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Background: Randomized controlled trials (RCTs) with continu-
ous outcomes usually only examine mean differences in response 
between trial arms. If the intervention has heterogeneous effects, then 
outcome variances will also differ between arms. Power of an indi-
vidual trial to assess heterogeneity is lower than the power to detect 
the same size of main effect.
Methods: We describe several methods for assessing differences in 
variance in trial arms and apply them to a single trial with individ-
ual patient data and to meta-analyses using summary data. Where 

individual data are available, we use regression-based methods to 
examine the effects of covariates on variation. We present an addi-
tional method to meta-analyze differences in variances with sum-
mary data.
Results: In the single trial, there was agreement between methods, 
and the difference in variance was largely due to differences in prev-
alence of depression at baseline. In two meta-analyses, most indi-
vidual trials did not show strong evidence of a difference in variance 
between arms, with wide confidence intervals. However, both meta-
analyses showed evidence of greater variance in the control arm, and 
in one example, this was perhaps because mean outcome in the con-
trol arm was higher.
Conclusions: Using meta-analysis, we overcame low power of indi-
vidual trials to examine differences in variance using meta-analysis. 
Evidence of differences in variance should be followed up to identify 
potential effect modifiers and explore other possible causes such as 
varying compliance.

Keywords: Effect modification; Heterogeneity; Meta-analyses; 
Randomized controlled trials; Subgroups; Subgroup analysis; 
Variance.

(Epidemiology 2021;32: 846–854)

INTRODUCTION
In medical research, we often estimate the average effect 

of an intervention by comparing the mean outcome between 
arms in a randomized controlled trial (RCT). However, indi-
vidual responses to interventions may vary—the effectiveness 
of an intervention might decrease with age, or there might be 
subgroups for whom the intervention has no effect. In the era 
of personalized (or stratified) medicine, there is increasing 
interest in identifying these effect modifiers or subgroups.1

Here, we focus on trials with a continuous outcome, 
where the main effect is the mean difference between two arms 
of a trial. Identification of effect modifiers or subgroups is often 
approached by testing for statistical interactions. A potential 
effect modifier is specified (usually a priori, for RCTs) and the 
null hypothesis is that the effect of the intervention on the out-
come does not vary over the levels of the modifier (i.e., that 
there is no additive interaction). A trial powered to detect such 
an interaction needs to be approximately four times the size of a 
trial powered to detect a similar magnitude of overall treatment 
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effect,2,3 or larger if the subgroups are very different in size. 
Multiple testing can be a problem if interactions with many 
covariates are examined, with a risk of overfitting,4 although 
this can be minimized by using model selection methods.5–8 All 
these methods require knowledge of, and data on, the potential 
effect modifiers: if an effect modifier is not measured, then its 
interaction with the intervention cannot be tested. An alterna-
tive way to investigate effect modification, without prespecify-
ing the effect modifiers, is to examine whether variance in the 
outcome differs between the arms of the trial.9–12 If the effect of 
the intervention is the same for all participants then the variation 
of the outcome in the intervention arm will be the same as the 
that in the control arm. However, if the effect of the intervention 
varies across participants, then the variation of the outcome in 
the intervention arm will be different to that in the control.9,13,14 
A difference in variance would then require further study to 
identify the effect modifiers, using individual participant data.

As with the test for a specific effect modifier, power to 
detect a difference in variances will be low in a single trial 
powered to detect a difference in means. However, meta-anal-
ysis of differences in variance should give increased power to 
detect effect modification. A small number of meta-analyses 
in epidemiology and ecology have reported on differences in 
variance,9,10,15–23 with applications to RCTs and other types 
of comparative study. Most of them found evidence of a dif-
ference in variance between arms, with varying strength of 
evidence (eTable 1; http://links.lww.com/EDE/B835).

