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Abstract

Purpose: In conventional diagnosis, the visual inspection of the malaria parasite Plasmodium
falciparum in infected red blood cells under a microscope, is done manually by pathologists,
which is both laborious and error-prone. Recent studies on automating this process have been
conducted using artificial intelligence and feature selection of positional and morphological
features from blood smear cell images using convolutional neural network (CNN). However,
most deep CNN models do not perform well as per the expectation on small datasets.

Approach: In this context, we propose a comprehensive computer-aided diagnosis scheme for
automating the detection of malaria parasites in thin blood smear images using deep CNN, where
transfer learning is used for optimizing the feature selection process. As an extra layer of security,
layer embeddings are extracted from the intermediate convolutional layers using the feature
matrix to cross-check the selection of features in the intermediate layers. The proposal includes
the utilization of the ResNet 152 model integrated with the Deep Greedy Network for training,
which produces an enhanced quality of prediction.

Results: The performance of the proposed hybrid model has been evaluated concerning the
evaluation metrics such as accuracy, precision, recall, specificity, and F1-score, which has been
further compared with the pre-existing deep learning algorithms.

Conclusions: The comparative analysis of the results reported based on the accuracy metrics
demonstrates promising outcomes concerning the other models. Lastly, the embedding extrac-
tion from the intermediate hidden layers and their visual analysis also provides an opportunity
for manual verification of the performance of the trained model.
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1 Introduction

Malaria is one of the widespread global diseases in the world. It is highly infectious and life-
threatening, caused by a genus of protozoa named Plasmodium, with a minimum of seven days
for incubation.1 According to the World Health Organization in 2020, there were an estimated
409,000 malaria deaths in 2019.2 Despite these statistics, the malarial mortality rate can be con-
trolled via fast and reliable diagnosis at early stages. But the increase in the number of reported
cases of malaria is highly unstable and non-uniform due to various factors such as the climatic
conditions,2 geographical locations, availability of stagnant water, and so on, which might
further lead to the breeding of the Anopheles mosquitoes, which serve as the vector of the
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Plasmodium parasites. Malarial transmission is more intense especially after rain and when the
temperature becomes feasible for a longer life span of the mosquitoes. That is why 90% of cases
occur in Africa and the disease is common over tropical regions extending over Asia and Latin
America.3

Early diagnosis of malarial parasites and treatment with proper medication such Malarone
and Quinine compounds4 can still prevent the harmful consequences and further check its mor-
tality rate. But due to factors such as lack of highly trained expertise in rural areas, mismanage-
ment of data, and low availability of detection tools, malaria detection is very unstable and
difficult in many corners of the world.

To identify the malarial parasite, several methods have been proposed earlier. Among these
methods, the microscopic examination of Giemsa stained thin blood smear5 is found to be cheap
and of lower complexity, as a result of which it is mainly preferred. However, its efficacy is
largely dependent on the expertise of the pathologists. Additionally, the visual inspection for
malarial parasites is time-consuming and may fail to consistently identify parasites when malar-
ial forms are very rare. With the increase in the number of malaria cases, the pressure and work-
load on pathologists increase greatly. This leads to a growing need for computer-aided diagnosis
(CAD), which is fast and efficient in precise diagnosis and personalized health tasks.

The tremendous improvement and success of machine learning in image tracking and rec-
ognition tasks has led to the increased applications of these automated algorithms in medical
electronic records and imaging-based diagnostics. As time elapsed, this improvement was fur-
ther pushed forward due to the availability of a large amount of annotated datasets to train deep
learning models for the recognition of diseases in various spheres of medical science. In recent
days, automated CAD is being guided by three major conceptual units, which are deep learning
algorithms, dataset characteristics, and the phenomenon of transfer learning. Shin et al.6

exploited these factors and evaluated them extensively to check the performance of the convolu-
tional neural network (CNN) model in the domain of CAD in two major areas of application,
namely, thoracoabdominal lymph node detection and interstitial lung disease classification. The
study reported the high-performance computational capabilities of the newly CNN-based CAD.

