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a b s t r a c t

Respiratory viral infections pose a serious public health concern, from mild seasonal influenza to pan-
demics like those of SARS-CoV-2. Spatiotemporal dynamics of viral infection impact nearly all aspects
of the progression of a viral infection, like the dependence of viral replication rates on the type of cell
and pathogen, the strength of the immune response and localization of infection. Mathematical modeling
is often used to describe respiratory viral infections and the immune response to them using ordinary dif-
ferential equation (ODE) models. However, ODE models neglect spatially-resolved biophysical mecha-
nisms like lesion shape and the details of viral transport, and so cannot model spatial effects of a viral
infection and immune response. In this work, we develop a multiscale, multicellular spatiotemporal
model of influenza infection and immune response by combining non-spatial ODE modeling and spatial,
cell-based modeling. We employ cellularization, a recently developed method for generating spatial, cell-
based, stochastic models from non-spatial ODE models, to generate much of our model from a calibrated
ODE model that describes infection, death and recovery of susceptible cells and innate and adaptive
responses during influenza infection, and develop models of cell migration and other mechanisms not
explicitly described by the ODE model. We determine new model parameters to generate agreement
between the spatial and original ODE models under certain conditions, where simulation replicas using
our model serve as microconfigurations of the ODE model, and compare results between the models to
investigate the nature of viral exposure and impact of heterogeneous infection on the time-evolution
of the viral infection. We found that using spatially homogeneous initial exposure conditions consistently
with those employed during calibration of the ODE model generates far less severe infection, and that
local exposure to virus must be multiple orders of magnitude greater than a uniformly applied exposure
to all available susceptible cells. This strongly suggests a prominent role of localization of exposure in
influenza A infection. We propose that the particularities of the microenvironment to which a virus is
introduced plays a dominant role in disease onset and progression, and that spatially resolved models like
ours may be important to better understand and more reliably predict future health states based on sus-
ceptibility of potential lesion sites using spatially resolved patient data of the state of an infection. We can
readily integrate the immune response components of our model into other modeling and simulation
frameworks of viral infection dynamics that do detailed modeling of other mechanisms like viral inter-
nalization and intracellular viral replication dynamics, which are not explicitly represented in the ODE
model. We can also combine our model with available experimental data and modeling of exposure sce-
narios and spatiotemporal aspects of mechanisms like mucociliary clearance that are only implicitly
described by the ODE model, which would significantly improve the ability of our model to present spa-
tially resolved predictions about the progression of influenza infection and immune response.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Respiratory viral infections continue to be a serious public
health concern, from mild seasonal influenza strains to the highly
pathogenic SARS-CoV-2 pandemic. In recent influenza strains asso-
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ciated with highly pathogenic outcomes, excess inflammation and
cytokine storm tend to be major causes of mortality (de Jong et al.,
2006). Similarly, the recent COVID-19 epidemic has shown this
coronavirus induces a similar cytokine storm in many of the lethal
infections (Lucas et al., 2020). A deeper understanding of the mech-
anisms involved in the initiation, proliferation, and reduction of the
inflammatory response is key to understanding the reasons why
some infections can become lethal.

Spatiotemporal dynamics impact nearly all components of the
resolution of a viral infection both in vitro and in vivo. Viral replica-
tion rates, for example, depend on the type of cell the virus has
invaded, the family and strain of the virus, and the strength of
the immune response deployed against the pathogen. Viruses have
been theorized to differ in replication rates between mucosal and
bronchial epithelial cells (Mitchell et al., 2011). In addition, some
viruses have been shown to localize to certain areas of the lungs
rather than spread homogeneously throughout the respiratory
tract. For instance, the 2009 pandemic H1N1 strain has been
shown to replicate more extensively throughout the lower respira-
tory tract than either seasonal H1N1 or H5N1 (van den Brand et al.,
2010). Seasonal H1N1 and H3N2 tend to replicate primarily in the
bronchi, while H5N1 replicates largely in alveoli (van den Brand
et al., 2012). In addition to these spatial differences, temporal dif-
ferences in viral replication rates also play a part in differing levels
of pathogenicity between viral strains. Multiple experimental stud-
ies have shown that strains exhibit distinct rates and mechanisms
for cell entry, replication, and evasion of immune responses, allow-
ing certain strains to be more virulent than others (van den Brand
et al., 2012; Zeng et al., 2007; Shoemaker et al., 2015; Simon et al.,
2016). The immune response to viral infection also includes many
spatially-resolved biological processes, many of which are poorly
understood, such as the search strategies of CD4+ and CD8+ T cells
leading to antigen recognition, memory and effector T cell differen-
tiation, migration via chemokinesis, chemotaxis and haptotaxis,
and cytotoxic killing of infected cells (Krummel et al., 2016).
Heterogeneous spread of virus and infected cells has been theo-
rized to affect the spread of infection through the lung; clusters
of dead cells near productively-infected cells may prevent the virus
from spreading (Beauchemin, 2006). This effect has been seen after
lethal H5N1 infection in ferrets (van den Brand et al., 2012); exces-
sive damage in the lower respiratory tract prevents the virus from
spreading further through the lung and limits the peak of the viral
load. Thus, characterizing the spatial spread of the virus through
the lung is critical to understanding the intrahost immune
response to the infection.

Mathematical modeling has long been used to explore various
details of the immune response to respiratory viral infections using
ordinary differential equation (ODE) models (Baccam et al., 2006;
Hancioglu et al., 2007; Pawelek et al., 2012; Price et al., 2015).
However, spatial effects cannot be explored in a typical ODEmodel,
as these models are founded on a well-mixed assumption that
neglects spatially resolved biophysical mechanisms (e.g., lesion
shape). Spatial models of the immune response have been devel-
oped in recent years to explore the effects of the spatial distribu-
tion of immune components on the resolution of infection
(Beauchemin, 2006; Howat et al., 2006; Reperant et al., 2012;
Beauchemin et al., 2005; Bouchnita et al., 2017; Kadolsky and
Yates, 2015; Wessler et al., 2020; Sego et al., 2020). However, to
our knowledge, no spatial model exists that describes host-
pathogen interactions during influenza infection with cellular res-
olution while considering detailed descriptions of local and sys-
temic aspects of both the innate and adaptive immune responses.

