK2 inhibitors, ruxolitinib or 

fedratinib, in the presence of inflammatory cytokines, reduced the levels of ADAR1p150 

and phospho-STAT3 in sAML stem cells (Fig. 5e, Fig. S5f). Following interferon-alpha 

treatment of myeloid leukemia cells, lentiviral ADAR1 shRNA knockdown reduced phosho­

STAT3β expression (Fig. S5e,g). Thus, STAT3 editing increases overall phospho-STAT3, 

which can bind to the ADAR1 promoter and activate ADAR1 transcription. This feedback 

loop contributes to LSC generation and can be disrupted by pharmacologic JAK2/STAT3 

inhibition or ADAR1 shRNA knockdown.
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As a self-renewal agonist, STAT3 represses GSK3β via ARID1 and prevents 

phosphorylation as well as subsequent degradation of β–catenin (Bowman et al., 2001; 

Hirai et al., 2011; Nusse and Clevers, 2017; Wu et al., 2016). In keeping with the LSC­

propagating effects of STAT3 upregulation, engrafted sAML progenitors expressed phospho­

STAT3 as measured by flow cytometric evaluation of humanized sAML mouse model 

bone marrow (Fig. 5g). Moreover, lentivirally enforced ADAR1 expression in pre-LSC 

increased colony replating to a level more typical of LSC in sAML (Fig. 5h, Fig. S5c-d). 

Together, these data suggest that ADAR1 A-to-I editing-induced STAT3 splice isoform 

switching promotes transformation of pre-LSC into LSC that drive therapy-resistant sAML 

transformation.

DISCUSSION

In addition to environmental mutagens, cumulative data suggest that APOBEC3 DNA and 

ADAR1 RNA deaminases serve as enzymatic drivers of cancer evolution (Alexandrov et 

al., 2013a; Alexandrov et al., 2013b; Burns et al., 2013a; Chua et al., 2020; Jiang et 

al., 2017). Specifically, patterns of C-to-T deamination induced by aberrant activation of 

APOBEC3 family members, have been identified by whole-exome sequencing in many 

human malignancies (Burns et al., 2013b). Moreover, inflammatory cytokine-induced 

hyperactivation of ADAR1p150 results in A-to-I deamination of self-renewal and cell cycle 

regulatory transcripts thereby fueling therapeutic resistance in leukemia (Jiang et al., 2013b; 

Jiang et al., 2019; Lazzari et al., 2017; Zipeto et al., 2016). However, the combinatorial roles 

of APOBEC3 and ADAR1 in primary human pre-cancer stem cell evolution to therapy­

resistant cancer stem cells had not been examined.

In this study, we focused on characterizing the combined capacity of enzymatic DNA and 

RNA deamination to induce pre-LSC evolution to LSCs that fuel sAML transformation. 

To this end, we established 1) primary human stem and progenitor cell-based WGS and 

RNA-seq editome analysis pipelines that enabled identification of pre-LSC and LSC-specific 

DNA and RNA editing sites, 2) lentiviral APOBEC3C wild-type and mutant functional 

impact analysis in hematopoietic stem and progenitor cells, and 3) lentiviral ADAR1 wild­

type, mutant, and shRNA knockdown analysis of RNA editing-related recoding events 

and splicing alterations. Using these combined human hematopoietic stem and progenitor 

cell-focused molecular and functional analysis strategies, we discovered that APOBEC3C 

activation fuels C-to-T mutagenesis and expansion of MPN progenitors with increased 

ADAR1p150 A-to-I RNA editing capacity thereby initiating LSC generation. Confocal 

fluorescence microscopic analyses showing APOBEC3C and ADAR1p150 co-localization 

together with co-immunoprecipitation of APOBEC3C and ADAR1p150 data suggest that 

these enzymes may function as a complex to increase deamination of cytosolic single­

stranded DNA (ssDNA) and dsRNA in response to increased systemic inflammatory 

cytokine signaling or in response to viral replication.

In MPN stem and progenitor cells, APOBEC3C induces proliferation and C-to-T 

mutagenesis that sets the stage for inflammatory cytokine-induced ADAR1p150 activation 

resulting in CDK13 missense editing and transcript instability, which has been linked 

to decreased survival of patients with therapeutically recalcitrant malignancies (Dong 
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et al., 2018). Ultimately, inflammation-responsive ADAR1p150 activation in APOBEC3C­

overexpressing MPN pre-LSC induces STAT3 intronic editing, which increases expression 

of STAT3β. In a previous study, STAT3β was found to repress GSK3β and ARID1B 

thereby preventing phosphorylation and subsequent degradation of β-catenin (Wu et al., 

2016), which is frequently deregulated in LSC (Jamieson et al., 2004; Zipeto et al., 

2016). In keeping with this report, we found that ADAR1p150 upregulation was associated 

with increased STAT3β splice isoform expression in LSC. Moreover, ADAR1p150 

induction could be reduced by pharmacologic JAK2/STAT3 inhibition with fedratinib or 

ruxolitinib and could be phenocopied by lentiviral ADAR1 shRNA knockdown. In the 

setting of increased APOBEC3C expression by high risk MF pre-LSC, lentiviral ADAR1 

overexpression enhanced colony replating efficiency, as an in vitro surrogate measure of 

self-renewal, suggesting that APOBEC3C and ADAR1 work in concert to induce pre-LSC 

evolution to LSC. If a pro-inflammatory microenvironment in the marrow is conducive 

to the accumulation of additional somatic mutations driving pre-LSC transformation into 

LSC, this could explain observed clinical benefits of MPN therapy. Indeed, the decreases 

seen in disease progression in MPNs, both from PV to MF by therapy with long-acting 

interferons (Jager et al., 2020), as well as decreases in progression from MF to AML with 

JAK inhibition {Verstovsek, 2017 #14028; Vannucchi et al., 2017; Yacoub et al., 2019) may 

well originate from decreases in an inflammatory microenvironment in the marrow.

In addition to providing a robust framework for predicting and preventing pre-cancer 

stem cell evolution, the discovery of combined base deaminase deregulation is particularly 

relevant for identifying the potentially pre-malignant consequences of clinical gene therapy 

strategies (Komor et al., 2016) involving APOBEC3 and ADAR base editors. Because 

APOBEC3 and ADAR1 can be activated by cytosolic ssDNA, dsRNA structures, and 

lentiviral transduction, they may contribute to DNA mutations and RNA alterations 

induced by CRISPR-Cas guided base editing technologies as well as lentivirally delivered 

therapeutic gene correction strategies. Also, the differential effects of APOBEC3 and 

ADAR1 on stem cell fate specification will need to be considered prior to implementation 

of stem cell gene therapy approaches involving base editing technologies. The potential 

for induction of both genomic and epitranscriptomic instability provides a strong rationale 

for deciphering the oncogenic potential of combinatorial APOBEC3 and ADAR1 activation 

(Grunewald et al., 2019).

While we focused on the C-to-T DNA mutational impact of APOBEC3C overexpression, 

other APOBEC3 enzymes, such as APOBEC3A, can also induce DNA editing in response 

to interferon thereby promoting genomic instability (Sharma et al., 2015). Moreover, 

the RNA editing capacity of APOBEC3C and other APOBEC3 enzymes has not been 

clearly elucidated in stem cells and forms the basis for launching whole-transcriptome and 

single stem cell RNA sequencing analyses as well as functional stem cell impact studies. 