Nowadays, these CAD-based applications and deep learning are being widely used in medi-
cal analysis. Ker et al.7 explained and classified the key research areas of medical image clas-
sification, localization, and segmentation. The paper highlighted the necessary CAD-based
applications used in these tasks. Also, the paper sheds light on the challenges faced by the current
CAD-based applications, the future technology, and the medium through which they can be
solved.

Digitally segmented images of cells from thin blood smear slides are used to detect diseases
such as malaria. Digital cell segmentation is the process of capturing microscopic image space
that represents a specific instance of that cell. Traditional machine learning algorithms such as
support vector machine (SVM)8 were also utilized for classifying blood smear images automati-
cally. Díaz et al.8 utilized SVM to classify blood smear images to detect infected erythrocytes
with malaria parasites and their infection stage. The experiment provided 94% sensitivity on a
dataset containing 450 images.

The prior designing of a neural network architecture based on the dataset and learning param-
eters introduces the design overhead. Furthermore, the fine-tuning of these architectures and the
optimization of hyperparameters during training of the deep neural network are computationally
costly. Qin et al.9 proposed an evolutionary convolutional deep network algorithm to solve this
problem. To detect malaria parasites, the evolutionary algorithm first generated the most opti-
mized neural network architecture and then the neural network model was trained on extensive
thin blood smear images. The best result achieved an accuracy of 99.98% which shows the
significant improvement for CAD systems.

Numerous research projects were undertaken recently for the detection and prediction of
malaria from infected cell images. Nugroho et al.10 brought forward one such powerful method
to detect the three stages of plasmodium parasites in the human body namely, trophozoite, schiz-
ont, and gametocyte of Plasmodium falciparum. Their method consisted of an enhanced image
stage to convert images to HSV color space, an image segmentation stage using K-means clus-
tering and morphological operator, and a feature extraction stage based on histogram-based
texture. HSV represents hue, saturation, and value, respectively. HSV is used to determine the
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luminance of an image along with the color configuration. Finally, a classification model based
on multi-layer perceptron was utilized, which is nothing but a neural network that analyzes the
statistical patterns of the given input. This achieved an accuracy of 87% for the test dataset
mentioned in the paper. According to the paper,10 the execution time taken by the classification
was found to be 0.55 s.

To reduce the time and effort of training a neural network model for image classification as
well as work with a small amount of dataset, transfer learning was found to be a promising
technique. One such work was shown by Reddy and Juliet,11 where Resnet 50 was used for
malaria cell image classification along with the implementation of transfer learning. The exper-
imental results obtained were significant where the loss was minimized with training accuracy of
95.91% and validation accuracy of 95.4%.

In this context, the proposed work brings forward a CAD technique to help in the better
identification of digitally segmented cells from the thin blood smear slide images as parasitized
or uninfected. In this proposed work, the CNN is used to extract important underlying infor-
mation between pixels of thin blood smear slide images. However, the size of the dataset plays a
very important role in the efficiency of the CNN classification model. For this model, a dataset of
nearly 27,558 malarial cell images12 was used, which is comparatively small to train an image
classification CNN model. To counter this problem, transfer learning13 has been proposed where
the model uses a part of a pre-trained network with features already extracted. This solves a great
deal of computational time and also works well in a small dataset. In this paper, Resnet-152 was
used as a part of this work and the Deep Greedy Network14 is used to enhance the performance of
the model.

Though there have been some significant works in the field of CAD of malaria from seg-
mented cells,15 this work primarily focuses on two broad aspects. First, it uses the transfer learn-
ing from Resnet-152, which gives high efficacy on image classification tasks. Then the model is
encapsulated with a Deep Greedy Network to overcome the overfitting problem, which further
helped to train the model with important features. Lastly, it introduces a risk minimization
mechanism while deciding to classify a segmented cell as a parasitized or uninfected cell.
The proposed approach brings in a balanced CAD technique for the diagnosis of malaria in
a patient.