In this work, we combine the approaches of non-spatial ODE
modeling and spatial, cell-based modeling to develop a multiscale,
multicellular model of influenza infection and immune response.
We generate much of our spatial model from a calibrated ODE
2

model that describes infection, death and recovery of susceptible
cells and innate and adaptive responses during influenza infection
(Price et al., 2015) using cellularization (Sego et al., 2021), a
recently developed method for generating spatial, cell-based mod-
els from non-spatial ODE models. We develop models of cell
migration and other mechanisms not explicitly described by the
ODE model, and determine new model parameters to generate
agreement between the spatial and original ODE models under cer-
tain conditions. We compare results between the models to inves-
tigate the nature of viral exposure and impact of heterogeneous
infection on the time-evolution of the viral infection.
2. Models and methods

The ODE model of in-host response to influenza A virus from
which the spatial model is generated describes infection and death
of susceptible epithelial cells, and inflammatory, innate, adaptive
and humoral responses. Population dynamics consist of explicit
expressions for uninfected, infected and dead epithelial cells (H, I
and D), macrophages (M), neutrophils in the blood and infected tis-

sue (eN and N), antigen presenting cells (APCs, P), natural killer (NK)
cells (K), B cells (B), and CD4+ and CD8+ T cells (O and E, respec-
tively). Soluble signals of the model consist of tumor necrosis fac-
tor (TNF, T), interleukins 10 and 12 (IL-10 and IL-12, L and W ,
respectively), types I and II interferon (IFN, F and G, respectively),
and generic chemokines (C), antibodies (A) and reactive oxygen
species (ROS, X). We employ the method of cellularization (Sego
et al., 2021) to generate a multiscale, multicellular, spatiotemporal
model of local influenza A infection and immune response in an
epithelial sheet. For details of the complete ODE model and cellu-
larized spatial model, see Appendix 1 in Supplementary Materials.

Cellularization describes the relationships of measurements of
quantity at various scales of a biological system under well-
mixed conditions. For a scalar quantity Z of a species at one scale,
a scalar quantity z of the same species at another scale, and a field
distribution ez ¼ ez xi; tð Þ of which z measures, according to
cellularization,

Z ¼ 1
g
z ¼ 1

h
lim
DZ!1

ez;
where g and h are global and local scaling coefficients, respectively,
and DZ is the diffusion coefficient of ez for diffusive species. For dif-
fusive species, z is the volume integral of ez over a spatial domain,
while for discrete objects of a particular type z is the number of
instances of the type of object (e.g., the number of neutrophils).
Reaction-diffusion equations for locally heterogeneous soluble sig-
nals are generated from non-spatial descriptions. For a rate equa-
tion _Z ¼ v Y; Zð Þ þw Y; Zð ÞQ for chemical species Y and Z and

number Q of a cell type bQ , the analogous reaction–diffusion equa-
tion for ez is

@tez ¼ @j DZ@jez� �þ hv
ey
h
;
ez
h

� �
þ
B s r; tð Þ; Q̂
� �

V w
y
�

h
;
z
�

h

 !
:

Here ey is the heterogeneous distribution associated with Y ,
y ¼ y s; tð Þ and z ¼ z s; tð Þ are the average value of ey and ey , respec-
tively, over the domain V ¼ V s; tð Þ of cell s with type s s; tð Þ,
r ¼ r xi; tð Þ ¼ s at every site xi occupied by cell s at time t (i.e.,
V s; tð Þ ¼ xi : r xi; tð Þ ¼ sf g), and B x; yð Þ is a Boolean-valued function
equal to one when x ¼ y and otherwise equal to zero. Type s s; tð Þ is
written as a function of time to support changes in type (e.g., cell
death).

Cellularization formulates cell-based stochastic dynamics using
the Poisson cumulative distribution function from reaction kinetics



Fig. 1. Schematic of the cellularizatized model of influenza infection and immune
response. Model objects inside the dashed box labeled ‘‘Spatial domain” are
modeled explicitly in the spatial domain, which are shown with dashed boundaries,
whereas other model objects are treated as homogeneously acting due to their
absence in the spatial domain (e.g., blood neutrophils) or their spatial properties
(e.g., highly diffusive ROS) and are shown in solid borders. Analogous spatial and
cell-based models of processes within, and across the boundary of, the spatial
domain are derived from the ODE model using cellularization.
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that describe the inflow, outflow, and transitions by type (e.g., from
alive to dead) of cell populations. For a number of cells Q of cell

type bQ with mean inflow rate f , mean outflow rate gQ , and mean

transition rate uQ to cell type bS (i.e., _Q ¼ f � gQ � uQ and _S ¼ uS for

S cells of type bS) over a period t; t þ Dt½ Þ,

Pr add J bQ � type cells
� �

¼ 1� e�fDt
X
0�j�J

fDtð Þj
j!

;

Pr remove sjs sð Þ ¼ bQ� �
¼ 1� e�gDt ;

Pr s s; t þ Dtð Þ ¼ bSjs s; tð Þ ¼ bQ� �
¼ 1� e�uDt:

Local cell populations can be modeled such that a fraction of the
population is explicitly modeled in a spatial domain, and the rest of
the population act homogeneously. Cellularization describes the
cell-based stochastic dynamics of a contact-mediated process with

mean rate r (i.e., _S ¼ �rQS for Q and S cells of types bQ and bS, respec-
tively) using an equipollent rate c for cell s in an aggregate with
total available contact surface area AU ,

c s; r; bQ ;AU

� �
¼ rAU

AsAbQ A
s;bQ :

Here a process for cell s with total available contact surface area

As is mediated by contact with a cell of type bQ with total available
contact surface area AbQ , and A

s;bQ is the contact area of cell s with abQ� type cell.

2.1. Overview of model setup, spatiotemporal scaling and
cellularization

The milieu of the spatial, cell-based model is constructed by
adapting an ODE model of influenza A infection and immune
response (Price et al., 2015) to comparable work on multiscale,
spatial, cell-based modeling of viral infection and immune
response (Sego et al., 2020) using cellularization. We consider a
quasi-two-dimensional spatial domain in which local infection
occurs in a fixed planar sheet of epithelial cells. Recruitment of var-
ious immune cell populations is governed by organismal-level
dynamics coupled with signaling from within the spatial domain,
where motile, locally acting immune cells are recruited from out-
side the spatial domain and placed on top of the epithelial sheet.
Likewise organismal-level soluble signals are coupled with locally
heterogeneous distributions of diffusive species in the spatial
domain. We refer to model objects whose dynamics are explicitly
modeled in the spatial domain as local, and likewise to those mod-
eled with an ODE as global.