Moreover, C-to-T deamination by APOBEC3C could remove cytosine thereby preventing 

cytosine methylation. Because cytosine demethylation represents a major cancer mutational 

signature, the role of APOBEC3C in the induction of malignant genetic modifications that 

determine expression patterns for a large set of genes will need to be further studied.
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In contrast to normal HSPC, inflammatory cytokines induce both APOBEC3C and ADAR1 

expression in pre-LSC thereby promoting evolution to LSC in sAML. Further investigation 

into whether sustained ADAR1 activation occurs as a result of downregulation of an ADAR 

repressor, like AIMP2, which enhances degradation of ADAR proteins (Tan et al., 2017) 

or if ADAR1 hyperactivation promotes malignant reprogramming of pre-LSC into LSC 

by altering ER stress responses (Guallar et al., 2020), may provide additional insights 

into the cell type and context-specific causes and functional consequences of deaminase 

deregulation.

Both ADAR1 and APOBEC3 play important roles in the intrinsic responses to viral 

infection and protect the human genome from retrotransposition. They also play important 

roles in innate and adaptive immunity by controlling the response to inflammatory cytokine 

signals. In keeping with the induction of deaminases by inflammatory cytokines, we found 

that the top activated genes in pre-LSC compared with normal HSPC controls corresponded 

with anti-viral signaling pathways and chemokine signaling. The most common anti-viral 

signature was related to EBV infection (ET, PV, and AML), which is associated with 

viral oncogenesis. These data suggest that inflammation-dependent deaminases induced by 

viral infection; human endogenous retroviral activation; LINE element retrotransposition; 

or chronic cytokine signaling, promote MPN pre-LSC transformation into LSC in sAML 

and will need to be further studied with viral transcriptome analysis pipelines. Also, 

recent studies suggest that deletion of ADAR1 sensitizes malignant cells to PD-1 immune 

checkpoint blockade (Ishizuka et al., 2019). Thus, early detection and targeted inhibition 

of combined APOBEC3C and ADAR1 activation may have important implications for 

preventing human pre-cancer stem cell evolution to cancer stem cells that promote 

therapeutic resistance and disease progression.

STAR METHODS

Key Resource Table

REAGENT OR RESOURCE SOURCE IDENTIFIER

Antibodies

b-actin Abcam Cat #ab8227; RRID: AB_2305186

ADAR1 Abcam Cat #ab126745; RRID:
AB_11145661

APOBEC3C Abcam Cat # ab72652;
RRID: AB_ 1523141

pSTAT3 (Y705)-FITC eBioscience Cat # 11–9033-42;
RRID: AB_2572522

CD34 BV421 BD Cat # 740081;
RRID: AB_2739844

ADAR1 Abcam Cat # 126745;
RRID: AB_ 11145661

ADAR1 Cell Signaling Cat # 14175;
RRID: AB_ 2722520

STAT3 (124H6) Cell Signaling Cat # 9139;
RRID: AB_ 331757
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REAGENT OR RESOURCE SOURCE IDENTIFIER

p-STAT3 Y705 Cell Signaling Cat # 9131;
RRID: AB_ 2331586

GAPDH Millipore Cat # MAB374;
RRID: AB_ 2107445

CDK13 Abcam Cat # ab251955

ADAR1-APC Abcam Cat # ab168809

APOBEC3C Abcam Cat # ab221874;
RRID: AB_ 2722520

GAPDH Abcam Cat # ab181602;
RRID: AB_2630358

Goat pAb Rb IgG AF568 Abcam Cat # ab175471;
RRID: AB_2576207

Goat pAb Rb IgG AF568 Abcam Cat # ab150077;
RRID: AB_2630356

HRP-linked anti-rabbit IgG Cell Signaling Cat # 7074;
RRID: AB_2099233

HRP-linked anti-mouse IgG Cell Signaling Cat # 7076;
RRID: AB_330924

CD45-Alexa405 Invitrogen Cat #MHCD4526; RRID: 
AB_10372211

CD38-Alexa647 Ab Serotec Cat #MCA1019A647; RRID: 
AB_324854

CD34-Biotin Invitrogen Cat #CD3458115; RRID: AB_2536503

Strepavidin-Alexa488 Invitrogen Cat #S32354; RRID: AB_2315383

7AAD Invitrogen Cat #A1310

Alexa Fluor® 594 Goat Anti-
Rabbit IgG (H+L) Antibody

Invitrogen Cat #A11012; RRID:
AB_10562717

CD45-APC Invitrogen Cat #MHCD4505; RRID: 
AB_10372216

CD45-BB515 BD Cat #564585; RRID: AB_2732068

CD34-BV 421 BD Cat # 562577; RRID: AB_2687922

CD38-PE-Cy7 BD Cat #335790; RRID: AB_399969

CD123-PE BD Cat #554529; RRID: AB_395457

CD45RA-FITC Invitrogen Cat #MHCD45RA01; RRID: 
AB_10373858

CD8-PE-Cy 5.5 BD Cat #555368; RRID: AB_395771

CD56- PE-Cy 5.5 BD Cat #555517; RRID: AB_395907

CD4- PE-Cy 5.5 BD Cat #555348; RRID: AB_395753

CD3- PE-Cy 5.5 BD Cat #555334; RRID: AB_395741

CD19- PE-Cy 5.5 BD Cat #555414; RRID: AB_395814

CD2- PE-Cy 5.5 BD Cat #555328; RRID: AB_395735

CD14- PerCP-Cy5.5 BD Cat # 550787; RRID: AB_393884

CD8-PE-Cy 5.5 BD Cat #555368; RRID: AB_395771

CD56- PE-Cy 5.5 BD Cat #555517; RRID: AB_395907

CD3-FITC BioLegend Cat #300306; RRID: AB_314042
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REAGENT OR RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

DH5alpha Competent E. Coli Invitrogen Cat #12297016

Stbl2 Competent E. Coli Invitrogen Cat #10268019

Biological Samples

Aged normal and MPN Patient 
samples

Obtained through patients 
consenting at UCSD Moores 
Cancer Center according 
to Institutional Review 
Boardapproved protocols.

N/A

Young Cord blood CD34+ cells Purchased from AllCells or
StemCell Technologies

Cat #CB008F-S
Cat #70008.5
Cat #70008.2

Critical Commercial Assays

SYBR GreenER qPCR
SuperMix

Invitrogen Cat #11761–500

SuperScript III First-Strand
Synthesis SuperMix for qRT-
PCR

Invitrogen Cat #11752–250

Prolong Gold antifade reagent with 
DAPI

Invitrogen Cat # P36935

Live/Dead Fixable Near IR
Dead Cell Stain kit

Invitrogen Cat #L10119

Secrete-Pair Dual
Luminescence Assay Kit

GeneCopoeia Cat #LF033

Experimental Models:
Cell Lines

K562 ATCC Cat #CCL-243; RRID: CVCL_0004

TF1a ATCC Cat #CRL-2451; RRID: CVCL_3608

293T ATCC Cat #CRL-3216; RRID: CVCL_0063

Experimental Models:

Recombinant DNA

pCDH-EF1-MCS-T2A-copGFP SBI System Biosciences Cat #CD521A-1

pCDH-ADAR1 WT Zipeto et al, 2016 N/A

pCDH-ADAR1E912A Zipeto et al, 2016 N/A

pCDH-CMV-EF1-copGFP SBI System Biosciences Cat #CD511B-1

shADAR1-pLKO.1
(CCGGACCTCCTCACGAGCCCA
AGTTCGTTTACCAAGCAAAA)

This paper N/A

shScramble -pLKO.1 
(CCTAAGGTTAAGTCGCCCTCG
)

This paper N/A

Equipment

Olympus FluoView FV10i Jamieson laboratory N/A

MACSQuoant 10 Analyzer Jamieson laboratory N/A

Deposited Data

RNA-sequencing dataset This paper dbGAP:
PHS002228.v1.p1.
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REAGENT OR RESOURCE SOURCE IDENTIFIER

DNA-sequencing dataset This paper. dbGAP:
PHS002228.v1.p1.