2 Preliminaries

2.1 Computer-Aided Diagnosis

In the field of medical science, computer-aided detection and computer-aided diagnosis are com-
puter-based systems that help doctors in taking decisions from medical images.12 Analysis of
images is essential as it is a crucial step in the detection of certain diseases. Medical images often
become too complicated and risky to be analyzed by doctors for abnormality in a short time.
To solve this issue, CAD systems came up, which improves the quality of images and processes
it to highlight the conspicuous parts.

CAD is a technology that brings in multiple concepts such as artificial Intelligence, computer
vision, medical image processing whose main aim is to find an abnormality in the human body.
From a macrocosmic view, CAD not only has its wide applications in detecting tumors in breast
cancer16 and lung cancer17 but also the fields of pathological brain detection,18 such as magnetic
resonance imaging (MRI) and diabetic retinopathy.19 This phenomenon has been utilized in the
detection of parasitic growth in image segmented cells of thin blood smear slide images in
this work.

2.2 Artificial Neural Network and Convolutional Neural Neural Network

An artificial neural network is a conceptual network of virtual neurons that mimics the behavior
of biological neurons in terms of information processing and learning. A typical neural network
has an input layer (which makes up the inputs), one or many hidden layers (which do the main
learning), and an output layer (to get outputs).20 Each layer of neurons accepts inputs from the
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previous layer, processes them, and passes the signal to the next layer of neurons, forming a
complex network. Learning happens based on a feedback mechanism. These networks are clas-
sified into two types are shallow and deep neural networks. A shallow neural network is the basic
form of neural network, which is made up of one Input Layer, one or two hidden layers, and an
output layer.21 On the other hand, a typical deep neural network21 has an input layer, more than
two hidden layers, and an output layer, to effectively study both the high and low-level behavior
features in the data. With the increase in depth in the neural network as learning increases, train-
ing error decreases to a minimum value. After that point, training error starts increasing with the
addition of more layers.22 In the current state of the art, this optimal number of layers is decided
through trial and error. However, the science behind finding the optimal number of layers and
neurons in each layer is yet a very demanding area of research.

CNN or ConvNet such as a normal deep neural network is made up of neurons that have
learnable weights and biases. Every neuron accepts some inputs, performs dot products on it, and
optionally follows it with non-linearity. The whole network can be represented or viewed as a
single differentiable function: from raw image pixels on one end to class scores on the other
end.23 The layers in ConvNet have neurons arranged in three dimensions: width, height, and
depth. The depth here means the third dimension representing the input channel and not the
depth of the full neural network. Every ConvNet has three main layers: convolutional layer,
pooling layer, and fully connected Layer.

2.3 Feature Extraction

Features play an important role in the field of image processing. Before generating features,
many preprocessing steps like binarization, thresholding, and normalization are applied on
sampled images.24 After that, the feature extraction is applied to get the most important features,
which are further utilized for image processing and classification problems.25

In this context, when the input data are too voluminous, redundant, and computationally
costly to be processed, the input data are transformed into a reduced set of features. This phe-
nomenon is called feature extraction. If feature extraction is done carefully and precisely, then the
feature set should be able to represent the input data with almost no loss of essential features and
also with lower dimension.26 These reduced feature vectors are then fed to the classifier to link
the input data with its corresponding class unit. In this paper, ConvNet has been used as a clas-
sifier to classify malarial images into parasitized or unaffected classes.

2.4 Transfer Learning

In simple words, transfer learning13 is the process of reusing a pre-trained model for different
tasks but of a similar type. This process exploits the knowledge gained from previous tasks to
improve the generalization about others.27 It is very popular with deep learning methodologies
since it allows us to work with small datasets where the model does not need to be trained from
scratch using the small dataset. Instead, the knowledge of the features of the old model can be
reused to generalize the new task. This helps in reducing the training time while avoiding the
overfitting problem caused by the lack of availability of a large number of datasets.

2.5 Residual Neural Network

In the Deep CNN, there is a saying that with adding more layers there is a decrease in training
and test error. But it was soon found by He et al.28 that with the increase in the number of layers
in deep neural networks the error increased too. The primary reason for the anomaly was found
to be the phenomena of vanishing and exploding gradients.