To model the spatial effects of infection, we model extracellular
virus and uninfected, infected and dead cells as local (Fig. 1). Type I
IFN is modeled as local to model the spatial effects of antiviral
resistance. Macrophages, chemokines and IL-10 are modeled as
local to model the spatial effects of macrophage migration and dif-
fusion in local inflammatory signaling. Likewise, NK and CD8+ T
cells are modeled as local to model the effects of contact-
mediated killing of infected cells in the immune response. B cells
and blood neutrophils are not present at the local site of infection,
and so are modeled as global. APCs primarily recruit other immune
cell types according to the ODE model, and so we neglect the spa-
tial aspects of their type I IFN release and model them as global. It
follows that type II IFN, IL-12 and CD4+ T cells are modeled as glo-
bal, since they immediately affect global objects. Antibodies, ROS
and TNF could reasonably be modeled as local, however we assume
3

that their rates of diffusion are sufficiently fast to approximate
them as uniform throughout the simulation domain and model
them as global. It follows that tissue neutrophils are modeled as
global, since they release global ROS.

To model migration of local immune cells, we use the Cellular
Potts model (CPM, or Glazier-Graner-Hogeweg model). The CPM
is a lattice-based hybrid kinetic Monte Carlo method that repre-
sents generalized cells and medium as discrete, deformable,
volume-excluding objects (Graner and Glazier, 1992). Cell motility
in the CPM is modeled as the stochastic exchanging of lattice sites
by cells and medium according to minimization of a system effec-
tive energy H, in this work written as,

H ¼
X
s

kv kV s; tð Þk � vc s s; tð Þð Þð Þ2 þ
X
yi2U

�
X

y’
i
2N yið Þ

1� B r yi; tð Þ;r y’i; t
� �� �� �

J s r yi; tð Þ; tð Þ; s r y’i; t
� �

; t
� �� �

þ
X
yi2U

X
c

kc s r yi; tð Þ; tð Þð Þc yi; tð Þ
1þ cCM r yi; tð Þ; tð Þ :

The first term implements a volume constraint vc in each cell by
cell type, the second term models adhesion at intercellular and
cell-medium interfaces by cell type according to contact coeffi-
cients J using a neighborhood N xið Þ of each site, and the third term
models logarithmic chemotaxis by cell type and field distribution
according to a chemotaxis parameter kc , local field concentration
c and center-of-mass measurement cCM of c. In this work we use
a second-order Manhattan neighborhood for adhesion calculations,
while applications of adhesion and chemotaxis modeling are
described in the following section. In general, the CPM randomly
selects a pair of neighboring lattice sites and considers whether
the identification at one of the sites copies itself to the other site,
called a copy attempt, which occurs with a probability according
to a Boltzmann acceptance function,

Pr r yi; tð Þ ! r y’i; t
� �� � ¼ e�max 0;DHH�f g:
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Here r yi; tð Þ ! r y’i; t
� �

denotes the copy attempt where the
identification at y’i copies to yi, H� is the intrinsic random motility
that affects the stochasticity of copy attempts, and DH is the
change in H due to the copy. One simulation step, called a Monte
Carlo step (MCS), consists of having considered a number of copy
attempts equal to the total number of lattice sites.

2.2. Particularities of the cellularization

The ODE model defines a viral resistance R of the epithelial cell
population due to the presence of type I IFN. Viral resistance affects
a number of uninfected and infected cell behaviors, including
decreased viral release and tissue recovery. Using cellularization,
a cell-based viral resistance q ¼ q s; tð Þ of each cell s with mean

value of type I IFN in its domain f ¼ f s; tð Þ takes the form,

q ¼ 1� q’ ¼ f

harf þ f
:

Here arf is a model parameter of the ODE model.
Diffusive transport is assumed to occur in a homogeneous med-

ium, where for extracellular virus, chemokines, IL-10 and type I IFN
we define the diffusion coefficients DV , DC , DL and DF , respectively.
The spatial model describes spatial and cell-based analogues of all
mechanisms described by the ODE model for each heterogeneous
species using partial differential equations (PDEs) of diffusive
transport. Diffusive transport modeling of the extracellular virus
v includes general decay, decay by the action of antibodies,
mucociliary clearance, uptake by uninfected cells and release by
infected cells; of chemokines c includes general decay, and release
by macrophages regulated by TNF and the presence of dead cells;

of IL-10 l includes general decay, release by macrophages regulated
by TNF and the presence of dead cells, and release by uninfected

cells; of type I IFN f includes general decay, release by APCs, and
release and uptake by infected cells (Table 1).

The ODE model employs the Allee effect with a critical popula-
tion of uninfected cells, above which recovery of uninfected cells
occurs, and below which additional death of uninfected cells occur.
We cellularize this mechanism by splitting it into individual
stochastic events, of which a mean rate of death aD sð Þ due to the
Allee effect is considered for each uninfected cell, and a mean rate
of recovering a dead cell aH sð Þ is considered. The process of cell
recovery is implemented as the transitioning of a dead cell to an
uninfected cells (Sego et al., 2020). By treating both mechanisms
of the Allee effect as contact-mediated and applying the well-
mixed conditions (see Appendix 1 in Supplementary Materials for
Table 1
PDEs generated from cellularization of the influenza ODE model for virus ev , type I IFN ef ,
with diffusion coefficient. All symbols with subscripts are parameters from the ODE mo
cellularization. B x; yð Þ is a binary function equal to one when x ¼ y and zero otherwise. kV rðbH, infected bI , macrophage bM). a, d, p and T� are the total antibodies, dead cells, APCs and

General form @tez ¼ DZ@
2
i � q

� �ez þ r

Field Decay rate q

Virus v
lv þ gvaa

g þ hgv
av v þh

þ
B s r;tð Þ;bH� �

gv

hkVk

Type I IFN f
lf þ

B s r;tð Þ;bI� �
gfi

hkVk
Chemokines c lc

IL-10 l ll

Auxiliary forms
f ¼ 1þ g g1 lþhg2ð Þ

a11T
�þa12dð Þ lþhd2ð Þ
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derivations), both rates can be described in terms of local condi-
tions of each uninfected and dead cell,

aH sð Þ ¼ c s;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhq0 sð Þ
H0

s
; bH;H0As

0@ 1Amax c s;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhq0 sð Þ
H0

s
; bH;H0As

0@ 1A8<:
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhH0q0 sð Þ

q A�
H

As
;0
	
;

aD sð Þ ¼ c s;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhq0 sð Þ
H0

s
; bD;H0As

0@ 1Amax
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhH0q0 sð Þ

q A�
H

As




�c s;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhq0 sð Þ
H0

s
; bH;H0As

0@ 1A;0

9=;:

Here bh is an ODE model parameter, H0 is the total number of
epithelial cells according to the ODE model parameters and A�

H is
a critical contact area with uninfected cells derived from the criti-
cal population value above which dead cells can recover, and
below which uninfected cells can die. The cellularized Allee effect
produces death of uninfected cells when sufficiently surrounded by
damaged tissue, and likewise enhanced recovery in damaged tis-
sue near uninfected cells. Using these forms and the cellularization
of the remaining ODE model, the stochastic dynamics of the
epithelial sheet occur according to the forms shown in Table 2,
including infection of uninfected cells by extracellular virus, death
of uninfected cells by ROS and the Allee effect, death of infected
cells by ROS, contact-mediated killing by NK and CD8+ T cells,
recovery of dead cells by the Allee effect and recruitment of local
macrophages and NK and CD8+ T cells. Each type transition is con-
sidered once per simulation step for each cell in simulation, in the
order of dead cells, infected cells, uninfected cells.

2.3. Additional spatial mechanisms

Beyond the cell-based models that can be generated from the
ODE model using cellularization, the ODE model implicitly
describes spatiotemporal aspects of influenza A infection and
immune response that we can infer, impose or propose using addi-
tional data, assumptions and hypotheses. For the simplest case,
employing the CPM requires imposing a volume constraint on each
cell, the quantities, but not geometries, of which the ODE model
describes. As such, we impose an approximate cell diameter of
10 mm on all cells according to the typical size of epithelial cells
and simplification of negligible differences in typical volume
among cell types (Table 3).
chemokines c and IL-10 l according to a general form for reaction–diffusion transport
del. g and h are the global and local scaling coefficients, respectively, according to
; tÞk is the volume of a cell r ¼ r xi; tð Þ at xi and time t with type s r; tð Þ (e.g., uninfected
TNF in the spatial domain. z is a mean cellular measurement of z.

Source rate r

h B s r;tð Þ;bI� �
gviq’

kVk

hbfpp
g þ

B s r;tð Þ;bI� �
bfiq’

kVk

B s r;tð Þ;bM� �
bc

kVkf

1
kVk

B s r;tð Þ;bM� �
bl

f þ B s r; tð Þ; bH� �
llblhq’

0@ 1A
z
� ¼ 1

V r; tð Þ
R
V r; tð Þ ezdV



Table 3
Model parameters of spatial mechanisms used for all simulation.

Parameter Value Source/Justification

Volume constraint vc 100 mm2 Chosen for an average cell diameter of 10 mm
Volume multiplier kv 9 (Sego et al., 2020)

Diffusion coefficients

Extracellular virus 0.0119 mm2 s� (de Jong et al., 2006) Chosen for a diffusion length of 5 cell diameters (Sego et al., 2020)
Chemokines 1.04 mm2 s� (de Jong et al., 2006) Chosen for a diffusion length of 10 cell diameters (Sego et al., 2020)
Type I IFN 0.520 mm2 s� (de Jong et al., 2006) Chosen for a diffusion length of 2 cell diameters for short-range anti-viral signaling
Interleukin-10 0.327 mm2 s� (de Jong et al., 2006) Chosen for a diffusion length equal to that of chemokines

Chemotaxis parameters kc

Macrophage – virus 5,000 Chosen for strong chemotaxis according to typical field values
NK – chemokines 5,000 Chosen for moderate chemotaxis according to typical field values
CD8+ T – chemokines 10,000 Chosen for strong chemotaxis according to typical field values

Adhesion parameters J

Uninfected – immune 20 Chosen for preferential attachment to infected cells
Infected – immune 10 Chosen for preferential attachment to infected cells
Dead – immune 20 Chosen for preferential attachment to infected cells
Homotypic immune 25 Chosen to prevent aggregation of immune cells
Heterotypic immune 10 Chosen to prevent aggregation of immune cells

Table 2
Stochastic dynamics of the epithelial sheet generated from cellularization of the influenza ODE model for epithelial cells of uninfected bH , infected bI and dead bD types and immune
cells of macrophage bM , NK cell bK and CD8+ T cell bE types. The transition from type bY to type bZ is denoted bY ! bZ . All symbols with subscripts are parameters from the ODE model.
Mean cellular measurement of extracellular virus v is calculated according to the form described in Table 1. c, p and x are the total chemokines, APCs and ROS in the spatial
domain, and q sð Þ ¼ 1� q’ sð Þ is the resistance of cell s.

Type transition Transition rate

Infection bH ! bI ghv v
h

Uninfected death bH ! bD ghxx
hx

xhx þ gahxð Þhx þ aD

Infected death bI ! bD gixxhx

xhx þ gaixð Þhx þ c s; gikq; bK ;H0As

� �
þ c s; gIeq; bE;H0As

� �
þ liq’

Recovery bD ! bH aH

Local immune type Inflow rate Outflow rate

Macrophage bM g bmcchm

chmþ gamcð Þhm þ bmlm

� �
lm

NK cell bK g bkcc
hk

chkþ gakcð Þhk þ lkbk
� �

lk þ gki
g
P

s2 s’ :s s;tð Þ¼bIn oq sð Þ

CD8+ T cell bE gbepphe

phe þ gaepð Þhe
le þ bei

g
P

s2 s’ :s s’ ;tð Þ¼bIn oq sð Þ
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The ODE model describes the killing of infected cells propor-
tionally to the number of NK and CD8+ T cells. In the spatial model,
we place macrophages and NK and CD8+ T cells at the site of infec-
tion and explicitly model their shape and motility, which provides
the opportunity to generate an explicit description of the spa-
tiotemporal mechanisms involved in local immune cells locating
and eliminating infection. We model immune cell locomotion by
introducing chemotaxis and haptotaxis modeling to the biological
objects and processes of the ODE model under the premise that NK
and CD8+ T cells perform contact-mediated killing of infected cells,
and that macrophages perform phagocytosis of virus and release
soluble inflammatory signals (Fig. 2). For a complete list of all
behaviors, roles and properties of the cell types and fields of the
model, see Appendix 2 in Supplementary Materials.

