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ABSTRACT Microbial DNA, shed from human skin, can be distinctive to its host and,
thus, help individualize donors of forensic biological evidence. Previous studies have
utilized single-locus microbial DNA markers (e.g., 16S rRNA) to assess the presence/ab-
sence of personal microbiota to profile human hosts. However, since the taxonomic
composition of the microbiome is in constant fluctuation, this approach may not be
sufficiently robust for human identification (HID). Multimarker approaches may be more
powerful. Additionally, genetic differentiation, rather than taxonomic distinction, may
be more individualizing. To this end, the nondominant hands of 51 individuals were
sampled in triplicate (n = 153). They were analyzed for markers in the hidSkinPlex, a
multiplex panel comprising candidate markers for skin microbiome profiling. Single-nu-
cleotide polymorphisms (SNPs) with the highest Wright’s fixation index (FST) estimates
were then selected for predicting donor identity using a support vector machine (SVM)
learning model. FST is an estimate of the genetic differences within and between popu-
lations. Three different SNP selection criteria were employed: SNPs with the highest-
ranking FST estimates (i) common between any two samples regardless of markers pres-
ent (termed overall); (ii) each marker common between samples (termed per marker);
and (iii) common to all samples used to train the SVM algorithm for HID (termed
selected). The SNPs chosen based on criteria for overall, per marker, and selected meth-
ods resulted in an accuracy of 92.00%, 94.77%, and 88.00%, respectively. The results
support that estimates of FST, combined with SVM, can notably improve forensic HID
via skin microbiome profiling.

IMPORTANCE There is a need for additional genetic information to help identify the
source of biological evidence found at a crime scene. The human skin microbiome is
a potentially abundant source of DNA that can enable the identification of a donor
of biological evidence. With microbial profiling for human identification, there will
be an additional source of DNA to identify individuals as well as to exclude individu-
als wrongly associated with biological evidence, thereby improving the utility of for-
ensic DNA profiling to support criminal investigations.

KEYWORDS hidSkinPlex, skin microbiome, microbial forensics, human identification,
massive parallel sequencing

Determining the source of DNA evidence from a crime scene is the primary goal of
forensic genetics. Identifying the molecular profile of a donor typically involves

comparing short tandem repeat (STR) markers from an unknown sample(s) with a ref-
erence sample from a person(s) of interest. STRs are highly polymorphic, thereby pro-
viding high powers of discrimination. However, forensic genetic evidence can often be
degraded and contain small amounts of human DNA, making it difficult to obtain even
a partial STR profile for human identification (HID). When an incomplete (or partial) STR
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profile is obtained, the discrimination power is reduced substantially. In such cases,
there is a need to consider alternative approaches to assist in criminal investigations.

The human microbiome provides a promising alternative source of DNA that could
supplement forensic human DNA analyses. The number of microbes in and on the
human body is estimated to be 1:1 compared to human cells, but when only human
nucleated cells are considered, the ratio is estimated to be 10:1 (1, 2). The ratio may be
higher for skin swab samples. Indeed, the skin microbiome is an abundant source of
microbes, with an estimated ;10,000 bacteria/cm2 (3). In contrast, human nuclear
DNA (nDNA) is far less abundant on a per-copy basis. For example, Schmedes et al. (4),
swabbing a similar area of the skin, obtained a quantity of human DNA equivalent to
four diploid cells. In contrast, the DNA of the human skin microbiome from the same
extract provided sufficient information for identifying the donor of the sample (4).

The 16S rRNA marker has traditionally been used in the context of human micro-
biome profiling. The human skin microbiome has been characterized for multiple indi-
viduals and multiple body sites using 16S rRNA sequencing, demonstrating that the
human skin microbiome is a potential source of trace evidence (5–14), but there still is
a need for improvement. These studies have focused on the taxonomic diversity of
specific microbial species to determine the relationship between an unknown sample
and its potential donor. However, previous studies have had various success rates for
HID and were typically based on a small number of samples (i.e., ,15 individuals) (15–
18). The limited success of these investigations could be attributed to their reliance on
the presence/absence (or quantitation) of specific microbes as evidence for a “match”
between an unknown sample and a reference sample. Environmental interactions and
temporal shifts are common phenomena in microbiomes (19). Specifically, microbes
from the skin can also be shared and exchanged between cohabiting and noncohabi-
tating individuals when they come in contact with each other or with items (9, 20–22).
Moreover, several studies have also claimed that 16S rRNA lacks the necessary phylo-
genetic resolution for HID (6, 9, 16, 23–27). All of the above suggests that the taxo-
nomic and phylogenetic constitution of the microbiome is in constant fluctuation.
Using the presence/absence of specific microbial taxa as evidence of a match could be
limiting or possibly misleading.