Here, we describe and implement methods for examin-
ing the effect of an intervention on the variance of an outcome, 
both in a single trial (with individual participant data) and 
using meta-analysis to combine across trials (using summary 
data). We describe the assumptions behind each method and 
show how to conduct further analyses with individual partici-
pant data to investigate which variables might be causing the 
effect modification. We use simulations to show that decisions 
about when to examine the association between overall mean 
and variance should not be based on reported means and vari-
ances from individual trials. We then illustrate the methods 
using individual participant data from an RCT of cognitive 
behavioral therapy (CBT) to treat depression, and summary 
data from meta-analyses of RCTs examining the effect of (1) 
computer-based psychological treatments on depression and 
(2) statins on low-density lipoprotein (LDL) cholesterol.

METHODS FOR EXAMINING DIFFERENCE IN 
VARIANCE BETWEEN TRIAL ARMS

Examining differences in variance between two arms 
using data from one trial.

We review methods briefly here, presenting more detail 
in Table 1 and formulae in eAppendix 2; http://links.lww.com/
EDE/B835.

The null hypothesis of equal variances in both arms can 
be tested using Glejser,24 Levene,25 or Bartlett test.26 The dif-
ference in variances and its standard error can be estimated 

either using a linear model with nonconstant variance, or 
using summary data, as we propose here. Finally, the ratio of 
the SDs or the log of the ratio of SDs (logRoSD,9,27 also some-
times called the log of the variability ratio) can be estimated, 
together with their standard errors.

We implemented all methods and analyses in R28 and 
code is available online (https://github.com/harrietlmills/
DetectingDifferencesInVariance).

Examining the Relationship Between Mean and 
Variation Across the Two Arms

If the mean is related to the variance for an outcome, 
then a homogeneous treatment effect could lead to a difference 
in variance between the two arms of the trial. The coefficient 
of variation (CoV) is the ratio of the SD to the mean: compar-
ing CoVs between two arms will identify whether the SD dif-
fers more, or less, between the two than would be predicted by 
the difference in means.

We describe two methods using CoV: a difference in 
CoVs29 and the log of the ratio of CoVs (log ratio of CoV27), 
Table  1; http://links.lww.com/EDE/B835, and eAppendix 2; 
http://links.lww.com/EDE/B835.

CoV should only be used when the outcome data are on 
the ratio scale, that is, the scale has a clear definition of 0 and 
the ratio of two values has a meaningful interpretation. The 
CoV assumes that the SD is directly proportional to the mean. 
Therefore, it is only relevant for variables for which a sample 
mean of zero would imply a sample SD of zero. A variable for 
which CoV would be appropriate is serum cholesterol, which 
is measured on the ratio scale (a value of 6 is twice a value 
of 3), and has a meaningful zero (the value 0 mg/dL indicates 
that there is no measurable cholesterol in 1 dL of blood).  
A sample with a mean serum cholesterol of zero indicates that 
all the values must be zero (as serum cholesterol cannot be 
negative), and therefore that the sample SD must be zero. CoV 
has been used with outcomes which do not satisfy these cri-
teria, for example, the Hamilton Depression Rating Scale, or 
the Montgomery–Asberg Depression Rating Scale, which are 
both interval (not ratio) scales.17,20

Comparison of Methods
The linear model with nonconstant variance method 

and Glejser test can incorporate covariates (which may be 
continuous or categorical), to examine whether the heteroge-
neity in outcome between the arms of the trial is explained 
by the covariates. The linear model with nonconstant variance 
method and Glejser, Levene, and Bartlett tests can be defined 
for multiple ( k > 2 ) arms. Bartlett’s test, difference in vari-
ances, ratio of variances, log of the ratio of SDs, difference in 
CoV and log of the ratio of CoV can be calculated using only 
standard summary data (sample sizes, means, and SDs).

All tests except Levene assume data are normally dis-
tributed: if data are normally distributed Levene’s test would 
be expected to have lower power. All the other tests are sen-
sitive to non-normality of the outcome, for example if the 
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subgroups have caused a bimodal distribution, then differing 
responses have caused skew. Normality usually cannot be 
verified when only summary data are available (although evi-
dence against normality, e.g., asymmetry of distributions, may 
be available by comparing mean and median).