Based on phagocytosis and inflammatory signaling by macro-
phages, we model macrophages as chemotaxing up gradients of
extracellular virus, and NK and CD8+ T cells as chemotaxing up gra-
dients of chemokines. We also model the specialization of CD8+ T
cells as their chemotactic sensitivity being twice that of NK cells.
Based on contact-mediated killing of infected cells, we model
stronger adhesion of immune cells to infected cells compared to
uninfected and dead cells. We determined in early computational
experiments that generating an effective local immune response
also required preferential attachment that prevents excessive
5

homotypic aggregation of immune cells but allows both heteroty-
pic aggregates of immune cells and dispersion of immune cell
aggregates according to chemoattractant distributions. As such,
we model adhesion of immune cells to other immune cell types
and the medium the same as to infected cells, and to immune cells
of the same type the same as to uninfected and dead cells.

We approximated the diffusive characteristics of local soluble
signals by diffusion length (i.e.,

p
d=qð Þ for diffusion coefficient d

and decay rate q) in units of cell diameters, using the decay param-
eters of the ODE model. Diffusion of extracellular virus and
chemokines were approximated with diffusion lengths of five
and ten cell diameters, respectively, based on previous, comparable
modeling work on local infection and immune response (Sego
et al., 2020). The diffusion length of IL-10 was assumed to be the
same as that of chemokines, while type I IFN was modeled with
a diffusion length of two cell diameters to model local anti-viral
signaling.

2.4. Implementation details

Simulations were performed with comparable configurations to
those in similar modeling work on local infection and immune
response (Sego et al., 2020 Dec 21). All simulations were executed
in CompuCell3D (Swat et al., 2012) with either a lattice planar



Fig. 2. Local immune response model. A. Schematic of select model objects and processes in the spatial domain associated with infection, local immune response and local
immune cell locomotion. MacrophagesM chemotax towards extracellular virus V released by infected cells I, and release chemokines C. NK and CD8+ T cells K and E chemotax
towards chemokines, and haptotax towards and kill infected cells through contact-mediated cytotoxic killing. B. Detailed view of local immune cells over six hours of
simulation. Two CD8+ T cells (annotated ‘‘100 and ‘‘2”) migrate towards a common target, perform cytotoxic killing of underlying infected cells (not shown) and then migrate
towards different targets. A macrophage is recruited to the local domain at hour 5 (annotated ‘‘3”). Aggregates of immune cells in the bottom left and top right of the detailed
view respond to dense distributions of infected cells. Macrophages, NK cells and CD8+ T cells shown as maroon, cyan and green, respectively.

Table 4
Implementation parameters used in all simulations.

Parameter Value Source/Justification

Time step Dt 1 min. step�1 Chosen for numerical stability
Lattice width 2 mm Chosen for epithelial cell size of 5 � 5 sites
Intrinsic random motility H� 10 (Graner and Glazier, 1992)
Seeding fraction 1% Chosen for efficient local immune response (Sego et al., 2021)

Local fraction
Macrophages 100% Chosen to explicitly model directional signaling in immune response
NK cells 75% Chosen to mitigate overcrowding according to ODE model results
CD8+ T cells 75% Chosen to mitigate overcrowding according to ODE model results
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dimension of 0.3 mm or 1.0 mm. Every lattice was discretized with
a discretization length of 2 mm for cells that, on average, occupied
25 sites (Table 4). The local scaling coefficient h ¼ 4 � 10�8 mm –
(Lucas et al., 2020) was calculated from the total number of epithe-
lial cells according to the ODE model (250 k) and cell volume con-
straint vc. The local scaling coefficient gwas calculated as the ratio
of the number of epithelial cells in the simulation domain to those
in the ODE model parameters, and was 0.0049 and 0.04 for lattices
with planar dimensions of 0.3 mm and 1.0 mm, respectively. Neu-
mann and periodic conditions were applied to boundaries parallel
and orthogonal, respectively, to the epithelial sheet. Epithelial cells
were arranged in a uniform grid of 5x5 squares. All simulations
used a time step of one minute per step, which was determined
to be sufficiently small for numerically stability, particularly of
type I IFN signaling. All ODE model parameters were taken from
(Price et al., 2015). Scaling was performed by epithelial cell popu-
lation for an ODE model epithelial cell population of 250 k cells.
Using the prescribed volume constraint, simulations using only
the ODE model showed the potential for local immune cells to
exceed the available space in the immune cell layer, an event called
overcrowding in cellularization. To mitigate overcrowding, we
employed the cellularization strategy of partially homogenizing
local immune cell populations, where all macrophages are explic-
itly represented in the spatial domain (since they provide direc-
tional signaling), while 25% of NK and CD8+ T cells act
homogeneously as scalar-valued functions. All local immune cells
were seeded into the immune cell layer with a seeding fraction
6

of 1% according to field values of their chemoattactrants (i.e., by
virus for macrophages, by chemokines for NK and CD8+ T cells).
The package to run the model in CompuCell3D can be found in Sup-
plementary Materials, in the package Source Code.
3. Results

In this section we present results from simulations of the spa-
tial, cell-based model of influenza A infection and immune
response. Given the stochasticity of the cell-based models, we sim-
ulate multiple simulation replicas for all initial conditions and
parameter sets to demonstrate both their qualitative dynamical
and stochastic features. In all scenarios, we employ one of two
types of initial conditions: initial viral load, where simulations are
initialized with a nonzero amount of virus, which is uniformly
applied in the extracellular virus field; or initial infection fraction,
where a fraction of epithelial cells are randomly selected at the
beginning of simulation and initialized as infected. All replicas
were executed for two weeks of simulation time at most, and were
terminated early if all epithelial cells were dead (a determined
lethal scenario), or if all were uninfected and total extracellular
virus was less than 0.001, which was several orders of magnitude
less than typical values during infection (an assumed non-lethal
scenario). To compare results between the ODE and spatial models,
we also simulated all scenarios using the ODE model while scaling
results to the size of the spatial model.



Fig. 3. Spatial model results for 5% initial infection fraction. A. Spatial distribution of epithelial cells (top) and local immune cells (bottom) in a simulation replica at 0, 0.25,
0.5, 1, 1.5 and 2 days. Uninfected cells shown as blue, infected cells as red, dead cells as black, macrophages as maroon, NK cells as cyan, and CD8+ T cells as green. B. Results
from 50 simulation replicas of the spatial model (colored lines) compared to ODE model results (black line) for epithelial cells, extracellular virus, and select immune cell
types and signals.