To solve this unwanted behavior in a very deep neural network with a huge number of layers,
residual blocks were introduced. Residual block essentially solves this problem by introducing a
technique called “skip connections,” identity mapping as shown in Fig. 1. Identity mapping adds
the output of a previous layer to the layer ahead by skipping some layers in between. However,
x and FðxÞ should have the same dimension. A residual network can have more than one
residual block.
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In this work, Resnet 152 has been used. Resnet 152 is a very deep network with depth up to
152 layers, nearly eight times deeper but with less complexity than visual geometry group
(VGG) Nets proposed by Simonyan and Zisserman. VGG is a CNN model proposed in the year
2015.29

He et al.28 in his paper proposed the basic architecture of Resnet 152. Resnet 152 not only
used batch normalization in each Conv layer but also 10 crop testing for prediction. Along with
this, 6 models were used for ensemble boosting. In 10 crop technique,30 from the original image,
four cropped sections are taken from four corners along with a center cropped section, producing
a total of five cropped images. Additionally, the mirror image of the five cropped images along
the horizontal axis is generated, which formulates a total of 10 cropped images. Together with
these layers and parametric settings, Resnet 152 in the paper28 achieved nearly 3.57% error in the
Imagenet test set and gave 28% better detection over other ResNets on the COCO object detec-
tion dataset. Figure 2 above gives a basic architecture of Resnet 152, which has been adapted
from a paper by L. D. Nguyen et al..31

3 Proposed Method

3.1 Overview of the Learning Model

The pipeline of the proposed approach is made up of the following steps as shown in Fig. 3.
First, images of dimension 240 × 240 are passed through a preprocessing stage. Rescaling and
normalization are then performed on each image. Moreover, among these images, some are
vertically flipped and some are horizontally flipped randomly. Few images are operated with
random rotations too. Then the images are resized to 224 × 224 dimension and fed to
Resnet 152 architecture. Using this stacked CNN, the feature extraction is done automatically
rather than manual feature selection. The output of the CNN is then fed to a dense layer of 1000
neurons, which is further cast on a dense layer consisting of 256 neurons. Finally, it is condensed
to 2 neurons in a dense layer and a softmax function is applied to generate the output.

In this work, a stacked CNN architecture with Residual learning is used. Resnet 15232 used
has 152 deep layers and thus helps in overcoming the problems of manual feature extraction.
Besides, the Deep Greedy Network learning model14 has been implemented on top of the ResNet
152, due to which while training the model, the validation loss is evaluated after each epoch.

Fig. 2 Architecture of Resnet 152.

Fig. 1 Building block of residual learning.28
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It is then compared against the previous best parametric settings and then the configuration with
the best accuracy is stored.

For calculating the loss, binary cross-entropy (BCE)33 loss, also called sigmoid cross-entropy
loss is applied. Unlike softmax loss, this is independent of each vector component (class). This
states that the loss computed for each CNN output component is not affected by other classes or
component values.

EQ-TARGET;temp:intralink-;e001;116;400BCE ¼ −
XC 0¼2

i¼1

ti logðfðsiÞÞ ¼ −t1 logðfðs1ÞÞ − ð1 − t1Þ logð1 − ðs1ÞÞ; (1)

where BCE is the BCE loss, fðxÞ is sigmoid function i.e., fðxÞ ¼ 1
1þe−x, C

0 is representing
Classification classes here, C1 and C2, s1, and t1 are the scores and the ground truth label for
the class C1, s2, and t2 are the scores and the ground truth label for the class C2 respectively.
Lastly, s2 ¼ 1 − s1 and t2 ¼ 1 − t1.

The greedy approach encapsulates the whole training process starting from the feature selec-
tion process via Resnet to dense layers 2 neuron condensation. The training of the neural network
follows the overall learning methods, specifically, forward propagation, backward propagation,
and parameter updates. At that point, the model’s prediction loss is calculated on the validation
set once the network has finished these consecutive strides for one epoch on each small group of
training examples or the mini-batches. If the loss is found to be lower among all those of the past
cycles, then the parametric setting is preserved as the best parametric configurations.14

The training and fitting of the model are further enhanced by the feature selection via Resnet
152 implemented in our model. This feature selection is very helpful as not only does the model
perform with higher accuracy but it also clearly indicates the cause of its prediction. The selec-
tion of the most important features that are playing a significant role in identifying the infection
can further help in a proper understanding of the infected parts in the segmented cells. This
technique therefore substantially improves the performance of the proposed model by maintain-
ing a higher prediction accuracy as compared to existing models.