Analysis codes This paper Github: https://github.com/ucsdccbb/
MPN_atlas_methods

Software and Algorithms

Burrows-Wheeler Aligner Li H., 2013 https://github.com/lh3/bwa

VarScan2 Koboldt et al., 2012 https://dkoboldt.github.io/varscan/

Strelka2 Kim et al., 2018 https://github.com/Illumina/strelka

MuSE Fan et al. 2016 https://bioinformatics.mdanderson.org/
publicsoftware/muse/

Mutect2 Benjamin et al., 2019 https://gatk.broadinstitute.org/hc/en-us/
articles/360037593851-Mutect2

SigProfilerMatrixGenerator Bergstrom et al., 2019 https://github.com/AlexandrovLab/
SigProfilerMatrixGenerator

Cutadapt v1.15 Martin, 2011 https://github.com/marcelm/cutadapt

samblaster Faust, et al., 2014 https://github.com/GregoryFaust/
samblaster

Sambamba v0.4.7 Tarasov, et al., 2015 https://lomereiter.github.io/sambamba/

Samtools, v1.1 Li et al., 2009 http://www.htslib.org/

PicardTools v1.96  https://broadinstitute.github.io/picard/

Genome Analysis Tool Kit
v2.4–9; v3.8

McKenna et al., 2010 http://www.broadinstitute.org/gsa/
wiki/index.php/
The_Genome_Analysis_Toolkit

bwa-mem v0.7.12 Li and Durbin, 2009 http://biobwa.sourceforge.net/
bwa.shtml))

STAR v2.5.1a; v2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR

RSEM v1.3.0 Li & Dewey, 2011 https://deweylab.github.io/RSEM/

ENCODE long RNA-seq
Pipeline

 https://github.com/ENCODE-DCC/
long-rna-seqpipeline

FastQC Andrews, et al., 2012 https://
www.bioinformatics.babraham.ac.uk/
projects/fastqc//

REDItools Picardi & Pesole, 2013 http://srv00.recas.ba.infn.it/reditools/

CrossMap Zhao et a., 2014 http://crossmap.sourceforge.net/

Mutect v1.1.5 Cibulskis, et al., 2013 https://software.broadinstitute.org/
cancer/cga/mutect

Bedtools v2.22.1; v2.26.0 Quinlan & Hall, 2010 http://bedtools.readthedocs.io/en/latest/

EdgeR Robinson et al., 2010 http://bioconductor.org/packages/
release/bioc/html/edgeR.html

 

Vcftools Danecek, et al., 2011 https://vcftools.github.io/index.html

GENE-E https://
software.broadinstitute.org/
GENE-E/

 

Cirrus-ngs https://github.com/ucsdccbb/
cirrus-ngs

R v3.4.3 https://cran.r-project.org/  
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REAGENT OR RESOURCE SOURCE IDENTIFIER

limma Ritchie et al., 2015 https://www.bioconductor.org/packages/
release/bioc/html/limma.html

limma-voom Law et al., 2014 https://www.bioconductor.org/packages/
release/bioc/html/limma.html

ANNOVAR v2017Jun01 Wang, et al., 2010 http://annovar.openbioinformatics.org/

SPIA Tarca, et al., 2020 https://bioconductor.org/packages/
release/bioc/html/SPIA.html

VariantAnnotation v1.24.5 Obenchain, et al., 2014 https://bioconductor.org/
packages/release/bioc/html/
VariantAnnotation.html

SNPiR https://github.com/rpiskol/
SNPiR

 

Oncotator v1.9.8 Ramos, et al., 2015 https://software.broadinstitute.org/
cancer/cga/oncotator

bcl2fastq https://support.illumina.com/
sequencing/
sequencing_software/
bcl2fastqconversion­
software.html

 

GProfiler

Cytoscape v3.7.1 https://cytoscape.org/  

VisJS2Jupyter Rosenthal, et al., 2018 https://github.com/ucsdccbb/
visJS2jupyter

Rtsne, v0.15 https://github.com/jkrijthe/
Rtsne

 

Rcircos Zhang, et al. 2013 https://cran.r-project.org/web/packages/
RCircos/index.html

CNVkit Talevich, et al. 2014 https://cnvkit.readthedocs.io/en/stable/

Lumpy Layer, et al. 2014 https://github.com/arq5x/lumpy-sv

Manta Chen, et al., 2016 https://github.com/Illumina/manta

AnnotSV Geoffrey, et al. 2018 https://lbgi.fr/AnnotSV/

SURVIVOR Jeffares, et al. 2017 https://github.com/fritzsedlazeck/
SURVIVOR

Databases/Reference
Datasets

1000 Genomes Project 1000G_phase1.snps.high 
_confidence.hg19.sites.vcf

 

dbSNP hg19 v138 dbsnp_138.hg19.vcf  

Hg19 fasta ucsc.hg19.fasta  

GRCh37v87 gtf Homo_sapiens.GRCh37.8
7.gtf.gz

 

STRING high confidence
interactome

Szklarczyk et al., 2015 9606.protein.links.v11.0.txt

ExAC Lek, et al. 2016 http://exac.broadinstitute.org/

gnomAD https://
gnomad.broadinstitute.org/

DARNED Kiran & Baranov, 2010 rnaEditDB.txt

RADAR v2 hg19 Ramaswami & Li, 2014 Human_AG_all_hg19_v2.t

xt
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REAGENT OR RESOURCE SOURCE IDENTIFIER

GSVA Hanzelmann et al, 2013 https://bioconductor.org/packages/
release/bioc/html/GSVA.html

ICGC PCAWG MPN dataset Campbell et al, 2020 http://dcc.icgc.org/pcawg/

Other

Normal HSPC, CML CP progenitor, 
and BC CML
progenitor gene expression

Jiang et al, 2013 BioProject: PRJNA214016

Cord blood CD34+ transduced with 
pCDH, ADAR1 WT, or
ADAR1E912A

Zipeto et al, 2016 BioProject: PRJNA319866

Resource Availability.

Lead Contact.—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact Dr. Catriona Jamieson 

(cjamieson@health.ucsd.edu).

Materials Availability.—All unique/stable reagents generated in this study are available 

from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability—The sequencing datasets generated during this study 

are available at dbGAP, accession number PHS002228.v1.p1. The analysis code and 

documentation of computational analyses are available through Github: https://github.com/

ucsd-ccbb/MPN_atlas_methods. Data from previous studies are available. Normal HSPC, 

CML CP progenitor, and BC CML progenitor gene expression are available at 

PRJNA214016. Cord blood CD34+ transduced with pCDH, ADAR1 WT, or ADAR1E912A 

are available at PRJNA319866.

Experimental Model and Subject Details

Animal—All mouse studies were completed in accordance with University Laboratory 

Animal Resources and Institutional Animal Care and Use Committee of the University of 

California regulations. Immunocompromised RAG2−/−γc−/− mice were bred and maintained 

in the Sanford Consortium vivarium according to IACUC approved protocols. Newborn 

mice (2–3 days old) of both sexes were used in the study.