However, a better system possibly consists of identifying discriminatory skin micro-
bial features in which stability decays minimally over time. Consequently, recent work
has focused on targeting a number of stable taxon-specific markers to improve the ac-
curacy of HID (4, 28, 29). Oh et al. (28) completed one of the first whole-genome
sequence studies of the human skin microbiome for multiple body sites, providing
detailed information about abundant and stable microorganisms. The hidSkinPlex (4),
for example, is a multiplex panel based on the data of Oh et al. (28) and includes 286
markers, ranging from the level of the genus to subspecies of 22 different microbial
clades. The markers were selected based on their abundance and temporal stability
(up to 3 years) as well as their prevalence across body sites (4, 28). Using specific stable
markers with a wide phylogenetic range allows for the selection of specific features
from the skin microbiome that may improve HID. For example, the markers chosen by
Schmedes et al. (4) were able to achieve accuracies with a range of 54.00% to 100.00%
using presence/absence and nucleotide diversity with two machine learning methods,
albeit with a limited sample size.

A promising approach to identify human hosts could be to use measures of genetic
differentiation, specifically the F-statistics (for example, the fixation index, or FST) (30)
for assessing microbial populations. Ancestry informative markers (AIM) regularly used
in human bioancestry studies commonly have high FST (31, 32). A few high-FST markers
are first mined from genomes and then used to predict population groups. FST can be
estimated by evaluating orthologous SNPs in two different skin microbiome populations
(i.e., skin microbiome samples from different individuals). FST estimates could provide
insight into whether the alleles of a marker observed between microbial populations are
identical by descent, allowing for better discrimination between microbial populations,
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which in turn may improve the accuracy of associating a skin microbiome sample with
its respective human host.

Previously, Woerner et al. (29) estimated FST values between two sample populations:
a sample incorrectly associated with another host. Their work showed that even though
the central value (i.e., mean) FST would also lead to an incorrect classification, the use of
high FST SNPs would lead to the correct classification. However, the Woerner et al. study
was only a proof of concept because only two samples were analyzed, and classification
of the hosts based on the FST estimations was not performed. In the current study, a
novel approach to accurately associate skin microbiota with their respective hosts is
described. The nondominant hands of 51 individuals were sampled in triplicate, and the
DNA was analyzed using the hidSkinPlex panel. FST estimates were then computed using
SNPs across the sequenced markers to assess genetic differentiation between inter- and
intra-individual microbiome populations. A select number of SNPs displaying the highest
FST estimates were chosen, applying three different approaches: those with the highest-
ranking FST estimates (i) common between any two samples regardless of taxonomy
(termed overall); (ii) per common marker between samples (forcing a more uniform dis-
tribution on taxonomy, termed per marker); and (iii) markers common to all samples that
are used to train the subsequent machine learning algorithm (termed selected). Each
approach focused on a specific hypothesis to determine if using the overall highest-rank-
ing SNPs, maximizing taxa, or a common selected panel could increase the classification
accuracy of unknown skin microbiome samples. These SNPs were used as data points for
classification by a support vector machine (SVM) learning approach. The predictive capa-
bilities of the SVM to match samples to their human hosts were compared across all
three methods of SNP selection.

RESULTS
FST estimations for skin microbiome samples. As previously described in Woerner

et al. (29), 51 individual's nondominant hands were sampled in triplicate and analyzed
for the markers in the hidSkinPlex panel. The samples were split into training (n = 26
individuals in triplicate) and test data (n = 25 individuals in triplicate) sets. A total of
;69 million quality-controlled reads with a mean of 893,355 (standard deviation
[SD] = 362,436) per sample remained after read preprocessing for the training set. The
test data set had ;72 million mapped reads with a mean of 964,161 (SD = 418,058)
mapped reads per sample. FST was estimated over all pairs of individuals for every
orthologous nucleotide in the hidSkinPlex within the training and test data sets.

After estimating FST for all pairwise comparisons with at least 1� read coverage, the
mean number of nucleotides with an FST estimate greater than zero for each pairwise
comparison in the training data set was 24,809 (SD = 8,502; 2,590 minimum to 52,459
maximum) (see Table S1 in the supplemental material). The test data set had a mean
of 22,789 (SD = 9,657) for single-nucleotide positions with an FST estimate greater than
zero. Typically, 1� read coverage is not sufficient to call SNPs. However, it was initially
used here to identify potential variants and their nucleotide positions. Subsequently,
various read depths were tested in the optimization of the machine learning
approaches. When analyzing FST estimates for all pairs, 236 markers of the 286 markers
in the hidSkinPlex were seen in at least two samples being compared from the data
set. As a reminder, each marker in the hidSkinPlex is associated with some level of mi-
crobial taxonomy (e.g., stably present in Cutibacterium acnes at the species level). The
reduced number of markers was only from eight species and one family (Table 1).
Corynebacterium pseudogenitalium was only seen in one comparison of two samples,
from the training data set, with both samples collected from the same individual.