T.J. Sego, E.D. Mochan, G. Bard Ermentrout et al. Journal of Theoretical Biology 532 (2022) 110918
3.1. Testing agreement in small epithelial patches

To evaluate the agreement between the ODE and spatial models
using the described cellularization in Section 2 we first simulated
fifty replicas of small epithelial patches of area 0.3 mm � 0.3 mm
with high initial infection fraction, which has been shown to mit-
igate potential spatial effects of initial infection in cellularized
models of viral infection (Sego et al., 2021). As such, we imposed
an initial infection fraction of 5% comparably to related previous
work (Ball et al., 2003; Qui~nones-Mateu et al., 2000).

5% initial infection generated a lethal outcome in all simulation
replicas within four days of simulation time, with marginal
stochasticity among simulation replicas (Fig. 3). Spatial distribu-
tions of local immune cells showed mostly sparsely distributed
macrophages in the first day of simulation, with some aggregation
near groups of infected cells. By one day of simulation time, NK and
CD8+ T cells began arriving at the site of infection and accumulated
in locations with high chemokines. By two days of simulation time,
after most, if not all, epithelial cells had died, local immune cells
formed branching patterns and intermixed by type. In general,
simulation replicas well recapitulated ODE model results. Type I
IFN results demonstrated the most notable differences around
the time when the number of infected cells was at its maximum,
with corresponding downstream effects. In particular, paracrine
regulation of type I IFN release was inhibited by diffusion, which
lead to greater production of type I IFN and, to a lesser extent,
extracellular virus. Slightly greater extracellular virus resulted in
7

slightly less antibodies and slightly earlier infection and death of
all epithelial cells in some simulation replicas. However, simula-
tion replicas produced comparable dynamical features to those of
the ODE model even for model variables involved in complex inter-
actions, such as antibodies that decay early (due to negative feed-
back with virus) and recover after a few days (due to early
antibody production).

3.2. Disagreement in large epithelial patches

Having shown acceptable agreement between the spatial and
ODE models under marginally stochastic initial infection condi-
tions, we generated a spatial equivalent of the lethal scenario to
which the ODE model was calibrated by exposing large, uninfected
epithelial patches to an initial viral load. We simulated 50 replicas
of 1.0 mm � 1.0 mm epithelial patches, which, for the chosen spa-
tial model parameters and 250 k epithelial cells in the original ODE
model simulations, collectively total two model organisms of the
ODE model.

In all simulation replicas, at most, marginal infection occurred,
in strong disagreement with ODE model predictions of a lethal out-
come at around ten days (Fig. 4). Fig. 4A shows spatial distributions
of one representative replica where any notable infection occurred,
which consisted of an isolated lesion of infected and dead cells that
recovered within two weeks. During early progression of such
lesions, inflammatory signaling recruited significant numbers of
macrophages, which localized at the lesion and subsequently



Fig. 4. Spatial model results for the lethal exposure scenario. A. Spatial distribution of epithelial cells (top), local immune cells (middle) and extracellular virus (bottom) in a
simulation replica at 0, 1, 2, 4, 5 and 10 days. Cell types shown as in Fig. 3. The color bar shows contour levels of the extracellular virus distribution. B. Results from 50
simulation replicas of the spatial model (colored lines) compared to ODE model results (black line) for uninfected cells (left), extracellular virus (center), and CD8+ T cells
(right).
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recruited local NK and CD8+ T cells. Some new, later infection sites
were also observed but well mitigated by present antibodies and
quickly eliminated by the already stimulated immune response.
In these cases, present local immune cells migrated with the gen-
eral pattern of macrophages chemotaxing towards infected cells,
followed by present, and reinforced by newly recruited, local NK
and CD8+ T cells. In many other simulation replicas, no infection
occurred, and the initial viral load decayed with no indication in
the epithelial patch of exposure to virus (Fig. 4B).

3.3. Only large initial viral load produces agreement

Because the initial viral load in the calibrated lethal scenario of
the ODE model did not generate a lethal outcome in the spatial
model, we tested varying initial viral loads to determine at what
order of magnitude of initial viral load the spatial model generates
a lethal outcome. Since the ODE model was calibrated to both non-
lethal and lethal scenarios, where the lethal scenario differed from
the non-lethal scenario only by a 10-fold increase in initial viral
load, we performed a logarithmic parameter sweep of initial viral
load by beginning with the spatial model equivalent to the non-
lethal scenario, and increasing the initial viral load by a factor of
10 until the spatial model produced lethal outcomes in twenty
simulation replicas.

We found that the spatial model begins to generate lethal out-
comes when the initial viral load is at least greater than the initial
viral load of the calibrated lethal scenario by a factor of 100 (Fig. 5).
Increasing the initial viral load of the lethal scenario (Fig. 5, initial
viral load of 10) by factors of 10 and 100 did not produce a lethal
outcome in any simulation replica over two weeks of simulation
8

time, though, besides the difference in outcome, the latter pro-
duced comparable predictions to those of the ODE model. A 1 k
increase in initial viral load from the lethal scenario produced at
least nearly lethal outcomes in all simulation replicas, with the
number of uninfected cells reaching minima at least as low as 10
cells (i.e., 0.1% uninfected). Many simulation replicas produced no
uninfected cells at times as early as three and a half days, com-
pared to about two and a half days according to the ODE model
(i.e., when the number of uninfected cells is less than 1 according
to the ODE model). In some replicas, marginal numbers of unin-
fected cells persisted as late as twelve and a half days, while two
replicas demonstrated recovery of the epithelial patch and a corre-
sponding non-lethal outcome. For this initial viral load, spatial
model results disagreed otherwise only in amount of extracellular
virus for replicas that produced a non-lethal outcome. We found
these differences to be due to the difference in treatment of cell
populations (i.e., as continuous quantities in the ODE model and
as discrete quantities in the spatial model), where cell populations
being less than one exhibits no notable effects in the ODE model,
whereas discrete cell populations in the spatial model cease to
exhibit any effects by having a number of cells equal to zero. For
the calibrated non-lethal scenario (Fig. 5, initial viral load of 1),
no infection occurred in 19 out of 20 replicas, and in the one replica
that did experience any infection, the maximum number of
infected was two orders less, and occurred about two days earlier,
than that of the ODE model.