Human Subjects—Primary adult non-leukemic blood and bone marrow as well as 

patient samples were obtained from consenting patients at the University of California in 

accordance with a UC San Diego human research protections program Institutional Review 

Board approved protocol (#131550). The IRB reviewed this protocol and found that it meets 

the requirements as stated in 45 CFR 46.404 and 21 CFR 50.51. Human cord blood and 

normal aged-match samples were purchased as purified CD34+ cells (AllCell or StemCell 

Techologies).
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Primary cell cultures—All human cell lines (293T and K562) were cultured in 37°C in 

DMEM supplemented with 10% FBS and 2 mM L-glutamine and maintained according to 

ATCC protocols. All cell lines were confirmed to be mycoplasma-free with repeated testing.

Experimental Model and Subject Details—Primary human subjects are as the 

following: 4 healthy individuals and total of 78 MPN patients. The subjects were allocated 

to experimental groups based on the healthy history. The health status, whether the subjects 

were involved in previous procedures, and previous treatment history can be found in the 

Supplemental Table 1. All mice used in this study were housed and bred under specific 

pathogen-free conditions at University of California, San Diego in accordance with all the 

guidelines of the Institutional Animal Care and Use Committee (IACUC).

Method Details

Patient Sample Processing and Preparation for Whole-Genome Sequencing—
CD34+ cells: Peripheral blood mononuclear cells were isolated by Ficoll-paque density 

centrifugation and cryopreserved in liquid nitrogen. CD34+ cells were selected from 

peripheral blood mononuclear cells from both MPN patients and normal controls by 

magnetic bead separation (MACS; Miltenyi, Bergisch Gladbach, Germany) as previously 

described(Jiang et al., 2013b) with minor modification using a different kit for magnetic 

bead separation: Catalog 130–100-453. DNA from the peripheral blood CD34+ population 

was extracted according to manufacturer recommendations using QIAamp DNA Blood Mini 

Kit (Qiagen, Catalog number 51104).

Saliva cells: Subjects abstained from eating at least 1 hour prior to saliva donation and 

rinsed their mouths with water to remove food residue immediately prior to saliva donation. 

Subjects then deposited 1 mL of saliva into the collection device, which was stabilized 

immediately afterwards (Biomatrica, Catalog number 97021–011A). Stabilized saliva was 

passed through 70–100 micron strainers to further remove food residues. DNA was extracted 

using the QIAamp DNA Blood Mini Kit (Qiagen, Catalog number 51104) described above 

with minor modifications. Both peripheral blood (90X) and saliva (30X) cell samples were 

sequenced on the Illumina HiSeq X sequencer using a 150-base paired-end single-index read 

format.

Patient Sample processing and Preparation for Whole-transcriptome 
Sequencing—Whole-transcriptome sequencing (RNA-seq) was performed on 78 samples 

distributed as follows: PV (n=6), ET (n=2), MF (n=29), CML (n=5), AML (n=12), and 

non-MPN control individuals (n=24). These samples can further be broken down based 

on tissue of collection (peripheral blood or bone marrow) and cell types (stem cells and 

progenitor). In summary, from 54 subjects and 24 non-MPN controls, 113 samples were 

included in the RNA sequencing cohort. Mononuclear cells from peripheral blood and 

bone marrow were purified, cryopreserved, and enriched for CD34+ cells as described 

above. Enriched CD34+ fractions were stained with fluorescent antibodies against human 

CD45, CD34, CD38, Lineage markers (BD Pharmingen; CD2 PE-Cy5, 1:20, cat 555328, 

CD3 PE-Cy5, 1:20, cat 555334, CD4 PE-Cy5, 1:10, cat 555348, CD8 PE-Cy5, 1:50, 

cat 555368, CD14 PerCP-Cy5.5, 3:100, cat 550787, CD19 PE-Cy5, 1:50, cat 555414, 
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CD20 PE-Cy5, 1:20, cat 555624, CD56 PE-Cy5, 1:10, cat 555517, CD45 APC, 1:50, 

cat 335790, CD34 BV421, 1:100, cat 562577, CD38 PE-Cy7, 1:50, cat 335790), and 

propidium iodide. Cells were FACS-purified using a FACS Aria II (Sanford Consortium 

Stem Cell Core Facility) into hematopoietic stem cell (Lin−CD45+CD34+CD38−) and 

progenitor (Lin−CD45+CD34+CD38+) populations directly into RLT lysis buffer (Qiagen) 

for RNA extraction followed by RNA-Seq (The Scripps Research Institute Next Generation 

Sequencing Core) on Illumina HiSeq platforms.

Antibody Supplier Catalog Number Clone Lot

CD2 PE-Cy5 BD Pharmingen 555328 RPA-2.10 6070653

CD3 PE-Cy5 BD Pharmingen 555334 UCHT1 5349958

CD4 PE-Cy5 BD Pharmingen 555348 RPA-T4 6036632

CD8 PE-Cy5 BD Pharmingen 555368 RPA-T8 5219728

CD14 PerCP-Cy5.5 BD Pharmingen 550787 M5E2 6070674

CD19 PE-Cy5 BD Pharmingen 555414 HIB19 6126777

CD20 PE-Cy5 BD Pharmingen 555624 2H7 6126778

CD56 PE-Cy5 BD Pharmingen 555517 B159 7177552

CD45 APC Life Technologies MHCD4505 HI30 1966219A

CD34 BV421 BD Pharmingen 562577 581 7153978

CD38 PE-Cy7 BD Biosciences 335790 HB7 8002648

Bioinformatics analysis

The analysis code and documentation for the computational analyses are available through 

Github: https://github.com/ucsd-ccbb/MPN_atlas_methods.

Whole genome sequencing (WGS) and mutation calling without matched normal

Whole genome sequencing of 44 saliva samples was performed at 30X coverage. The 

samples were distributed among PV (n=5), ET (n=4), MF (n=28), CML (n=3) and non­

MPN control individuals (n=4, including 3 healthy volunteers and 1 CLL). In parallel, 

whole genome sequencing of 43 peripheral blood CD34+ stem and progenitor cell enriched 

samples was performed at 90X coverage for the following sample distribution: PV (n=6), 

ET (n=4), MF (n=26), CML (n=3) and non-MPN control individuals (n=4, including 1 

CLL). WGS analysis was performed on 82 samples, with matching 41 peripheral blood 

CD34+ samples. We performed sequence alignment and variant calling using the Genome 

Analysis Toolkit (GATK) best practice pipeline. The reference genomes were realigned to 

the human 1000 genomes v37(Genomes Project et al., 2015), which contains the autosomes, 

X, Y and MT but without haplotype sequence or EBV. BWA-mem v.0.7.12.(Li and Durbin, 

2009) was used for mapping short reads against the human 1000 genomes v37. Subsequent 

processing was carried out with SAMtools v.1.1(Cibulskis et al., 2013; Lai et al., 2016; Li 

et al., 2009; McKenna et al., 2010), Picard Tools v1.96, Genome Analysis Toolkit (GATK) 

v2.4–9(McKenna et al., 2010), which consisted of the following steps: sorting and splitting 

of the BAM files, marking of duplicate reads, local realignment, indel realignment and 
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recalibration of base quality scores, outputting reads coverage files in bed format for each 

individual, and calling germline and somatic variants.