SVM analysis of training data set. SVMs are natural binary classifiers, and, for the
purposes of this study, each person is considered a separate class. SVMs can be extended
to multiclass classification by using one-versus-one (OvO) decomposition, wherein a clas-
sifier is built for each pair of classes (individuals). OvO classifiers were created using SNPs,
selected based on high-ranking FST estimates, specific to the pair of individuals. The multi-
class classification was estimated by using a simple tally of votes (see Materials and
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Methods). Parameter optimization included varying the number of SNPs and the mini-
mum number of reads and the SVM cost (C), and the best combination of parameters
was identified for each SNP selection method. The best combination was selected from
the training data based on classification accuracy with a tie-breaking rule using the mean
prediction accuracy.

The three methods of selecting SNPs with the highest-ranking FST estimates were
termed overall, per marker, and selected. While all three methods focused on the SNPs
with the highest-ranking FST estimations, each method varied on the number of markers
and SNPs used to classify an unknown sample. The variation in the three methods was
developed to answer distinct hypotheses about how SNP selection methods affect HID
and to determine which method had the highest accuracy, as assessed in the test data
set. The overallmethod tested whether accuracies can be increased by selecting the high-
est-ranking SNPs, regardless of the markers present. The overall method selected SNPs
with the highest-ranking FST estimates in each pair of samples (although it could lead to
less diverse distribution of taxa). The per marker method tested whether maximizing the
number of taxa used for classification could increase classification accuracy, even if doing
so relied on SNPs with lower FST estimates. The per marker method selected the SNPs
with the highest-ranking FST in each orthologous marker in a pair of samples. The selected
method tested whether using SNPs that were common to all samples in the training
data, used to train the SVM, could be used to increase accuracy of identification. The
selected method relied on a predetermined number of common SNPs, which had high-
ranking FST estimations for all comparisons in the training data set. Each selection method
was then compared under different parameter values (i.e., the number of SNPs, minimum
sequence reads, and SVM cost) using a customized SVM approach designed specifically
for HID (see Materials and Methods).

(i) Overallmethod. The overall FST selection focused on choosing the highest FST SNPs
for each pairwise comparison (i.e., 500, 1,000, or 2,000; note with this method that some
of the highest-ranking SNPs had FST estimates close to zero). The number of selected
high-ranking SNPs was tested with all possible combinations of minimum reads and SVM
cost (i.e., the C hyperparameter). The data training set compared the accuracy of 75 pa-
rameter combinations, and 12 combinations performed best, classifying 76 out of 78
samples correctly, yielding a 97.44% accuracy (Table 2). Using the highest prediction
probability to break the tie of the 12 options, the 500 SNPs with the highest FST estima-
tions, minimum read depth of 250, and SVM cost of 1 were the optimal parameters. The
two incorrectly classified samples were S028_R3 and S029_R2 (Fig. 1), which had some
of the lowest numbers of markers (mean 6 SD) (S028_R3, 120.80 6 0.47; S029_R2,
152.00 6 11.91) and SNPs (S028_R3, 823.50 6 131.28; S029_R2, 1,059.00 6 144.45) for
analysis among the training set samples. The mean number of markers for the overall
method with the training data set was 146.20 (SD = 15.72), and the mean number of

TABLE 1 Number of markers present for each species seen in the data analyzed by the
hidSkinPlex

Family Genus Species or phage No. of markers
Propionibacteriaceae —a —a 3

Cutibacterium acnes 197
Cutibacterium humerusii 23
Cutibacterium namnetense 4
Cutibacterium granulosum 4

Corynebacteriaceae Corynebacterium tuberculostearicum 4
Corynebacterium pseudogenitalium 2

Micrococcaceae Rothia mucilaginosa 1
Siphoviridae Pahexavirus Propionibacterium phage P1. 1 1
a—, genus/species not determined.
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SNPs was 1,036.00 (SD = 160.25). The mean number of taxa seen was only 3.89
(SD = 0.86).