Methods for Use with Summary Data from 
Meta-analyses

The approach to meta-analysis will depend on whether 
the result obtained from each trial is a statistical test or an 
estimate. In general, we favor estimation, preferring estimates 

of differences in variance, ratio of variances, log ratio of SD 
and comparisons of CoVs (differences in CoV and log ratio of 
CoV). Estimates that are accompanied by standard errors can 
readily be meta-analyzed using standard methods (here, the 
difference in variance and difference in CoV methods). Ratio 
of variances, log ratio of variances, and log ratio of CoV can be 
meta-analyzed using bespoke methods using a random-effects 
model with restricted maximum likelihood estimates of the 
ratios (ratio of variances21; log ratio of SD, and log ratio of 
CoV9,27). If variances within arms are very different between 
trials in a meta-analysis, ratio methods may be preferable.

TABLE 1.  Methods for Examining Differences in Variance Between Two Arms, and for Examining the Relationship Between 
Mean and Variation Across the Two Arms

Test Name Description Minimum Requirements and Assumptions

Testing differences in variance between two arms using data from one trial

Glejser test24 The absolute values of the residuals from a standard linear 

model of outcome against treatment are regressed on the 

treatment indicator

Requires individual participant data (IPD)

Assumes normality

Can include covariates

Can be defined for k > 2 arms

Levene test25 Levene’s test statistic has approximate F-distribution with 1 and 

N − 2  degrees of freedom

Requires IPD

Suitable for nonnormal data

Can be defined for k > 2 arms

Can be defined using the mean, trimmed mean or median (the 

Brown-Forsythe test49)

Bartlett test26 Bartlett’s test statistic has approximate chi-squared distribution 

(1 degree of freedom) when variances are equal

Can be calculated using IPD or summary data (sample sizes, SDs)

Assumes normality

Can be defined for k>2 arms

Estimating differences in variance between two arms using data from one trial

Linear model with 

nonconstant variance

A linear model that assumes a different residual variation in 

each arm.

Requires IPD

Assumes normality

Can include covariates

Can be defined for k > 2 arms

Difference in variances The difference in sample variances and its standard error are 

used to calculate a test statistic with an approximate normal 

distribution, so a t-test is used to compare variances

Can be calculated using IPD or summary data (sample sizes, SDs)

Assumes normality

Ratio of variances, 

F-test

The ratio of sample variances between the two arms has 

approximate F-distribution with N0 −1  and N1 −1  degrees 

of freedom, if the true variances are equal

Can be calculated using IPD or summary data (SDs)

Assumes normality

Log of the ratio of 

SDs9,27 a
The log of the ratio of SDs and the sampling variance are 

used to calculate a test statistic with approximate normal 

distribution, so a t-test is used to compare variances

Can be calculated using IPD or summary data (sample sizes, SDs)

Assumes normality

Examining the relationship between mean and variance across the two arms

Difference in coefficient 

of variation29

The difference in CoVs and its standard error are used to 

calculate a test statistic, whose square has approximate  

chi-squared distribution (1 degree of freedom)

Can be calculated using IPD or summary data (sample sizes, SDs, 

means)

Assumes normality

Data must be on a ratio scale with a meaningful zero

This test performs best if each > 10  and each > 0 33. .29

Log of the ratio of 

coefficients of 

variation27

The log of the ratio of CoVs and the sampling variance are 

used to calculate a test statistic with approximate normal 

distribution, so a t-test is used to compare arms

Can be calculated using IPD or summary data (sample sizes, SDs, 

means)

Can be made suitable for nonnormal data by additions to the 

equation for sample variance

Data must be on a ratio scale with a meaningful zero

Further method details (and equations) are in eAppendix 2. Code for each method in R is provided online (https://github.com/harrietlmills/DetectingDifferencesInVariance).
aNote that this is called log of the variability ratio, logVR in these two references.

https://github.com/harrietlmills/DetectingDifferencesInVariance
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Although not covered here, synthesis of findings from 
statistical tests from individual trials (e.g., Bartlett test and 
the F-test based on the ratio of variances) could be under-
taken using meta-analysis of P values. These produce a global  
P value to test the null hypothesis, although it can be diffi-
cult to determine whether failure to reject the null is due to 
small differences in variance or to an insufficient amount of 
evidence.