Ensemble Variant Calling from Whole Genome Sequencing Data

Short-read sequences from paired blood and saliva sample were each mapped against human 

genome build GRCh38d1.vd1 using BWA-mem v0.7.17 and sorted by SAMtools(Li et al., 

2009). No minimum mapping quality score was required for mapping. Duplicate reads 

were annotated using Picard MarkDuplicate(Heldenbrand et al., 2019) with a validation 

stringency set to “STRICT”. Variant calling was performed on the paired mapped reads 

using four independent variant callers: GATK4 Mutect2 v4.1.4.1(Heldenbrand et al., 2019), 

Strelka2 v2.9.10(Kim et al., 2018), Varscan2 v2.4.3(Koboldt et al., 2012), and MuSE 

v.1.0rc(Fan et al., 2016). Any mutation identified by at least 2 of the variant callers 

was considered genuine. The ensemble variant calling pipeline was validated against 10 

previously characterized ICGC PCAWG whole-genome sequenced samples exhibiting over 

95% concordance in each sample (Consortium, 2020). Each of the variant callers used the 

gnomAD hg38 dbSNP file for filtering(Lek et al., 2016). For Mutect2, paired reads were 

allowed to independently support different haplotypes during initial variant calling and the 

expected frequency of alleles not found in the germline resource was 0.00003125 as per 

best-practices approach(Heldenbrand et al., 2019). Contamination table and read orientation 

models were built from the paired samples and was subsequently used for filtering. For 

VarScan2, the initial variant calling expected a tumor purity of 0.8 and the subsequent 

filtering required a minimum coverage of 10 reads and at least 3 alternative reads in tumor 

with a minimum alternative allele frequency of 0.2. For Strelka2 and MuSE, the default 

setting for whole genome sequence was used to produce a list of raw and filtered variants.

Analysis of Mutational Signatures and Mutational Patterns

Mutational patterns were generated using SigProfilerMatrixGenerator (Bergstrom et al., 

2019) and mutational signatures analysis was performed using our well-established 

SigProfiler computational framework (Alexandrov et al., 2020). Briefly, the framework 

identifies the set of mutational signatures that optimally explain the observed mutational 

patterns without overfitting these mutational patterns. The analysis revealed that clock-like 

signatures SBS1 and SBS5 were sufficient to recapitulate the patterns observed in MPN 

samples from both CD34+ stem cells and bulk blood.

Variant Annotation & Filtering

Peripheral blood variants were annotated with Oncotator (Ramos et al., 2015) from a 

multisample VCF file. We filtered variants using the strategy of (Sukhai et al., 2019) 

to obtain somatic variants from tumor only samples, retained insertions, deletions, and 

nonsynonymous variants with ExAC, 1000 Genomes, and gnomad population allele 

frequency < 0.002. Variants with ClinVar clinical significance of “benign” ere removed. 

We also removed variants present in three normal controls.
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Structural Variant and Copy Number Analysis

Lumpy (Layer et al., 2014) and Manta (Chen et al., 2016) were used to call SV structural 

variants. SVs not annotated as imprecise but present in both callers (Jeffares et al., 2017) 

were annotated and prioritized with AnnotSV (Geoffroy et al., 2018) SVs were subsequently 

filtered to exclude those present in 1000 Genomes Project and gnomad, and ranked 1–4 by 

AnnotSV. SVs present in the three normal controls were also removed from all samples.

CNVkit was used to discover somatic copy number variants with the batch command and -m 

wgs parameter. The three normal controls were pooled together for use as a normal panel. 

Circos plots of variations were created using circlize (Gu et al., 2014; Zhang et al., 2013).

RNA-sequencing read preprocessing

RNA-Seq was performed on Illumina’s NextSeq 500 sequencer with 150bp paired-end 

reads. Sequencing data were de-multiplexed and output as fastq files using Illumina’s 

bcl2fastq (v2.17).

RNA editing analysis

RNA reads were aligned using 2-pass alignment with STAR 2.5.2b 2-pass alignment. 

Alignment deduplication was performed with Picard MarkDuplicates followed for SortSam. 

Alignments were then processed sequentially according to GATK best practices for calling 

RNA-Seq variants with tools SplitNCigarReads, RealignerTargetCreator, IndelRealigner, 

BaseRecalibrator, PrintReads. Variants were called with HaplotypeCaller and filtered with 

VariantFiltration for FS < 30, QD > 2, QUAL > 20(79). Mismatches in first 6 base pairs 

of each read were discarded. Alu sites were identified and kept from RepeatMasker. Non­

Alu variants were further processed: We removed those in repetitive regions based on the 

RepeatMasker annotation. Intronic sites within 4bp of splicing junctions were removed. 

Next, we filtered variants in homopolymer runs. All sites were then kept if there were 

a minimum of three alternative allele carrying reads and ten total reads and a minimum 

allele frequency of 0.10. We then identified known RNA editing sites according to RADAR 

(Ramaswami and Li, 2014) and DARNED (Kiran and Baranov, 2010). For patients without 

matched whole genome sequencing data, there is a non-zero probability that copy number 

changes could result in false positive editing sites, but the extensive filtering steps should 

minimize these instances. To filter mismatches to ADAR specific RNA edits, we kept A 

to G variants in genes on the positive strand and T to C variants on the negative strand 

(Kiran and Baranov, 2010; Piskol et al., 2013; Ramaswami and Li, 2014; Ramaswami et 

al., 2012; Ramaswami et al., 2013). Previously, unreported editing sites were predicted with 

patient data where there were matching RNA and DNA samples. Notably, we only predicted 

RNA editing sites with sufficient DNA coverage (> 10 reads/site) to compare mismatches 

and excluded sites that were identified as DNA variants. RNA edits were annotated with 

Oncotator and further filtered to remove sites that exist in ExAC, 1000 Genomes Project, 

and dbSNP. Sites were annotated with variant classification (3’UTR, 5’UTR, 5’ Flank, 

nonsynonymous, synonymous, Silent, Intron, ncRNA, IGR. Differential editing analysis was 

performed using a Chi-Square test compare the differences in editing in each gene for each 

variant classification (i.e. MDM2–3’UTR MF vs AN). Significance was set at p < 0.05. The 

contingency table for each test was set up as follows:

Jiang et al. Page 21

Cell Rep. Author manuscript; available in PMC 2021 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Condition 1 Condition 2

Edited N sites N sites

Not Edited N possible sites N sites N possible sites N sites

N sites is the number of aggregated sites where N possible sites is the number of uniquely 

edited coordinates within a variant classification * number of samples. Genes with only 

intergenic differentially editing events were removed. To account for multiple testing, 

adjusted p-values were calculated using the Benjamini-Hochberg procedure and genes with 

events below an adjusted p-value of 0.05 were called significant and retained in the final 

lists.

Transcript and gene quantification and differential expression

Quality control of the raw fastq files was performed using the software tool FastQC 

(Andrews, S. & Others. FastQC: a quality control tool for high throughput sequence 

data. (2010). Sequencing reads were aligned to the human genome (hg19) using 

the STAR v2.5.1a aligner (Dobin et al., 2013). Read and transcript quantification 

was performed with RSEM(Li and Dewey, 2011) v1.3.0 and GENCODE annotation 

(genocode.v19.annotation.gtf). The R BioConductor packages edgeR (Robinson et al., 2010) 

and limma (Ritchie et al., 2015) were used to implement the limma-voom(Law et al., 

2014) method for differential expression analysis at both the gene and transcript levels. The 

experimental design was modeled upon disease and tissue type (~0 + disease; ~0 +tissue; 

~0 + disease + tissue). Significance was defined by using an adjusted p-value cut-off of 

0.05 after multiple testing correction using a moderated t-statistic in Limma. Genes or 

transcripts with an adjusted p-value of < 0.05 (based on the moderated t-statistic using 

the Benjamini-Hochberg (BH) method for multiple testing correction [27]) were considered 

significantly differentially expressed (DE) (Benjamini et al., 2001). Functional enrichment 

of the differentially expressed genes/transcripts was performed using Signaling Pathway 

Impact Analysis with the Bioconductor package SPIA (Tarca et al., 2009). Gene Set 

Enrichment Analysis was performed with the Bioconductor package GSVA (Hanzelmann 

et al., 2013).