Applying the optimized parameters to the test data set (n = 25 samples in triplicate)
yielded a classification accuracy of 92.00% (69/75) with classification error of the model
likely between 2.99% and 16.60% with 95% confidence (R package exactci [33]) (Fig. 2).
The test data set for the overall method assayed a larger number of markers
(152.106 14.16) but had fewer SNPs (1,026.006 166.89) on mean compared to the train-
ing set. While six samples were incorrectly classified, four of the incorrect classifications
involved S014 and S042. The other two incorrectly classified samples S044 and S046
ranked as number 1 (Fig. 2).

(ii) Per marker method. The per marker method focused on the highest-ranking FST
estimates within each marker to achieve the largest taxonomic diversity possible. With
the per marker approach, up to a specified number of SNPs with the highest-ranking
FST estimates (i.e., 5, 10, or 25) were selected per orthologous marker in a pair of

TABLE 2 Number of SNPs, read minimum, and cost for SVMmodeling with the highest
accuracy for all three-nucleotide selection methods optimized with the training dataa

No. of SNPs Read minimum Cost Mean confidence prediction
Overall
500 250 1 0.7651584
500 250 10 0.7651583
500 250 1,000 0.7651581
500 250 100 0.7651579
1000 250 100 0.7643158
1000 250 10 0.7643155
1000 250 1,000 0.7643153
1000 250 1 0.7643141
2000 250 10 0.7642741
2000 250 1 0.7642740
2000 250 100 0.7642738
2000 250 1,000 0.7642734

Per marker
5 250 10 0.7660739
5 250 1,000 0.7660738
5 250 100 0.7660735
10 250 1,000 0.7651763
10 250 100 0.7651763
10 250 1 0.7651759
10 250 10 0.7651747
25 250 100 0.7644139
25 250 10 0.7644138
25 250 1 0.7644134
25 250 1,000 0.7644130

Selected
150 500 1,000 0.7626328
150 1,000 1,000 0.7626328
150 250 1,000 0.7626327
150 100 1,000 0.7626327
150 250 100 0.7626327
150 10 1,000 0.7626326
150 500 100 0.7626326
150 10 100 0.7626325
150 100 100 0.7626325
150 1,000 100 0.7626323

aParameters are in descending order by the mean confidence prediction produced by the SVMmodel. The
overall selection method analyzed 75 different parameter combinations, and 12 parameters had a 97.40%
accuracy. The per markermethod analyzed 75 different parameter combinations, and 11 parameters had an
accuracy of 97.40%. The selectedmethod analyzed 175 total parameter combinations, and 10 parameters had
an accuracy of 98.70%. The column headings indicate the optimized parameters used on the test data set for
each nucleotide position selection method.
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FIG 1 Training data set matrices showing rank numbers 1 (black) and 2 (gray) for classification. The three matrices are labeled with the nucleotide
selection method (i.e., per marker, overall, or selected) used at the top of the individual graphs. The three selection methods chose SNPs with the

(Continued on next page)
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samples. The per marker approach allowed for the widest variety of taxa (5.11 6 1.15)
and the largest number of markers (151.40 6 27.98) to be used for classification with
the training data. There were a total of 75 parameter combinations, and 11 parameter
combinations provided the same highest prediction accuracy (Table 2). Using 5 SNPs
per marker with a minimum read depth threshold of 250 and an SVM cost of 10 yielded
the highest accuracy and the highest mean confidence prediction. Each SVM analysis
for the optimized parameters for the per marker method had a mean of 1,650.00 SNPs
per SVM classification (SD = 309.15). The per marker training set generated a 97.44% ac-
curacy with only two misclassifications out of 78 samples. S028_R3 and S029_R2 were
also incorrectly classified samples with the overallmethod (Fig. 1).

Using the optimized parameters, five SNPs with the highest-ranking FST estimates
per marker, 250 read minimum, and an SVM cost of 10, the test data set produced an
accuracy of 94.70%, with classification error between 1.47% to 13.11% (binomial 95%
confidence interval). Four samples were classified incorrectly out of 75 (Fig. 2). All four
comparisons were from two samples, S014_R1/R2 and S042_R2/R3. One sample in the
test data set, S014_R3, had a three-way tie, based on votes, with three potential candi-
dates, S014, S042, and S044. S014 was ranked number 1 of potential candidates
because it had the highest mean prediction accuracy out of the three possible choices.
All three replicates for S014 had S044 ranked number 1 or 2. Additionally, S044 was
classified correctly, but it had a close association with S014 and S042, with those two
classes ranked numbers 2 and 3 for S044. Having the same classes ranked highly for
S014, S042, and S044 is of particular interest because S042_R2 was classified as S014,
indicating that they could have arisen from the same host, a potential sample mix-up,
or close relationship of the hosts.