Previous analyses have implied that CoV should only 
be explored in a meta-analysis if the SDs and means within 
each trial arm are correlated.9,17 By simulating trial data (eAp-
pendix 3; http://links.lww.com/EDE/B835), with (A) same 
CoV and (B) different CoV in the arms, we have shown that 
the correlation of the mean and SD from individual trials is 
not necessarily indicative of the CoV or whether the CoV dif-
fers between arms of the trial (eFigures 1 and 2; http://links.
lww.com/EDE/B835). Thus, CoV should be used only if the 
outcome is a ratio variable with a true zero, irrespective of 
the observed correlation between SDs and means within trial 
arms.

APPLIED EXAMPLES

Analysis of a Single Trial
We first apply the methods to individual participant 

data from a trial of therapist-delivered internet psycho-
therapy for depression in primary care,30 chosen because 
the original trial report had evidence of effect modification 
(the intervention had a greater effect in participants with 
more severe depression at baseline than in those with mild 
depression). This RCT randomly assigned 297 individuals 
to either usual care while on a waiting list for CBT (con-
trol) or usual care in addition to online CBT delivered by a 
therapist (intervention).30 Baseline depression was measured 
using the Beck Depression Inventory (BDI)31,32; individuals 
recruited to the trial had to have a BDI score of 14 or more. 
BDI is a self-report questionnaire with 21 statements that 
patients rank from 0 to 3 (i.e., total scores are integer and in 
the range 0–63), with a higher score indicating more severe 
depression.31,32 We investigated BDI at 4 months as a quan-
titative outcome. Equality of variances between the control 
and intervention arms was tested using: (1) linear model 
with nonconstant variance (with and without adjusting for 
covariates); (2) Glejser test (with and without adjusting for 
covariates); (3) Levene test (using deviation from the mean, 
median and trimmed mean); (4) Bartlett test; (5) difference 
in variances; (6) ratio of variances (F-test) method; and (7) 
log ratio of SD method. The difference in CoV and log ratio 
of covariance methods were not included as BDI is not a 
ratio scale.

To examine the impact of differential dropout, we also 
tested the equality of variances between the control and inter-
vention arms at baseline for (1) everyone and (2) the subset of 
those remaining after excluding individuals lost to follow up 
at 4 months, using the Bartlett , Levene, and F tests.

Meta-analyses
We applied the summary data methods to two meta-

analyses: (1) a meta-analysis of 19 RCTs of computer-based 
psychological treatments for depression,33 chosen because it 
included the single trial we assess above and (2) a Cochrane 
Review examining HMG CoA reductase inhibitors (statins) 
for people with chronic kidney disease,34 chosen because 
there is evidence that some people may respond to statins bet-
ter than others.35 These meta-analyses were suitable examples 
because the data were appropriate for the tests we wanted to 
demonstrate, and the data were given in enough detail (i.e., 
mean, SD, and N given across both arms for all trials).

For the first meta-analysis,33 the outcomes were self-
reported measures of depression, including the BDI. The 
meta-analysis found a pooled standardized mean difference 
of d = −0.56 (95% confidence interval [CI] −0.71, −0.41) 
for self-reported depression post treatment (using a random 
effects model),33 supporting the efficacy of computer-based 
treatments. We selected only those trials which measured BDI 
(or derivatives of BDI) and analyzed only one posttreatment 
effect per trial. We meta-analyzed the difference in variances, 
ratio of variances and log ratio of SD across trials, but did not 
include the difference in CoV or log ratio of CoV methods as 
BDI is not a ratio scale measure.