3.2 Proposed Algorithm

While training, the neural network model along with the input dataset of segmented cell images
is provided as the input to the Deep Greedy model. The model is then allowed to train itself with
a predefined set of epochs after which the trained neural network architecture is finally returned

Fig. 3 Graphical view of the proposed Resnet 152 with Deep Greedy Network model.
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as output. The whole procedure of training the Neural Network model is demonstrated in fig. 4.
First, the designed neural network model is imported along with the input images dataset. Then
the validation loss is initialized to be infinite besides initializing a random best parameter setting
to be P_best. The image dataset is then split into some mini-batches based on minibatch size.
In the next step, a loop iterates from 1 till the MAX_epochs as specified. In each iteration, the
model is fed with mini-batches one after another, and the loss is calculated as L via forward
propagation. Based on L, the gradient is calculated via backPropagation, and parameters are
temporarily updated. If newly updated parameters are found to produce the least validation loss
among all the training iterations up to the current one, then the new parameters list is saved as
P_best and the next minibatch is checked. After all the iterations are completed, the Neural
Network model with its best parametric setting P_best is returned.

In the final phase of the work the trained neural network model is fed with a segmented cell
image from a test image dataset. The model processes the image in its intermediate Conv layers
and condenses in dense layers. In each Conv layer, the Feature Matrix is extracted and visualized
graphically as shown in Fig. 5. In this way, the images are extracted from the intermediate con-
volution layers for the introduction of an added security measure. These images can be verified
by the medical practitioners jointly with the technical and computer vision specialists to check if

Fig. 4 Proposed learning algorithm.

Fig. 5 Flowchart of proposed experiment.
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the model properly identifies the infected area in the segmented cell image and prediction is
correct or not.

4 Dataset

The dataset12 used in this work contains a collection of thin blood smear slide images from the
malaria screener research activity. For the purpose of creating the dataset, Giemsa stained thin
blood smear images from 150 Plasmodium falciparum34 infected and 50 healthy patients were
collected. Images of slides for each microscopic field of view were captured by a smartphone’s
built-in camera. Then the images were manually annotated by an expert pathologist slide reader
at the Mahidol-Oxford Tropical Medicine Research Unit in Bangkok, Thailand. The de-iden-
tified images and the annotations were archived at the National Library of Medicine (NLM) to
make them publicly available for future research. A level-set based algorithm was applied to
detect and segment the red blood cells. The dataset currently contains a total of 27558 cell
images including 13,780 parasitized and 13,778 uninfected cell images. Lastly, the dataset con-
sists of images of all the three major morphological stages of Plasmodium falciparum, namely,
trophozoite, schizont, and gametocyte.

5 Experimentation Details

5.1 Experimental Environment and Essential Parameters

The dataset described in Sec. 4, consists of digitally segmented cells from the thin blood smear
slide images from the Malaria Screener research activity. The whole dataset is split in the ratio of
3∶1∶1 for training, validating, and testing the data. The dimension of every training example of
the dataset after Image Augmentation is formulated to be 240 × 240. Each mini-batch consists of
32 examples and the total number of iterations on training data are 15. Furthermore, Adam
optimizer35 is used for optimizing the learning behavior of the neural network. In this experi-
ment, TensorFlow and Tensorboard are used for the training and visualization of this model.

5.2 Experimental Results and Comparative Analysis

The loss curve related to the learning of the ResNet model has been provided in Fig. 6, which has
been considered for two different isolated scenarios. Figure 6(a) shows the plot of the training as
well as the validation loss without using the Deep Greedy Network. On the other hand, Fig. 6(b)
shows the plot of the loss versus the number of training epochs on the validation set while using
the Deep Greedy Network. Based on the experimental results, the confusion matrix is found for
the two different cases i.e. without and with the integration of the Deep Greedy Network archi-
tecture, which has been provided in Figs. 7(a) and 7(b), respectively.