Network analysis of differentially edited genes

Significantly differentially edited genes were used as seeds for network propagation (Cowen 

et al., 2017) on the STRING high confidence interactome (Szklarczyk et al., 2015) for 

three comparisons (AML vs MF, AML vs Aged Normal, MF vs Aged Normal). The most 

proximal genes to the seed set were identified using a network propagation method, using 

degree-matched sampling to generate proximity z-scores for each gene in the network. 

Genes with a z-score >2 were retained in the network and used for visualization and 

downstream analysis. A graph-based modularity maximization clustering algorithm was 

used to identify groups of genes within the most proximal genes which were highly 

interconnected. Genes in the entire network and within each of these clusters were annotated 

with associated pathways identified by functional enrichment analysis, with the gprofiler 

tool (Reimand et al., 2007) using the proximal gene set as the background gene list for 
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enrichment of the clusters and the STRING interactome genes as the background for the 

entire network enrichment.

Network visualization and propagation was performed using Cytoscape (Shannon et al., 

2003) and VisJS2jupyter (Rosenthal et al., 2018). The subgraph composed of the most 

proximal genes is visualized using a modified spring-embedded layout algorithm, modified 

by cluster membership, so that genes belonging to the same cluster are separated from other 

clusters. Differential expression log fold change was mapped to the node color, for the 

significantly differentially expressed genes (FDR<0.05) within the subgraph.

scRNA-seq analysis

tSNE visualization: For each cell, read counts per gene were transformed into count 

probabilities p by dividing by total number of reads detected from that cell. A suitable 

distance metric defined between any two cells i and j is the Jensen-Shannon divergence (Lin, 

1991):

JSi, j = H p(i) + p(j)
2 − 1

2H[p(i)] − 1
2H[p(j)],

where H[(p(i))] ≡ − ∑k pk(i)lnpk(i) is the entropy of the count probability distribution for 

cell i. Index k spans all genes.

We are interested in knowing whether a particular independently defined set of genes 

discriminates between samples 1 and 2 (control and ADAR knockdown, respectively). Let 

us denote this gene set by S = {k1, …, kn}. In order to properly calculate distance between 

cells defined by gene set S, we need to put all the reads from genes not in S into one bin, so 

that the transformed probabilities become a vector of length n + 1:

p(i) = pk1, …, pkn, 1 − ∑l = 1
n pkl

It is these marginalized count probabilities with reduced dimension that enter the Jensen­

Shannon formula above. Suppose there are N cells in the experiment (N = N1 + N2), where 

N1 is the number of cells in Sample 1 and N2 is the number of cells in Sample 2. The 

distance matrix is an N × N matrix of distances in an n-dimensional space, which we project 

into two dimensions using t-distributed stochastic neighbor embedding (tSNE) (van der 

Maaten and Hinton, 2008). The two dimensions are called tSNE 1 and tSNE 2. The main 

parameter of the tSNE method, perplexity, was set to 50. This value is in the range where the 

results do not visibly depend on perplexity.

Lentiviral overexpression and shRNA knockdown

Lentiviral human wild-type and mutant ADAR1E912A (pCDH-EF1-T2A-copGFP) and 

shRNA targeting ADAR1 were produced according to published protocols (Zipeto et 

al., 2016). All lentiviruses were tested by transduction of 293T cells and transduction 

efficiency was assessed by qRT-PCR. Lentiviral transduction of primary patient samples was 

performed at a MOI of 100 to 200. The cells were cultured for 3 to 4 days in 96-well plates 
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(2X105-5X105 cells per well) containing StemPro (Life Technologies) media supplemented 

with human IL-6, stem cell factor (SCF), Thrombopoietin (Tpo) and FLT-3 (all from R&D 

Systems) (Abrahamsson et al., 2009; Goff et al., 2013; Jiang et al., 2013b; Zipeto et al., 

2016). The transduced cells were collected for RNA extraction and cDNA was synthesized 

according to published methods (Abrahamsson et al., 2009; Goff et al., 2013; Jiang et al., 

2013b; Zipeto et al., 2016).

In vivo humanized mouse model of MF

Human CD34+ cells isolated from MF744 (JAK2 V617F+) patient blood were transduced 

with pCDH lentivirus control or ADAR1-OE lentivirus with a MOI of 100 for 48 

hours, followed by intravenous transplantation into adult NSG-S mice (NSG-SGM3), 

expressing human IL-3, GM-CSF and SCF, 24 hours after 300 cGy of irradiation. Following 

engraftment at 13 weeks post-transplantation, BM and spleen were collected and processed. 

Engraftment in BM and spleen of each mouse was analyzed by flow cytometry.

Generation of stable cell lines

TF1a cells were cultured in RPMI medium supplemented with 10% fetal bovine serum. 

Cells were transduced with pLKO.1 shScrambled or pLKO.1 shADAR1 lentiviral vectors, 

respectively. Stable knockdown was confirmed via Western Blot and cells were expanded.

INFα Treatment

Cells were treated with a single dose of IFNα (R&D Systems) at 10ng/ml 16hrs before 

harvest and analysis.

Protein Extraction and Western Blot

Cells were harvested and washed twice with ice-cold PBS before being resuspended in lysis 

buffer (20mM Tris pH7.5, 150mM NaCl, 5% Glycerol, 0.5% NP-40, freshly added protease 

inhibitor cocktail). Cells were lysed on ice for 15min, then centrifuged at 16,000*g for 

10min to get rid of insoluble material. Supernatant was boiled in 5x SDS buffer (250mM 

Tris pH6.8, 40% Glycerol, 10% SDS, 0.01% Bromphenol Blue, 5% beta-mercaptoethanol) 

for 5min, then resolved by SDS-PAGE and transferred onto PVDF membranes. Membranes 

were incubated with 5% BSA in TBS-T for blocking and probed with primary and 

secondary antibodies diluted in 5% BSA in TBS-T.

APOBEC3C lentiviral Vectors

Lentiviral human wild-type APOBEC3C (pCDH-EF1-T2A-copGFP) was cloned by Eton 

Biosciences. Mutant APOBEC3CE68Q lacking catalytic activity was created by introducing 

a single G-to-C point mutation in the active site of APOBEC3C using the QuikChange 

II site-directed mutagenesis kit (Agilent). All lentiviruses were tested by transduction of 

293T cells and transduction efficiency was assessed by qRT-PCR. Lentiviral transduction 

of primary patient samples was performed at a MOI of 100 to 200. The cells were 

cultured for 48 to 72 hours in 96-well plates (2X105–5X105 cells per well) containing 

StemPro (Life Technologies) media supplemented with human IL-6, stem cell factor (SCF), 

Thrombopoietin (Tpo) and FLT-3 (all from R&D Systems) (Abrahamsson et al., 2009; Goff 
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et al., 2013; Jiang et al., 2013b; Zipeto et al., 2016). The transduced cells were collected for 

RNA extraction and cDNA was synthesized according to published methods (Abrahamsson 

et al., 2009; Goff et al., 2013; Jiang et al., 2013b; Zipeto et al., 2016), or collected into 

sterile PBS containing 2% FBS for staining and flow cytometry analysis.