The second set of meta-analysis data are from analysis 
1.14 in the Cochrane Review, for 22 trials reporting the effect 
of statins versus placebo or no treatment on LDL cholesterol 
(mg/dL).34 The meta-analysis found a pooled mean difference 
of −44 mg/dL (95% CI −54, −34), for the effect of statins on 
LDL cholesterol,34 confirming that statins lower serum LDL 
cholesterol. LDL cholesterol is measured on a ratio scale, with 
a meaningful zero, and thus, we meta-analyzed the difference 
in variances, ratio of variances, log ratio of SD, difference in 
CoV, and log ratio of CoV across trials.

RESULTS

Analysis of a Single Trial
Of the 297 individuals recruited to the trial at baseline, 

210 completed 4-month follow-up (113 in the intervention 
arm and 97 in the control arm, Table 2).30 The BDI score had 
decreased in both arms, with a larger magnitude decrease in 
the intervention arm. The BDI scores were normally distrib-
uted at baseline, but not at the 4-month follow-up (eFigure 3; 
http://links.lww.com/EDE/B835).

TABLE 2.  The Baseline BDI Score and Outcome BDI Score at 
4 Months from the Trial Described in Kessler 200930

 Group 1 (Intervention) Group 2 (Control)

Timepoint N Mean SD N Mean SD

Baseline 149 32.8 8.3 148 33.5 9.3

4 months 113 14.5 11.2 97 22.0 13.5

http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
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Table 3 shows the results of all tests of the equality of 
variance of BDI at 4 months. Although the data at 4 months 
were not normally distributed, the conclusions from all tests 
were similar to the Levene test, with the P values for all but 
adjusted model 1 being between 0.05 and 0.07, giving weak 
evidence of lower variance in the intervention arm of the trial 
(estimated difference in variance −57 [95% CI −118, 4.1)]. 
The variance is lower in the intervention arm, indicating that 
the treatment tends to bring participant’s BDI scores closer 
together; that is, the treatment tends to work best for those with 
high BDI scores (in line with the conclusions of the trial30). 
Including baseline BDI score (adjusted model 2 using a linear 
model with nonconstant variance [LMNCV] and Glejser test) 
attenuated the difference in variance between the arms (−21 
[95% CI −191, −2.3]).

The analysis of baseline variances showed no differ-
ences between the two arms at baseline, even when restricting 
to only those with follow-up data at 4 months (eAppendix 4.2 
and eTable 5; http://links.lww.com/EDE/B835).

Meta-analyses
Our simulations confirmed that power to detect het-

erogeneity in single trials was low unless the trial was very 
large (see eAppendix 6; http://links.lww.com/EDE/B835). 
Therefore, we next examined the methods within a meta-anal-
ysis setting.

We restricted the meta-analysis on computer-based psy-
chological treatments for depression33 to the 11 trials report-
ing BDI outcomes, varying in size from 44 to 216 participants. 
There was evidence of greater variance in the control arm 
(Figure 1, eTable 6; http://links.lww.com/EDE/B835: ratio of 
variances 0.82 [95% CI 0.67, 1.00]; difference in variances 

fixed-effects estimate −19 [95% CI −33, −5.5], random-
effects estimate −18 [95% CI −34, −2.6]). Using the log of 
the ratio of SDs gave the same trends as the ratio of variances 
test, eTable 6; http://links.lww.com/EDE/B835. There was no 
strong evidence of heterogeneity in the difference in variances 
meta-analysis (I2 = 20%). Most of the individual trials showed 
evidence of greater variance in the control arm but CIs were 
wide (Figure 1, eTable 6; http://links.lww.com/EDE/B835).

The 22 trials in the meta-analysis reporting the effect of 
statins versus placebo or no treatment on LDL cholesterol,34 
varied in size from 199 to 374 total participants.