For simulation replicas that did experience significant amounts
of infection (e.g., for those with lethal outcomes), we observed
multiple sites of significant infection within the first day after
exposure (Fig. 6). These sites were locations of significant recruit-



Fig. 5. Results from simulation replicas of the spatial model (colored lines) compared to ODE model results (black line) for uninfected cells (top), infected cells (top-middle),
extracellular virus (bottom-middle), and antibodies (bottom) for initial viral load multipliers, from left to right, of 1, 10, 100, 1000 and 10,000.
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ment of local macrophages and subsequent recruitment of local NK
and CD8+ T cells, as well as localized type I IFN, which later became
more homogeneous due to production by nonlocal APCs. Spatial
distributions of chemokines and IL-10 showed gradients most
apparently at around two days of simulation time, with IL-10 being
greater in regions with significant accumulation of local immune
cells, and became mostly homogeneous by around one week of
simulation time when immune cells mostly covered the epithelial
patch. For simulation replicas with the highest initial viral load
that recovered (e.g., as in Fig. 6), groups of uninfected epithelial
that survived infection and immune response by around one week
of simulation time became the sites of recovery of the epithelial
patch, which became apparent by about two weeks of simulation
time as outgrowths of uninfected cells into a distribution of other-
wise dead cells.

3.4. Only large initial fractions of infected cells produce agreement

Since much higher initial viral loads were required to generate
significant infection in large epithelial sheets using the spatial
model compared to the ODE model, we then tested agreement
between the ODE and spatial models while varying initial infection
fraction in 1 mm � 1 mm epithelial patches. We varied the initial
infection fraction in a logarithmic sweep at intervals of 0.1%, 0.5%,
1% and 5% and simulated twenty simulation replicas for each initial
infection fraction. As in Section 3.1, 5% initial infection fraction can
9

produce fatal outcomes but in large epithelial sheets, though at
times no earlier than about five days, but can also produce non-
fatal outcomes (Fig. 7). For all simulation replicas subjected to 5%
initial infection fraction, the epithelial patch experienced infection
comparably to that predicted by the ODE model, however in some
cases a few uninfected cells survived and initiated recovery. As ini-
tial infection fraction decreased, peak extracellular virus and
infected cells in the spatial model occurred later and with lesser
magnitude, and all simulation replicas produced a non-fatal out-
come for initial infection fraction less than or equal to 1%, all of
which are fatal according to the ODE model.
4. Discussion

Our simulation scenario (i.e., the periodic boundary conditions)
implies that our simulation replicas are constituent elements of a
patterned system, the collection of which the ODEmodel describes.
Comparable work using cellularized models of viral infection have
shown that this premise can produce spatial model replicas that
are valid spatiotemporal microconfigurations of an ODE model
when initially infected cells are essentially spatially homogeneous
(Sego et al., 2021). We showed that simulation replicas using the
cellularized model and introduced spatial model mechanisms of
this work can also serve as microconfigurations of the original
ODE model of influenza infection and immune response under



Fig. 6. Spatial distribution of, from top to bottom, epithelial cells, local immune cells, and extracellular virus, type I IFN, chemokines and IL-10 in a simulation replica with
1000 initial viral load at 0, 1, 2, 4, 7 and 14 days. Cell types shown as in Fig. 3. The color bar shows contour levels of diffusive species from zero to the maximum value per field.
Each field maximum shown along the right border.
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the same boundary and initial infection conditions. However, using
spatially homogeneous initial exposure conditions consistently
with those employed during calibration of the ODE model gener-
ated far less severe infection. This strongly suggests the role of
localization of exposure in influenza A infection, in particular that
local exposure to virus must be multiple orders of magnitude
greater than a uniformly applied exposure to all available suscep-
tible cells. As such, we propose that the particularities of the
microenvironment to which the virus is introduced plays a domi-
nant role in disease onset and progression. This is particularly
important in therapeutics and modeling, alike, in that spatially
resolved patient data of the state of infection may elucidate future
health states based on susceptibility of potential lesion sites, which
could be better understood and more reliably predicted with
spatially-resolved models of the type presented in this work.

Differential adhesion and chemotaxis parameters of the intro-
duced spatial model mechanisms were formulated qualitatively,
and only roughly calibrated to recapitulate ODE model results in
Section 3.1. Interestingly, the employed differential adhesion was
necessary to recapitulate ODE model results, the role of which is
currently not well-defined. These roles are fairly intuitive when
10
considering the observed temporary aggregation of NK and CD8+

T cells in simulations. Were the differential adhesion scheme
employed such that NK and CD8+ T cells show a preferential
attachment to each other, then the observed aggregations at sites
of infection due to recruitment would result in ineffective subse-
quent elimination of infected cells due to the continued aggrega-
tion of NK and CD8+ T cells. As such, the model predicts that
aggregation of local cytotoxic immune cells is due to chemotactic
signaling and preferential attachment to infected cells, and that
ineffective binding between cytotoxic immune cells makes their
subsequent dispersal and translocation, and thus effective
contact-mediated local immune response mechanisms, possible.

The most prominent differences between the spatial and ODE
models all resolve to localization of type I IFN and recovery. The
ODE model, and correspondingly the cellularized spatial model,
describe saturated release of type I IFN, the saturation of which
is diffusion-limited in the spatial model. This leads to differences
not only in total over-production of type I IFN in the spatial models,
but also in downstream over-production of virus (i.e., diffusion-
limited anti-viral resistance), with corresponding lesser availability
of total antibodies due to interactivity with virus. However, such



Fig. 7. Results from simulation replicas of the spatial model (colored lines) compared to ODE model results (black line) for uninfected cells (top), infected cells (top-middle),
extracellular virus (bottom-middle), and antibodies (bottom) for initial infection fraction, from left to right, of 0.001, 0.005, 0.01 and 0.05.

T.J. Sego, E.D. Mochan, G. Bard Ermentrout et al. Journal of Theoretical Biology 532 (2022) 110918
differences between the ODE and spatial models were shown to be
marginal under certain exposure conditions (e.g., very high initial
viral load or infection fraction) and, as previously described, to
be significant when the lack of representing localization of virus
in the spatial model significantly inhibits the progression of infec-
tion (or even its occurrence) in the spatial model epithelial patch.
The cellularized Allee effect, which was recast to make associated
death and recovery mechanisms dependent on the state and local
conditions of individual cells, also produced differences in ODE and
spatial model results by allowing recovery with very few total
uninfected cells in the spatial model. While we found differences
in associated cell deaths to be marginal (and hence, not shown),
the spatial model can produce recovery of the epithelial patch in
scenarios where associated cell death and a corresponding fatal
outcome occur in the ODE model (e.g., Fig. 5), depending on the
state and local conditions of uninfected epithelial cells.