APOBE3C WT and mutant flow cytometry

A minimum of 200,000 CD34 selected normal mixed donor cord blood cells lentivirally 

transduced for 48 or 72 hours with pCDH backbone, APOBEC3C and APOBEC3CE68Q 

mutant were blocked using anti-human FcR blocking reagents (Miltenyi Biotec) and 

then subjected to the following stains: Dapi for live cell discrimination, CD34-APC (BD 

Biosciences, Clone 8G12), CD38-PEcy7 (BD Biosciences, Clone HB7), CD3-APCcy7 

(Biolegend, Clone 17A2), CD14-PerCPcy5.5 (Biolegend, Clone HCD14), CD19-PE 

(BioLegend, CloneHIB14). Cells were analyzed on a Miltenyi Biotec MACS Quant flow 

cytometer. Upon debris, doublet, and dead cell exclusion, samples were analyzed for 

abundance of each differentiation marker, including hematopoietic stem cells (CD3-CD14­

CD19-CD34+CD38-), and hematopoietic progenitors (CD3-CD14-CD19-CD34+CD38+).

ADAR and APOBEC3C Co-Immunoprecipitation

HEK293T cells were transfected at 90% confluence with either pCDH, ADAR1 + pCDH, 

APOBEC3C-FLAG, or ADAR1 + APOBEC3C. Cells were collected after 72 hours into 

non-denaturing lysis buffer for 30 minutes. Collection of starting material (SM) at this point. 

Lysate was bound to Anti-FLAG M2 magnetic beads overnight at 4°C. Supernatant was 

removed and saved to check binding efficiency (flow through, FT). Beads boiled in 1X 

SDS-2-mercaptoethanol loading buffer and loaded into gel. Gels probed for ADAR1 and 

β-actin loading control.

Phosph-STAT3 flow cytometry

The samples were incubated with NearIR Live/Dead at 1:1000 at room temperature in the 

dark for 15 minutes. Samples were then blocked with anti-mouse and anti-human FcR for 

20 minutes in the dark at 4C. Afterwards, samples were stained with CD34 BV421 at 

1:100 and incubated for 20 minutes in the dark at 4C. Next, samples were fixed with 0.8% 

PFA and permeabilized with 1x saponin. Samples were incubated with pSTAT3 FITC at 

1:10 overnight. Samples were ran on the MACS Quant 10 Analyzer and analyzed utilizing 

FlowJo.

Immunofluorescence

The slides for immunofluorescence were prepared by diluting cells (4 × 105 cells/ml) in 

PBS. 200 microliters of cells were spotted on microscope slides by cytospin at 1,000 rpm 

for 10 minutes at room temperature. After cytospin, the slides were transferred into a coplin 

jar containing ice-cold PBS incubate for 5 min; transferred into ice-cold CSK buffer (10 

mM PIPES, pH 6.8; 100 mM NaCL; 300 mM sucrose; 3 mM MgCl2) incubate 1 min; 

transferred into ice-cold CSKT buffer incubate for 5 min; transferred into ice-cold CSK 

buffer for 1 min; transferred into 4% paraformaldehyde in PBS incubate for 10min at room 

temperature. Immunofluorescence was performed by immersing slides in PBST (1x PBS 
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with 0.1% Tween-20) for several minutes. Slides were overlaid with 250 microliters of 

blocking solution (1x PBS, 1% fetal bovine serum, 0.1% Tween-20) for 1 hour at room 

temperature. Blocking solution was removed and 100 microliters of primary antibody was 

added to the cells and incubated for 3 hours at room temperature. The slides were washed 

2 times in coplin jars with PBST for 5 min each at room temperature. Secondary antibody 

was overlaid to spotted cells for 1 hour in the dark. Slides were washed in coplin jars with 

PBST 2x at room temperature. DAPI was added and the slides were sealed with a coverslip. 

Imaging was performed using an Olympus Fluoview confocal microscope.

Quantification and Statistical Analysis

Statistical analyses—Data are shown as mean ± SEM in all graphs and statistical 

differences were calculated using a two-tailed unpaired Student’s test, unless otherwise 

indicated. P values < 0.05 were considered significant. The number of n (number of patients 

or number of experimental repeats) are indicated in each figure legend, All statistical 

analyses and plots were produced in GraphPad Prism or R (v3.3.3).

Additional Resources

The authors have no additional resources to provide.
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Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Inflammation-dependent APOBEC3C C-to-T deaminase fuels human HSPC 

expansion

• C-to-T mutagenesis increases during human MPN pre-LSC evolution

• Inflammation induced ADAR1p150 isoform expression promotes 

hyperediting in pre-LSC

• JAK2/STAT3 inhibition and shRNA ADAR1 knockdown prevent STAT3 

isoform switching in LSC
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Fig. 1. MPN Pre-Leukemia Stem Cell Expansion and APOBEC3C Activation.
A. Sample Distribution in this study. Samples were distributed among Polycythemia Vera 

(PV, n=5), Essential Thrombocythemia (ET, n=4), Myelofibrosis (MF, n=28), Chronic 

Myeloid Leukemia (CML, n=3) and non-MPN control individuals (n=4, including 3 healthy 

volunteers and 1 CLL with CALR SNP). In parallel, whole-genome sequencing of 43 

peripheral blood samples of a sample distribution of PV (n=6), ET (n=4), MF (n=26), 

CML (n=3) and non-MPN control individuals (n=4, including 1 CLL with CALR SNP). 

The somatic mutations were obtained from MPN patient samples (n=37) and non-MPN 

controls (healthy controls n=3 and CLL with CALR SNP n=1) with matching saliva 

(30X coverage) and peripheral blood (n=41, shown in solid black). Whole-transcriptomic 

sequencing (RNA-seq) was performed on 78 samples distributed as follows: PV (n=6), ET 

(n=2), MF (n=29), CML (n=5), AML (n=12), and non-MPN control individuals (n=24). 

These samples can further be broken down based on tissue of collection (peripheral blood 

or bone marrow) and cell types (stem cells and progenitor). In summary, from 54 subjects 

and 24 non-MPN controls, 113 samples were represented in the RNA sequencing analysis. 

B. Mutational burden of single point mutations (log-scaled). Each dot represents the number 

of substitutions per megabase in an individual MPN sample. Red lines reflect median 

numbers. Mutational profiles of substitutions are shown using six subtypes: C>A, C>G, 

C>T, T>A, T>C, T>G. Underneath each subtype are 16 bars reflecting the sequence contexts 

determined by the four possible bases 5’ and 3’ each mutated base. Average contributions of 

the two clock-like signatures across PCAWG MPN and MCCWG MPN samples are shown 
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in different colors. C. Mutations in 69 MPN-associated genes (Grinfeld et al., 2018) in 

peripheral blood divided by MPN disease stage. Clinical-grade confirmation of JAK2 V617F 

mutation was marked as light yellow in MPN patients. MPN disease stage depicted in 

colored bar at the bottom of the figure. *, patient deceased since sample collection; +, patient 

has another malignancy; &, patient progressed after sample collection, and &&, patient 

progressed to AML after sample collection. D. A boxplot depicting the number of somatic 

mutations in peripheral blood or saliva based on transitions (Ti) or transversions (Tv). 