The meta-analysis of differences in variance showed 
evidence of greater variance in LDL cholesterol in the con-
trol arm (fixed-effect estimate −220 [95% CI −319, −122] 
mg2/dL2, random-effects estimate −226 [95% CI −377, −76] 
mg2/dL2). Conclusions were unchanged when only trials with 
more than 10 cases in both arms were included (excluding six 
trials). The pooled ratios of variance also showed evidence 
of greater variance in the control arm 0.66 [95% CI 0.48, 
0.91] (Figure 2, eTable 7; http://links.lww.com/EDE/B835). 
Conclusions were unchanged if the six smallest trials were 
excluded. Trends for the logRoSD analysis were the same 
as the ratios of variance analysis, eTable 7; http://links.lww.
com/EDE/B835. There was no strong evidence of heteroge-
neity in the DiV meta-analysis (I2 = 36.5%). Most individual 
trials showed evidence of greater variance in the control arm, 
but CIs were wide (Figure 2, eTable 7; http://links.lww.com/
EDE/B835).

There was weak evidence of a difference in coefficient 
of variation (DiCV) between arms (Figure 2, eTable 7; http://
links.lww.com/EDE/B835: 0.02 [95% CI 0.01, 0.03] for fixed 
effects, and 0.03 [95% CI: −0.00, 0.06] for a random-effects 

TABLE 3.  Tests for Difference in Variance in BDI Score at 4 Months, Between the Intervention and Control Arms from the 
Single Trial Exploring the Effect of a CBT Intervention on Depression30

Test Test Statistic P Estimate 95% CI

Unadjusted LMNCVa Chi-square statistic (df = 1) 3.66 0.056 −56  (−163, −19)

Adjusted LMNCV 1a,b Chi-square statistic (df = 1) 4.62 0.032 −62  (−162, −24)

Adjusted LMNCV 2a,c Chi-square statistic (df = 1) 0.83 0.360 −21  (−191, −2.3)

Glejser test, unadjusteda t-statistic 1.97 0.050 NA NA

Glejser test, adjusted 1a,b t-statistic 2.10 0.037 NA NA

Glejser test, adjusted 2a,c t-statistic 0.80 0.420 NA NA

Levene test (median) F-statistic (df = 1 and 208) 3.52 0.062 NA NA

Levene test (mean) F-statistic (df = 1 and 208) 3.89 0.050 NA NA

Levene test (trimmed mean) F-statistic (df = 1 and 208) 3.63 0.058 NA NA

Bartlett testa Chi-square statistic 3.63 0.057 NA NA

Difference in variances t-statistic −1.90 0.057 −57 (−118, 4.1)

Ratio of Variances: F-testa F-statistic (df = 112 and 96) 0.69 0.056 0.69 (0.47, 1.0)d

Log of the ratio of SDs t-statistic −1.92 0.056 −0.19 (−038, 0.004)

aThe 4-month data were not normally distributed, so all tests except Levene test may have reduced power and/or bias. Also note the standard error for these estimates in the LMNCV 
method was obtained from Stata, replicating the analysis in R.

bCovariates added in the adjusted LMNCV are as specified in the original trial paper: center ID, present antidepressant treatment, sex, whether or not GP practice has a counselor.
cAs adjusted LMNCV 1, but also including baseline BDI score.
dCI was derived using an F-distribution.

http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
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http://links.lww.com/EDE/B835
http://links.lww.com/EDE/B835
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model. Conclusions were unchanged with the six smallest tri-
als excluded. Trends for the log of the ratio of CoV analysis 
were the same (eTable 7; http://links.lww.com/EDE/B835). 
The CoV is larger in the intervention arm than in the con-
trol arm, that is, the SD is a larger multiple of the mean in 
the intervention than the control arm. This suggests weak evi-
dence of more variation in the intervention arm than would 
be expected given the difference in means (also reflected in 
individual trial results, Figure  2 and eTable 7; http://links.
lww.com/EDE/B835), which could be due to statins having a 
greater effect for some people than others. There was evidence 
of heterogeneity in the CoVs across trials (I2 = 67.9%).

DISCUSSION
We have presented methods for examining differences 

in outcome variance between the two arms in an RCT, to 
identify heterogeneity of effects of the intervention. We have 
added to existing methods by: showing how to use regres-
sion-based methods to examine the effects of covariates on 
variation, where individual participant data are available; 
applying a difference of variances test to summary data in 
meta-analyses, alongside the ratio of variances, log of the 
ratio of SDs, and log of the ratio of the coefficient of varia-
tion methods already existing; and noted when the CoV test 
is not appropriate. We suggest that CoV comparisons only 
be made where the outcome has a meaningful zero and is on 
a ratio scale.