(iii) Selected method. The selected method used predetermined SNPs for analysis (i.e.,
50 to 2,000). The number of SNPs was selected based on the number of the markers in the
hidSkinPlex and their base pair length. The different number of SNPs chosen for the selected
method was determined based on the maximum number of SNPs (;2,000) used in the pre-
vious two methods that had the highest classification accuracy. Out of 175 parameter com-
binations, 10 combinations yielded the highest accuracy of 98.70%. The optimized parame-
ters for selected FST were 150 high FST SNPs, a minimum of 500 reads, and an SVM cost of
1,000 (Table 2). The 150 common SNPs represented 22 markers, one family and two species
(Propionibacteriaceae, Cutibacterium acnes, and Cutibacterium humerusii) from the
hidSkinPlex. The selected method had a training accuracy of 98.70%, with only one sample
incorrectly classified. The incorrectly classified sample, S028_R3, was also incorrectly identi-
fied with the other two selection methods. The difference in the selected method was that
S028_R3 ranked number 2 based on its votes, and S006 was ranked number 1 by votes (Fig.
1) and was a notable change in the rank of the correct group classification for S028_R3,
which changed from rank 10 (in per marker and overall methods) to rank 2. In the training
data set, S028 R3 had a mean of 43.94 markers (SD = 0.42) for all possible pairs.

When the test data set was evaluated with the parameters of 150 SNPs with the
highest-ranking FST estimates from the training data set, 500 minimum reads, and a
cost of 1,000 for the selected FST method, the accuracy decreased to 88.00% with a
classification error of 5.63% to 21.56%. Only 66 out of 75 samples were correctly classi-
fied. Of the 11 incorrectly classified samples, three belonged to S014, three to S042,
two to S017, two to S044, and one to S045 (Fig. 2). Individuals S042 and S045 did not
have as many SNPs in their replicates, 146.90 6 4.33 and 140.10 6 1.85 across all repli-
cates, respectively, compared to other individuals, which may have impacted classifica-
tion. However, missing data alone cannot explain the decreased accuracy with the
selected method, as other replicate sample pairs did not contain all 150 specified SNPs
and were classified correctly.

FIG 1 Legend (Continued)
highest-ranking FST estimates. The overall method optimized 250 SNPs for the pairwise comparison, per marker method optimized 5 SNPs per
marker, and selected had a set of 150 SNPs that were common in the training data set. The x axis lists all samples with the individual number and
replicates (S0## = individual number, R# = replicate number). The y axis lists the possible groups, i.e., individuals, a sample could be classified.
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FIG 2 Test data set matrices showing rank numbers 1 (black) and 2 (gray) for classification of samples for the three methods of selecting the
highest-ranking SNPs based on their FST estimation. The top matrix is the overall method, which chose the 250 highest SNPs in any given pairwise
comparison. The second matrix shows the per marker method using training set optimized parameters of 5 SNPs per marker in a pairwise
comparison. The bottom matrix shows the selected method that had 150 prechosen SNPs that were common and had the highest-ranking FST
estimates in the training data set.
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For the training data set, the difference in methods and parameters only resulted in
1.26% (or one sample) difference in classification accuracy, but the goal of the training
data set is to find the parameter combinations that result in the highest accuracy.
Testing the optimized parameters on the test data set provides a better indication of
how the method and optimized parameters perform on unknown data. The classifica-
tion accuracy results of the three methods ranged from 88.00% to 94.00%, but accu-
racy rates are not significantly different (McNemar's chi-square test) (Table 3). All three
methods had issues determining the correct classification for samples from S014 and
S042, but the selected method also had difficulty correctly associating S017, S044, and
S045. While the selected method performed better than the other methods on the
training data, it was the method predicted to most likely be overfit due to SNPs being
chosen based on their presence in the training data set.

(iv) Study of misclassified sample. In this study, a misclassification was considered
any unknown sample that was assigned to an incorrect individual. In essence, this error
assumes the analysis achieves uniqueness, which may not be realistic with these data.
Thus, a misclassification may not be a true error. More studies with refined markers/
SNPs and larger sample sizes are needed to determine the host resolution of the sys-
tem. Plausible explanations were sought as to why one sample was consistently mis-
classified in the training data set before the optimized parameters were used with the
test data set. In the overall and selected methods, S028_R3 was classified as S036 (full
rankings are in Table S2). S028_R3, which only had a total of 16 votes (per marker and
overall methods) out of the potential 25 votes, ranking it number 10 on the list of
potential donors, was the only sample in the training data set that did not have the
actual contributor ranked in the top three potential candidates. For the selected
method, S028_R3 was ranked 2 and had 24 votes, while S006 was ranked 1. Compared
to S036, S028_R3 had much lower read coverage for the markers that are orthologous
between samples. S028_R3 had the fewest markers in common when estimating FST
compared to any other sample that was analyzed. The reduced amount of data avail-
able for classification may be associated with individual S028_R3 having low read
depth coverage or no reads for the SNPs of interest (Fig. 3B).