Both somatic and germline variants were included. E. A boxplot depicting the expression 

levels of APOBEC3 in ABM, YBM, intermediate-risk myelofibrosis (Int-MF), high-risk 

myelofibrosis (HR-MF) and sAML stem cell populations using normalized RNA-Seq. 

APOBEC3C expression was illustrated for each stem cell sample compared with ABM 

normal controls. (p < 0.05 =*). F. Comparison of the HSC percentage in MPN samples by 

flow cytometry (CML n=4, PV n=3, ET n=2, MF n=23 and AML n=3). G. A representative 

brightfield microscopic image of cord blood CD34+ cells lentivirally transduced with 

APOBEC3C compared with a lentiviral backbone control (left). H. Flow cytometry analysis 

of cord blood CD34+ cells 48 hours after lentiviral transduction. Error bars show SEM and 

significance determined by 2way ANOVA.
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Fig. 2. Isoform Switching Favoring ADAR1p150 Expression Drives Pre-LSC Evolution
A. Heatmap of RNA-Seq expression of splicing isoforms for the top 1% of genes ranked 

by variance. Annotation for each sample is presented as a stack of colored bars representing 

phenotype, cell type, source tissue, mutation status, and the treatment type (for MF 

samples only). Samples without a known JAK2 V617F mutation status are colored in 

gray. B. A boxplot representing the internally normalized expression of IL6ST isoforms 

(ENST00000381298 and ENST00000503773 in stem cells) and (ENST00000381298 and 

ENST00000336909 in the progenitors) in each MPN phenotype. Black dots represent 
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expression values in lowest 2.5% or highest 97.5% of the distribution. C. Ratio of ADAR1 

isoforms (p150/p110) in each MPN disease type using RNA-Seq expression data from stem 

cells and progenitors. D. Signaling Pathway Impact Analysis (SPIA) was performed for ET, 

PV, MF and AML compared to ABM progenitors. Listed are the top 5 activated pathways 

based on the NDE (number of differentially expressed genes per pathway)/pSize (number 

of genes in the pathway) in percent. E. SPIA in cord blood lentivirally transduced with 

ADAR1 WT (top) or RNA deaminase deficient mutant ADAR1E912A (bottom) compared to 

pCDH backbone controls (n=3). Listed are the top 6 activated pathways based on the NDE/

pSize in percent. F. Correlation of normalized and Log2-transformed counts per million 

(CPM) data for APOBEC3C with ADAR1 p150 isoform in stem cells (top) and progenitors 

(bottom). Points are colored by phenotype. The MF risk-group is indicated by point shape 

with open shapes representing deceased patients. G. Western blot probed for ADAR1 p150 

after co-immunoprecipitation with ADAR1 and APOBEC3C-FLAG. H. Colocalization of 

APOBEC3C and ADAR1 in TF1a cells. Immunofluorescence of anti-APOBEC3C (green) 

and anti-ADAR1 p150-specific (red) antibodies in TF1a shADAR1 and TF1a shControl 

knockdown cells demonstrate a colocalization (yellow) of APOBEC3C and ADAR1 p150 

proteins in the shControl cells. TF1a shADAR1 cells show ablation of ADAR1 protein.
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Fig. 3. A-to-I Hyper-editing Distinguishes pre-LSC and LSC from Normal Progenitors
A. Violin plot of overall RNA editing variant allele frequency (VAF) by MPN subtype and 

YBM and ABM controls. The overall VAF is statistically significantly elevated in PV, ET, 

MF, CML, de novo AML and sAML primary patient samples compared to the normal ABM 

counterpart. B. Correlation of mean A-to-I RNA editing level with normalized and Log2­

transformed ADAR1 p150 isoform CPM level in both stem cells (square) and progenitors 

(triangle). Each color represents a distinct MPN disease stage. C. Box plots comparing VAF 

of each MPN progenitor subtype and YBM and ABM controls stratified by genomic region. 
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D. Statistical comparison of data from (C). The p-value values are derived from comparing 

the VAFs of each MPN stage and ABM at each variant classification by the Kolmogorov 

Smirnov test. E. Top 25 ranked genes by occurrence of nonsynonymous RNA edit mutations 

broken down by known non-Alu and Alu region, and previously unknown non-Alu and 

Alu regions stratified by MPN phenotype, treatment and cell type. F. Normalized Log2 

transformed RNA-Seq expression data for CDK13 in the stem and progenitor population 

plotted by MPN phenotype. The results of t-tests (ns = not significant; p < 0.05 = *; p 

< 0.01 = **, p < 0.005 = ***) between each phenotype and the ABM) group are shown. 

G. Expression of normalized ADAR1 RNA-Seq expression data compared with expression 

normalized CDK13 in stem (left) and progenitor (right) populations. The significance of 

the Pearson correlation (relative to R = 0) is shown along with a trendline of the data. H. 

Colocalization of CDK13 and ADAR1 in sAML cells by immunostaining of anti-CDK13 

(green) and anti-ADAR1 (red) antibodies.
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Fig. 4. The RNA Editome Distinguishes Pre-LSC from LSC
A. Heatmap based on gene expression z-scores of 1295 differentially edited genes across 

all comparisons with Aged Bone Marrow (ABM). B-C. Network analysis of differentially 

edited genes between (B) normal aged samples (ABM) and MF, and (C) normal aged 

samples (ABM) and AML. In MF (B), out of the 834 significantly differentially edited 

genes, 690 were found in the interactome and used as seeds for network propagation 

on the STRING high confidence interactome. In AML (C), out of the 757 significantly 

differentially edited genes, 642 were found in the interactome and used as seeds for network 
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propagation on the STRING high confidence interactome. Differential expression log fold 

change is mapped to node color: blue - significantly down in MF compared to ABM; red - 

significantly up in MF compared to ABM. Gray nodes were not significantly differentially 

expressed (fdr < 0.05).
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Fig. 5. ADAR1-Induced STAT3 Intronic Editing and Splice Isoform Switching in LSC.
A. Diagram of STAT3 isoform generation by intronic RNA editing of STAT3 transcripts. 

B. Intronic A-to-I RNA editing locations (Goldberg et al., 2017) in ABM and AML as 

determined by RNA-seq analysis. C. Correlation of normalized Log2-transformed CPM data 

of the STAT3β isoform and the ADAR1 p150 isoform in stem cells and progenitors of ABM, 

YBM, MPN and AML samples. The MF risk-group is indicated by the diamond shape. D. 

Western blot analysis of cord blood CD34+ cells (left, n = 2), high-risk MF (pt. 705 & 

749) and sAML (pt. 255) CD34+ cells (right, n = 3). E. Western blot analysis of sAML (pt. 
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255) CD34+ cells treated with FDA-approved JAK2 inhibitors (ruxolitinib and fedratinib) 

compared with a JAK3 inhibitor (FM-381) at concentrations of 1nM, 10nM, and 100 nM. F. 

Correlation of ADAR1 p150 expression with the expression of STAT3β isoform. The CD34+ 

cells from cord blood (n = 3), sAML and high-risk MF samples (n = 5) were transduced 

with pCDH, ADAR1 overexpressing vectors. The relative gene expression was measured by 

RT-qPCR and normalized to HPRT values. G. pSTAT3 levels measured by flow cytometry in 

CD34+ populations of two sAML patients (2008–5 and 50261). H. Self-renewal capacity, as 

measured by colony replating assays, in MF CD34+ cells transduced with pCDH backbone 

or ADAR1 WT. The error bar shows SEM and significance determined by Student’s t test.
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