Differences in variance could be caused by many factors. 
One is the existence of patient characteristics that influence 
the effectiveness of the intervention (effect modifiers), which 
could manifest as subgroups between which the intervention 
(or control) treatments have different effects.9 For example, the 

intervention may have a different effect in those with worse (or 
better) values at baseline, or outcomes in the control arm may 
vary due to differences in “usual practice.” If there are differ-
ences in variance, further studies may be needed to find the 
effect modifiers that define the subgroups.

Other potential explanations for differences in variance 
between arms of a trial are noncompliance with the interven-
tion; subgroups that are differently engaged with the interven-
tion (e.g., therapist effects) or an intervention that impacts on 
within-person variability.9 Investigation of other factors relat-
ing to variation would require individual or stratified summary 
data on these factors, such as pretreatment severity, or marital 
status moderating the response to CBT.36 Another explanation 
for differences in variance is model misspecification (e.g., if 
the errors follow a nonnormal distribution, or if the errors are 
not independently distributed). Investigation of misspecifica-
tion of the model would require individual patient data for 
each trial.

Simulations confirmed that power to detect heterogene-
ity in single trials was low unless the trial was very large.2 
RCTs would need to increase their sample size dramatically 
to be powered to detect differences in variance. This might 
be prohibitively expensive in time and money, and it may not 
be feasible to recruit enough individuals to the trial.37 In this 
case, powering the trial on the main effect is appropriate, and 
improved reporting, giving detailed summary data across 
both trial arms, would allow meta-analysis of differences in 
variance.

We observed smaller variance in the intervention than 
the control arm in both meta-analyses presented here, but with-
out individual participant data, it was not possible to explore 
this further. With individual data, the factors associated with 

FIGURE 1.  Forest plot of the ratio of variances and differences in variance analyses for the trials in the Richards et al. meta-analysis 
on computer-based psychological treatments for depression,33 results in eTable 6; http://links.lww.com/EDE/B835 (note we do 
not plot the results of the log ratio of SD analysis as trends are the same as the ratio of variances analysis). Please note that the 
studies named in the figure are those in the Richards et al. meta-analysis,33 and full information on these studies, including refer-
ences, can be found in that article.

http://links.lww.com/EDE/B835
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the variance can be examined directly, as in our single trial 
example.30 These factors might be used to predict the effect of 
the intervention in external populations or applied in person-
alized medicine. The slightly lower variance in the interven-
tion arm in the single trial30 and meta-analysis of effects of 
CBT in depression33 may also be partly because the outcome 
scale (BDI) is bounded at 0 and floor (or ceiling) effects can 
reduce variance.

A possible cause of differences in variance between 
two arms of a trial is that the variance is related to the mean, 
and the intervention causes a mean difference in the outcome. 
This is clearly shown in our second meta-analysis example, 
examining the effect of statins on LDL cholesterol.34 There 
was evidence that the variance of the outcome was lower in the 
intervention than the control arm, implying that statins had a 
greater effect on those with initially higher cholesterol levels. 
The CoV results indicated that the variance in the intervention 

arm was actually a little larger than would have been expected, 
given the difference in means. This provided (weak) evidence 
that there was heterogeneity in the effect of statins on LDL 
cholesterol, but that this was not due to statins having a bigger 
effect on those with higher cholesterol levels.