Fig. 6 Plot of loss curve caption: (a) training and validation loss curve for ResNet 152 without
integrating Deep Greedy Network (b) validation loss curve for ResNet 152 with the integration
of Deep Greedy Network.
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Table 1 provides a comparative analysis concerning various models for the prediction
of malaria-infected cells, which has been adapted as reported in the literature of Nayak
et. al.36 The analysis was performed on certain metrics namely, accuracy, precision, recall
(or sensitivity), specificity, and F1 score. Considering the true positive, true negative, false pos-
itive, and false negative as TP, TN, FP, and FN respectively, the mathematical formulation on
which these metrics depend are provided as follows:

EQ-TARGET;temp:intralink-;e002;116;428Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
; (2)

EQ-TARGET;temp:intralink-;e003;116;374Precision ¼ TP

TPþ FP
; (3)

EQ-TARGET;temp:intralink-;e004;116;341Recall ¼ TP

TPþ FN
; (4)

EQ-TARGET;temp:intralink-;e005;116;308Specificity ¼ TN

TNþ FP
; (5)

Fig. 7 Confusion Matrix caption: (a) ResNet 152 without any integration with Deep Greedy
Network (b) ResNet 152 integrated with Deep Greedy Network.

Table 1 Comparative analysis of the performance metrics.

Name of the model Accuracy Precision Recall/sensitivity Specificity F1-Score

DenseNet 121 97.22 97.58 96.83 97.60 97.20

AlexNet 95.62 95.24 95.97 95.28 95.60

VGG - 16 95.37 94.99 95.59 95.16 95.29

ResNet -50 97.55 97.23 97.90 97.19 97.90

FastAi 97.38 97.27 97.42 97.32 97.35

ResNet 152 without Deep
Greedy Network

95.66 93.28 97.94 93.58 95.56

ResNet 152 with Deep Greedy
Network (proposed model)

98.25 98.40 98.11 98.39 98.26
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EQ-TARGET;temp:intralink-;e006;116;735F1 score ¼ 2 ×
Recall × Precision

Recallþ Precision
: (6)

5.3 Reported Graphical Results for Proposed Perceptual Security Measures

One of the positive examples of a cell showing a stained malarial parasite is provided in Fig. 8.
The RBC is stained with a Giemsa stain,37 and purple shades indicated within the image rep-
resents the parasitic growth of the plasmodium.

Figure 9 shows the processed and perceived stain that has been extracted as the feature
extracted image from intermediate convoluted layers of the ResNet 152 model. Figures 9(a)
and 9(b) have been extracted from the conv2_block1_out (activation) layer, and Figs. 9(c) and
9(d) have been extracted from the conv4_block36_1_conv (Conv2D) of the ResNet 152 model,
respectively. The conv2_block1_out (activation) layer is the one located at the initial or shallow
depth of the model whereas the conv4_block36_1_conv (Conv2D) layer is present at a much
deeper depth of the neural network model of ResNet 152.

5.4 Analysis and Discussion of the Reported Results

Comparative analysis has been performed concerning the previously proposed models while
maintaining the standard of comparison by using the same dataset of a digital microscope image
of infected and non-infected red blood cells. Starting from the phase of training, referring to
Fig. 6(a), the training loss was found to substantially decrease along with the validation loss,
however, with greater fluctuations or training noise. The noise is generally caused due to the
local divergence away from the global optima related to the training process of the neural net-
work. In simple words, the configuration of the parameters is tuned in such a manner that it gets
deviated away from the path of convergence due to overfitting. On the contrary, Fig. 6(b) shows
that the integration with the Deep Greedy Network model efficiently restricts the system from
getting into any local divergence caused due to the overfitting phenomena and provides a
smoother and more stabilized learning curve. This can be observed from the monotonically
decreasing behavior of the loss versus the number of epochs curve as seen in Fig. 6(b).

