Table 1.
Comparative analysis of the performance metrics.
Name of the model | Accuracy | Precision | Recall/sensitivity | Specificity | F1-Score |
---|---|---|---|---|---|
DenseNet 121 | 97.22 | 97.58 | 96.83 | 97.60 | 97.20 |
AlexNet | 95.62 | 95.24 | 95.97 | 95.28 | 95.60 |
VGG - 16 | 95.37 | 94.99 | 95.59 | 95.16 | 95.29 |
ResNet -50 | 97.55 | 97.23 | 97.90 | 97.19 | 97.90 |
FastAi | 97.38 | 97.27 | 97.42 | 97.32 | 97.35 |
ResNet 152 without Deep Greedy Network | 95.66 | 93.28 | 97.94 | 93.58 | 95.56 |
ResNet 152 with Deep Greedy Network (proposed model) | 98.25 | 98.40 | 98.11 | 98.39 | 98.26 |