The test data also had samples that were incorrectly classified by all three methods.
Specifically, the samples from S014 and S042 were often classified as S044, S046, or
each other. While some of the highest-ranking FST estimates are higher between S014
and S042, overall, there were more SNPs with high FST estimates within the individual
than between individuals. For all replicates of S014, there did not tend to be any nota-
ble differences in the reads between selected SNPs. For S042_R2 and R3, the incorrect
classifications may be due to S042_R3 having low read coverage for selected SNPs.

DISCUSSION

This study investigated the potential of selecting high FST markers to improve HID
using the skin microbiome. Previous work with the hidSkinPlex using presence/ab-
sence or nucleotide diversity with nearest neighbor or normalized logistic regression
achieved accuracy rates between 54.20% and 100.00% when classifying eight individu-
als with samples from three body sites collected in triplicate (4). Woerner et al. (29)
expanded the number of individuals to 51 and sampled from the nondominant hand
in triplicate; using the same panel they achieved accuracies of 78.00% and 83.70%
using phylogenetic distance or nucleotide diversity, respectively, for classification with

TABLE 3 Results for McNemar’s chi-square test for accuracies from the test data seta

Comparison Chi-squared P value
Overall vs selected 1.33 0.25
Per marker vs overall 0.5 0.48
Per marker vs selected 3.2 0.07
aThe SNP selection method accuracies were compared for the test data set, and no significant differences were
observed between the accuracies of the methods.
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nearest neighbor machine learning approaches. There was a decrease in classification
accuracy classification when the sample size was increased to 51 individuals compared
to the eight samples in Schmedes et al. (4). The study here reanalyzed the same
sequence data as those in Woerner et al. (29) with a novel method for SNP selection
based on FST estimates and SVM and achieved higher accuracies (P = 0.03, chi-squared
test, comparing the most accurate approaches in both studies). The accuracies of the
three FST SNP selection methods also have increased accuracies compared to any of
the previous studies using the targeted hidSkinPlex sequence data.

Three methods for selecting the highest-ranking FST estimations were used to assess
how SNPs from the skin microbiome may be chosen for HID. All three methods of
selecting informative SNPs had high classification accuracies. The per marker method
achieved the highest accuracy (94.70%), which indicates that inclusion of more taxa
could increase classification accuracies. The per marker method allowed for the broad-
est selection of markers and SNPs in common in each single pairwise comparison,
resulting in the method's higher accuracy. The overall method performed well, with a
92.00% accuracy, even though the number of SNPs used for analysis was less than the
per marker method. While the selected method had the lowest accuracy of 88.00%,
even though it initially had the highest training accuracy at 98.70%, the method still
showed that a predetermined panel of chosen SNPs could include or exclude a particu-
lar individual as the donor of a sample. An additional increase in accuracy might be
achieved if minimum requirements were implemented to remove samples that have
low read coverage causing a drop of informative SNPs. The results of this study provide

FIG 3 Comparisons of S028_R3 that were incorrectly classified as S036. (A) A quantile-quantile plot of FST estimates for sample
S028_R3 compared to individual S036. The distribution of FST estimates between S028 (y axis) and S036 (x axis) and from
comparing S028_R3 to other technical replicates. The FST estimates were computed for SNPs that were orthologous in at least
two samples. The main diagonal represents S028 and S036, having equal values of FST estimates. Points below the main diagonal
represent a greater differentiation between S036 and S028, while points above the diagonal show greater differentiation within
S028. (B) First sample in the graph labeled on the x axis and the second sample on the y axis with the number of reads plotted
for the SNPs. The ticks on the x and y axis show the density of the corresponding area on the graph to provide clarity about the
density of plotted points. Overall, S028_R3 had less read coverage for SNPs in common with S036 than with S028. (C) A boxplot
of the FST estimates for each pairwise comparison. The distribution of FST estimates for the 36 markers S036 and S028 had in
common tend to have higher FST for sample comparisons within S028 than between S036.
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support that using high-ranking FST estimates to select SNPs with SVM increased accu-
racies of classification to 94.70% and can be used in a fashion similar to that for AIM in
human populations analyses.