Furthermore, based on Figs. 7(a) and 7(b), it can be also established that the prediction output
on the test set shows a significant performance enhancement while using the Deep Greedy
Network with ResNet 152 as the reference model in contrast to the one without using it. This
is further verified from Table 1 that based on each of the comparison metrics the ResNet 152
model shows a significant improvement in comparison to the other proposed models. It is also
seen that usage of the Deep Greedy Network also provides a notable enhancement in the quality
of learning and prediction outcomes.

Fig. 8 Original microscopic stained digital image of Plasmodium falciparum in the Trophozoite
stage.
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Lastly, from the extracted feature provided in Figs. 9(a) and 9(b), it can be observed that since
the layer is chosen from a shallow depth, the detected feature is a low-level feature. On the other
hand, the Figs. 9(c) and 9(d) have been extracted from the deeper layer of the ResNet 152 model,
which focuses on the more detailed features as it prominently highlights the specific portion of
the image representing the parasitic growth. This feature extraction by hooking some specific
predefined layers of a neural network model provides an additional layer of security as it pro-
vides a way for humans to cross-validate the internal perceptions of the neural network. It also
helps to set a clear analytical conclusion of the features based on which the designed model
makes a prediction related to the malaria diagnosis, i.e., whether a blood smear image is para-
sitized or uninfected by malarial plasmodium parasites.

6 Conclusion

Malaria is one of the most widespread diseases in the world, affecting millions of people around
the globe. Sometimes failure to detect the infection of Plasmodium falciparum in the early stages
causes numerous fatalities. In this context, there remains a widespread requirement of setting up

Fig. 9 Intermediate extracted images captions: (a) Extraction of conv2_block1_out (activation)
related to first randomly chosen filter among 256 filters. (b) Extraction of conv2_block1_out
(Activation) related to second randomly chosen filter among 256 filters. (c) Extraction of
conv4_block36_1_conv (Conv2D) related to first randomly chosen filter among 256 filters.
(d) Extraction of conv4_block36_1_conv (Conv2D) related to the second randomly chosen filter
among 256 filters.
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testing laboratories and highly skilled pathologists in a large number to correctly detect and
report the infection at the fastest possible pace. Furthermore, every year the total number of
cases is rising around the globe, which is imposing tension on the existing testing infrastructure
and increasing the resource demand of these laboratory setups and availability of skilled path-
ologists. Additionally, to cope up with the increasing testing demands and number of infection
cases, the pathologists are trying to hasten the testing and reporting procedure, which is leading
to erroneous predictions. Based on this circumstance, this paper proposes an AI algorithm that is
based on CAD especially in the domain of computer vision using deep learning. The primary aim
of this proposal is to bring forward an algorithm that can predict if a cell is plasmodium infected
or not with higher accuracy than the pre-existing algorithms.

With the rapid influx of labelled data, improved computational abilities and AI-based CAD is
being introduced in the field of medical diagnosis for their fast and accurate identification where
malaria is also not an exception. Many CAD-based works for the diagnosis of malarial parasites
from cell images are being developed. In this work, ResNet 152 with the integration of Deep
Greedy Network was used to predict the presence of malaria infection within the sample of
RBCs taken from patients. It was found that the proposed method resulted in higher prediction
accuracy, sensitivity, specificity, precision and F1-score, outperforming other pre-existing works.
Also, as an extra layer of security, the graphic visualization of the extracted feature matrix in each
Conv layer provides a way to view the working in the inner layers of the model, thus increasing
its reliability.

The proposed method can be integrated with laboratory equipment like microscopes. The
image under the microscope can be captured and sent to a computing system where this
pre-trained model is being used to predict the result. Since the process is fully automated it can
enhance the quality of results as well as reduce the time taken in the complete testing process and
hence will increase the throughput, which will further reduce the overhead of increasing testing
laboratory setups and human resources. Lastly, the higher accuracy of the proposed algorithm
will result in a lower probability of false prediction, which in turn will enhance the quality of
treatment at the right time.
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