Differences in emergent dynamics due to considering local con-
ditions highlight a potentially important role of cell-based, spatial
models to do model validation when developing mathematical
models to describe observations of multicellular systems. In previ-
ous work, cellularization of simpler viral infection models has
shown that spatial mechanisms like diffusion-limited transport
11
of extracellular virus can result in well fitted, but significantly
reduced, ODE model parameters describing the infectiousness of
a virus (Sego et al., 2021 Sep 8). In the present work, spatial partic-
ularities of initial conditions demonstrated results of a comparable
category in the sense that initial exposure could only generate
comparable dynamics between the spatial and ODE models for ini-
tial exposures that were several orders of magnitude greater than
previously considered when using on the ODE model. In both the
previous case of diffusion-limited viral transport and present case
of localized initial exposure, a cellularized model demonstrated
significant biases of a particular model structure (here, continuous
non-spatial). Such biases could lead to misguided parameter selec-
tion or even inappropriate acceptance of a model. In this sense, not
only do cell-based, spatial models generated using cellularization
like the one developed in the present work present new opportu-
nities for biological inquiry using mathematical modeling, they
also present opportunities for validation of existing and future
non-spatial models by subjecting non-spatial models to spatial
conditions and effects. As shown in this work, such activities like
considering the spatial details of initial conditions can provide
new insights into both a non-spatial model, and the biological sys-
tem for which the model was developed to describe.
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4.1. Future work

The cellularized model of influenza infection and immune
response present a number of opportunities for future model
development, integration and application. The components of the
immune response in the cellularized model can be readily inte-
grated into modular frameworks of viral infection dynamics and
immune response that do detailed modeling of other mechanisms
like viral internalization and intracellular viral replication dynam-
ics (Sego et al., 2020). Such activities present two-fold opportuni-
ties for novel insights into host-pathogen interactions, in that the
immune response components represented here can be leveraged
in other viral applications, and likewise integration with other
modeling work can be inform further development of the cellular-
ized model presented here. In the case of modeling influenza,
detailed modeling of intracellular viral replication while leveraging
simulation capabilities like those available in BioNetGen (Blinov
et al., 2004) may provide insights into the role of the timing of viral
internalization and release, and into the meaning of the calibrated
model parameters of the ODE model.

An approach to effectively modeling local features of exposure
would significantly improve the ability of our cellularized model
to present spatially resolved predictions about the progression of
influenza infection and immune response, though will likely
require considering mechanisms that are only very implicitly
described by the ODE model such as mucociliary clearance. As
such, future work should combine the cellularized model pre-
sented here with available experimental data and modeling of
exposure scenarios. Likewise, future work should further explore
and develop a cellular basis for the mechanisms represented by
the Allee effect, in particular what all is represented when impos-
ing an organismal-level property like the number of a particular
cell type onto the fate of individual cells (e.g., levels of growth fac-
tors, hormones, blood pressure). Such work would be particularly
relevant for cellularized ODE models with fewer mechanisms of
death than the ODE model of this work, in which case the role of
the Allee effect would be clearer, and likely more significant. Fur-
thermore, it may be possible to identify some significant sources
of differences to due discrete, stochastic dynamics independently
of spatial effects (as suggested by a reviewer of this manuscript)
by employing modified forms of the ODE model that impose
important discontinuities onto the otherwise continuous ODE
model variables (e.g., a minimum population of infected cells to
produce virus). Such investigations could inform about which
aspects of a spatial model are necessary to interrogate the mecha-
nisms responsible for observed host-pathogen interactions, and
about which aspects of a non-spatial ODE model are sensitive to
small quantities.

The current type I IFN model constitutes the overwhelming
majority of computational cost of the spatial model. In particular,
calculating a cellular property like resistance q from the mean
value of a local diffusion field requires sufficiently small time steps,
since its downstream effects include regulation of future type I IFN
production. We plan to make improvements to cellularized mech-
anisms associated with type I IFN production, as well as to
CompuCell3D, to permit larger time steps and better facilitate
computational performance. Such improvements are particularly
critical to modeling bigger tissue patches and more complicated
tissue geometries, and simulating longer scenarios.

Lastly, we are particularly interested in further developing
other spatial aspects of the cellularized model to further elucidate
associated cellular and spatial aspects of influenza infection and
immune response, as well as the immune response, in general.
We can use in vitro data of cell migration to refine the proposed
locomotion model of local immune cells at a site of infection, both
to better understand how adhesion and chemotaxis affect the
12
effectiveness of the immune response, and to isolate necessary
additional model mechanisms to better represent local aspects of
immune response. At a broader level, we can perform similar activ-
ities to this project but for other sites of interest associated with
the ODE model. For example, the ODE model presents systemic
response data that can guide development of spatiotemporal,
cell-based models of B cell maturation, antigen presentation, and
antibody production and circulation. We envision a computational
framework consisting of multiple compartments simulating spa-
tiotemporal models of various sites of interest throughout an
organism (e.g., multiple sites of infection, lymph nodes, thymus),
which could be interconnected using the techniques of cellulariza-
tion in similar fashion to what was employed in this work.

5. Conclusion

In this work we developed and employed a multiscale, spa-
tiotemporal, stochastic, cell-based model of influenza infection
and immune response by cellularization of an existing, calibrated
ODE model. We developed spatial models of necessary mecha-
nisms related to differential adhesion and chemotaxis of local
immune cells to recapitulate ODE model results using the spatial
model, and generated a cellularized form of the Allee effect to
describe recovery of epithelial cells in terms of cell state and local
conditions. We used the developed spatial model to show how
exposure to virus should be locally concentrated to generate signif-
icant infection in an epithelium, while uniform exposure to virus is
likely ineffective. We also used our developed spatial models to
elucidate the necessary roles of differential adhesion and local
chemotaxis for an effective local immune response, both concern-
ing the locating by macrophages, and the eliminating by NK and
CD8+ T cells, of infected cells.
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