The investigation into S028_R3 in the training data and S042_R3 in the test data set
suggested that low read coverage and low diversity of a sample impact classification ac-
curacy. If one of the three replicates from an individual has low read coverage and/or low
diversity, the ability to correctly classify other replicates from the same individual may be
impacted. Perhaps implementing minimum thresholds for analyzing a sample eliminates
poor-quality samples from being searched. Additional research on potential minimum
requirements, such as overall read coverage and depth and the number of total SNPs,
may reduce the number of false positives (or, for now, better stated as adventitious hits).
For the test data set, individuals S014 and S042 were incorrectly classified in all three
methods of SNP selection. Individuals S014 and S042 were also incorrectly classified to
some degree by Woerner et al. (29) for both classification methods tested in their study.
This observation suggests that replicates of individuals S014 and S042 have been
switched, contamination occurred during handling or processing, and/or these individu-
als share a genetically and taxonomically similar microbiome. It is also possible that the
SNPs selected for distinct individuals still need refinement and/or that thresholds for mini-
mum data requirements need to be considered further. Additionally, studies need to be
performed to determine why a few high-FST SNPs could impact incorrect classification
when the data as a whole support the correct classification.

Although the performance decreased with the test set, the selected method is of par-
ticular interest in that it provides a predetermined set of SNPs to be used in every classifi-
cation of the unknown samples. For the optimized parameter of 150 SNPs there were
only two species and one family level marker represented, which were Cutibacterium
acnes, Cutibacterium humerusii, and Propionibacteriaceae. These two species and one fam-
ily-level marker are common and abundant on the human skin and often have multiple
subspecies or strains within individuals (28). The decrease in accuracy from 98.70% in the
training data to 88.00% in the test data is most likely due to overfitting, both in the SNP
ascertainment and in the SVM model itself. With more data for training, it may be possible
to adjust the predetermined SNPs, but some level of overfitting will likely persist. A prede-
termined panel would allow for the redesign of the hidSkinPlex to reduce the number
and size of the markers in the panel with a potential increase in assay robustness.

Using FST estimates permitted selection of SNPs to be input into an SVM model.
With a refined MPS targeted skin microbiome panel, it will also be possible to further
investigate how the SNPs of specific microorganisms change due to environment,
health status, and other external factors. With a set of informative SNPs, studies can
begin on determining the stability of markers over time, which is an important crite-
rion for forensic applications. Refinement of informative SNPs may provide an increase
in the accuracy to include or exclude an individual as a potential contributor of a
microbiome sample when time has passed. The human skin microbiome has the
potential to be supportive evidence to more traditional DNA evidence for law enforce-
ment. In the study here, the selection criteria for SNPs may be considered ad hoc.
Future work shall optimize methods using other machine learning approaches to
determine informative features in the current data set and additional novel data sets.

MATERIALS ANDMETHODS
Samples. Targeted sequence data from samples originally described in Woerner et al. (29) were

used in this study. Briefly, skin swabs from 51 individuals were collected in triplicate from the nondomi-
nant hand (Hp) of each individual (n = 153, replicates R1, R2, and R3). These samples were then analyzed
using the hidSkinPlex, a targeted genome sequencing panel (4) drawn from the MetaPhlAn2 database
(34). This panel targets 22 clades, with genus to subspecies level information, comprising 286 markers
that were determined to be abundant and relatively stable on human skin (35). The University of North
Texas Health Science Center Institutional Review Board approved the collection and analyses of these
samples.

Sequence data and analysis. All fastq files from the MiSeq were trimmed with cutadapt (36) to
remove bases with a quality score less than 20 and reads less than 50 bases long, as described in
Woerner et al. (29). MetaPhlAn2 (34) was used to align sequence reads to the MetaPhlAn2 reference
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database. SAMtools (37) was used to calculate read depth and coverage and to generate base pileups
for each aligned marker in the hidSkinPlex panel.

Computation, statistics, and FST estimation. All statistics were performed in the R (v. 3.4.2) (38) or
Python (v. 2.7.17; Python Software Foundation, https://www.python.org/) programming language with
plots created by ggplot2 (39). Welch two-sample t tests and McNemar's chi-squared test were performed
using the stats package (38). Hudson et al. (40) proposed estimating FST as FST = 1 2 (Hw/Hb), where Hw is
the mean number of pairwise differences within a population and Hb is the mean number of pairwise
differences between two populations (40). FST was estimated for all relevant nucleotide positions with a
read depth minimum of one. It is worth noting that FST is only defined when Hb . 0 and that a minimum
read depth parameter was optimized in the machine learning approach. When estimating FST, the two
samples (i.e., two populations) must each have at least one orthologous SNP being compared and have
.1� read depth for the analysis (for example, sample A at SNP position 25 has 2 reads of A, and sample
B has 2 reads of C). An additional read depth parameter was optimized during the analysis of the train-
ing data set. A 3-fold cross validation holding out one of the technical replicates then was performed.