It is important to use the right method for the data. If indi-
vidual participant data were available, Levene and Glejser tests 
could be used, and comparing results across tests would explore 
the impact of any non-normality of the data. For meta-analy-
sis of individual trials, the assumption of normality should be 
checked as far as possible (e.g., by using data presented within 
each paper such as mean, median, and SD). Expert knowledge 
could be used to identify outcomes that may be less likely to 
be normally distributed, for example ratio scale data which are 
bounded at zero, or outcomes such as body mass index that 
tends to be skewed. Ratios of variance are appropriate where 
different scales are used across different trials or where the 

FIGURE 2.  Forest plot of the ratio of variances, differences in variance, and differences in covariance analyses of the trials in the 
Palmer et al. meta-analysis reporting the effect of statins versus placebo or no treatment on LDL cholesterol,34 results in eTable 7; 
http://links.lww.com/EDE/B835. We have not plotted the ratio of variances results for Aranda 1994 as the ratio of variances for 
this trial is on a much larger scale than the others (9.51 [95% CI 1.90, 47.49]); however, it is included in the overall analysis. Note 
we do not plot the results of the log ratios of SDs or log ratios of covariance analyses as trends were the same as the ratio of vari-
ances and differences in covariance analyses, respectively (eTable 7; http://links.lww.com/EDE/B835). Please note that the studies 
named in the figure are those in the Palmer et al. meta-analysis,34 and full information on these studies, including references, can 
be found in that paper.
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same scale is used but the mean is very different, as in these 
situations a difference in variances test may not be appropri-
ate. These methods may be biased when the arms are not inde-
pendent (e.g., in crossover trials).12 The approaches we have 
used are consistent and asymptotically unbiased, and there are 
corrections available for small sample sizes.12 Where there are 
three or more repeated measures within a trial (e.g., baseline 
and posttreatment) then multilevel models (also known as ran-
dom effects or linear mixed models) could be used. These are 
robust to data missing at random (i.e., if missingness depends 
on observed variables) and could explore variation in the rate 
of change between the arms of the trial.

These methods for quantifying variance between treat-
ment arms are applicable not just to RCTs, but also to dif-
ferences in variance of continuous outcomes according to 
genotype in genetic epidemiologic studies.38–40 Differences 
by genotype can be considered as analogous to differences by 
treatment arm in an RCT,41,42 indeed the progenitor of RCTs, 
RA Fisher, considered the factorial nature of Mendelian inher-
itance to be the model for randomization in experiments.43–45 
Difference in variance by allele count at, for example, a sin-
gle-nucleotide polymorphism locus, is taken as evidence of 
the presence of either epistasis or gene–environment interac-
tion.38–40 A second potential application is within Mendelian 
randomization implemented within an instrumental variables 
analysis framework.46,47 An interpretative issue relates to the 
assumption of homogeneity of the effect of the instrument on 
the exposure, since violations of this would suggest that the 
effect estimates may not apply to the entire study sample. As 
nonhomogeneity in the genetic variant—exposure association 
would lead to nonhomogeneity in the genetic variant—out-
come association, then as long as either the exposure or out-
come allow variance estimation, an umbrella test of presence 
and degree of violation of the assumption of homogeneity is 
possible. This approach would, of course, apply to instrumen-
tal variable analysis in general and not just when this is within 
a Mendelian randomization context.

While conclusions from randomized trials are usu-
ally expressed in terms of average effects of an intervention, 
individuals will want to know how well they personally will 
respond to an intervention. Grouping subjects according to 
an observed response is open to bias.48 An alternative way to 
examine variation in response, without having to specify and 
measure effect modifiers, is to examine differences in variabil-
ity between the trial arms. We have described different ways of 
doing this with individual participant or summary data. Given 
the low power to explore heterogeneity of variance in indi-
vidual trials, we suggest that meta-analyses should be used 
where possible. It is important to consider scale when decid-
ing whether to meta-analyze differences or ratios of variance: 
if all trials use the same outcome scale then it may be plau-
sible to assume that the trials come from a population with a 
constant difference in variances. If different scales are used, 
then this is unlikely—but in this case, the ratio of variances 

could be meta-analyzed. Where appropriate (i.e., the outcome 
measure is a ratio scale with a true zero) then it is important to 
examine the coefficient of variation. If evidence of a difference 
in variation between arms of the trials is found, then effect 
heterogeneity is not the only explanation—it is important to 
consider the other explanations such as differences in com-
pliance or model misspecification: using multiple different 
approaches with individual participant data can help explore 
these possibilities.
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