Machine learning strategy. A training set was used to optimize the linear support vector machine
(SVM) C hyperparameter as well as a threshold on a maximum number of SNPs and minimum read depth.
The test data set was used to determine how the SVM performed on unseen data. The training data set
comprises 26 samples in triplicate (S001 to S012 and S025 to S037, where S0## represents an individual),
and the test data set consists of 25 samples (S013 to S024 and S038 to S051).

The SVM approach embeds the distance (FST) between two individuals relative to a single query
point into the Cartesian coordinate system. The embedding begins by considering four samples, two
samples for each class (a class represents two samples from the same individual), and selecting the high-
est-ranking SNPs for each sample compared to the unknown sample. While embedding distances in the
Cartesian coordinate system generally is not possible without error or loss, it is possible to use distance
with a binary classifier when the distance is constrained to a single (query) point. A further benefit of the
approach is it can be trained only on comparable data, in this case SNPs, between just the two samples
and the query, in contrast to requiring the presence of each SNP in all samples. This allows the SVM to
handle dropout in a way that avoids imputation and uses the variants to separate two individuals based
on their common microbes.

Each comparison between two samples (one of them being the unknown data point) selected the
highest-ranking FST estimates (i.e., SNPs) based on the selection method (i.e., overall, per marker, or
selected). After SNP selection, a matrix with the four samples (rows) and the selected SNPs (columns) was
formed. If any SNP was not present in the other (up to three) comparisons, because it was not present as
a high-ranking SNP, it was filled in with the FST estimate from the original data that met the minimum
read requirement. Missing data were filled in with zero. FST values for common markers for all four com-
parisons were input into an in-house SVM code that used LibSVM (v. 1.7-3) (41) (R package e1071) as a
feature vector with two labeled classes and a single unlabeled sample. The unknown sample was then
provided as a vector of zeros as an additional feature vector to represent FST estimates of the unknown
sample compared to itself. The SVM provided a prediction about which of the two potential classes the
unknown sample belonged and provided a percentage representing the SVM's confidence in its predic-
tion. Each time the binary SVM made a prediction, the corresponding class was given a vote. The votes
were tallied, and the maximum number of votes determined the classification of the unknown sample.

Three approaches to select SNPs for analysis were developed to determine which method would
provide the highest accuracy. Each method of high FST selection focused on a distinct approach to pro-
vide insight into whether the number of highest-ranking FST estimates increases classification accuracy
or a common set of markers would more effectively improve accuracy of unknown sample prediction.
The first approach, overall, selected either up to 500, 1,000, or 2,000 SNPs with the highest-ranked FST
estimates across all markers, but not from any specific marker, to determine the minimum number of
SNPs that could be used and still provide accurate classification. The second method, FST per marker,
selected either 5, 10, or 25 SNPs contained within a marker with the highest-ranking FST per marker com-
mon between the two populations that were compared. The third method, called selected FST, used all
FST estimates with reads greater than 10 from the training samples to select SNPs that were seen most
often in pairwise comparisons and had the highest-ranking FST estimates. The number of SNPs selected
with the highest-ranking FST estimates was set at 50 to 2,000. The selectedmethod chose SNPs by arrang-
ing FST estimates in descending order for each marker seen in all pairwise comparison in the training
data set. All three selection methods were optimized under the objective of maximizing classification
accuracy.

Parameter optimization. Three parameters were varied for all SVM models. The three parameters
were the number of SNPs with the highest-ranking FST estimates in a pairwise comparison, the minimum
reads at each SNP compared, and the cost (C parameter) for the linear SVM. The number of SNPs
selected with the highest-ranking FST estimates depended on which method was used, i.e., FST per
marker, overall FST, and selected FST. A minimum read depth threshold was assessed with each approach,
and the thresholds were 10, 100, 250, 500, or 1,000. Cost, the degree of misclassification allowed in the
SVM, was set at 0.1, 1, 10, 100, or 1,000. The selection of optimal parameters for each FST selection
method was evaluated by looking at the number of times each possible combination of all three param-
eters was used to predict 78 unknown samples with SVM. The accuracy was determined by the number
of times that the unknown sample was predicted correctly (i.e., the highest rank).

Data availability. Custom R and Python scripts can be accessed at https://github.com/CardiShire/
PopulationInformativeMarkers.
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