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Background. The association between heart failure (HF) and cognitive impairment has received increasing attention from
scholars and researchers in recent years. However, no systematic studies have been carried out yet focused on the crosstalk
between heart failure and cognitive impairment via miRNAs. Methods. GSE104150, GSE53473, GSE120584, and GSE116250
with RNA-seq data and clinical data were downloaded from the GSE database. All data were statistically analysed using R
software to detect DE-miRNAs and DE-mRNAs associated with both HF and cognitive impairment. Protein-protein interaction
(PPI) networks were mapped, and a logistic regression model for cognitive impairment prediction was developed. Furthermore,
the TTRUST database and miRWalk were used to map miRNA-transcription factor (TF) and messenger RNA (mRNA)
regulatory pathways. Finally, core TFs were enriched for analysis. Results. Differentially enriched DE-miRNAs and DE-mRNAs
both present in HF and cognitive impairment were determined. A logistic regression model established based on DE-miRNAs
was validated to have a strong performance in cognitive impairment prediction. The core miRNA-TF-mRNA pathway was
formed by mapping the PPI networks associated with the two diseases. Further GSEA was performed with V-rel
reticuloendotheliosis viral oncogene homolog B (RELB) as the core TF, and the retinol metabolism and gap junction pathways
were analysed. Conclusions. This study was the first attempt to predict the crosstalk and examine underlying mechanisms
between HF and cognitive impairment applying bioinformatics. The findings suggested a potential hsa-miR-933/RELB/CCL21
regulatory axis correlated with HF and neurological disorders (or cognitive impairment), according to PPI networks.

1. Introduction

Chronic heart failure (HF), alternatively known as chronic
congestive heart failure, is the most advanced form of most
cardiovascular diseases and a primary cause leading to
patients’ death. HF has largely resulted from myocardial
damage caused by myocardial infarction, cardiomyopathy,
haemodynamic overload, or inflammation. HF will weaken
the contractility of heart muscles, preventing the mainte-
nance of normal cardiac output [1]. The prevalence of HF
in the general population is about 1-2%, but it exceeds 10%
among the elderly aged over 70 [2, 3]. Statistics estimated
that the number of patients suffering from cognitive impair-
ment will reach around 74.7 million worldwide by 2030 [4].

Interestingly, approximately 25-75% of HF patients are
accompanied by cognitive impairment [5]. Such a potential
association between HF and cognitive impairment has
attracted growing research attention [6].

Currently, though clinical indicators related to chronic
HF have been identified, we still face a lack of more sensi-
tive and accurate markers for early diagnosis, treatment,
and prognostic assessment of chronic HF. miRNAs are small,
endogenous RNAs of approximately 20 to 24 nucleotides in
length with important regulatory roles in cells. miRNAs are
involved in various pathological and physiological processes
during HF development and cognitive impairment [7-10].
Disease diagnosis and prediction of prognosis could be based
on testing certain miRNAs, as different compositions of
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miRNA components are often indicative of disease types
[11]. For example, as one of the most widely studied miR-
NAs, miR-206 has been identified to be closely associated
with the development of HF and cognitive impairment
[12]. HF is also related to changes in the microenvironment
of the circulatory system [13]. Interestingly, these changes
are present in cognitive impairment progression [14].
However, so far, no previous research has investigated the
potential crosstalk between HF and cognitive impairment
via miRNAs.

Bioinformatics allows the detection of specific signaling
pathways via which diseases occur and analysis on the
disease-target correlation, showing a strong potential of its
use in predicting target mRNA binding sites potentially
associated with cognitive impairment and HF. The present
research is aimed at investigating the relationship between
HF and cognitive impairment based on miRNA crosstalk
and the underlying mechanisms, hoping to provide a theo-
retical basis for clinical translation.

2. Materials and Methods

2.1. Data Collection and Preprocessing. Microarray data was
downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/).
Microarray data of miRNA expression in peripheral
blood derived from HF patients were downloaded from
GSE104150 [15] and GSE53473 [16], while those of cognitive
impairment patients were downloaded from GSE120584
[17]. Subsequently, the RNA-seq data of HF myocardial
tissues were acquired from GSE116250 [18] to obtain mRNA
expression. mRNA expression microarray data in brain
tissues of cognitive impairment came from GSE140831
[19]. The GSE120584 dataset contained serum miRNA and
corresponding clinical data of 1569 cases of cognitive impair-
ment patients and normal controls; the GSE116250 dataset
contained the mRNA expression data of 64 HF patients and
normal controls; the GSE140831 dataset contained the
mRNA expression data of 1129 patients with cognitive
impairment and normal controls. Corresponding clinical
information of patients in each GEO dataset was down-
loaded. RT-PCR data of the corresponding miRNAs in the
predictive model were acquired. In addition, the correspond-
ing clinical data were obtained. Informed consent was
gained. Finally, RT-PCR data and clinical data from 95
patients who attended our hospital were acquired and served
as a test set to evaluate the performance of the prediction
model. The study procedure was reviewed and approved by
the local ethical committee.

2.2. Analysis of Variances. The miRNA and mRNA microar-
ray gene IDs were converted to gene symbols based on the
microarray platform files. According to data types and sizes,
the expression matrix was further log-transformed to obtain
the miRNA and mRNA gene expression matrix. The limma
[20] package was used to remove batch effects from the
merged datasets when the same type of data was obtained
from different platforms.

The Fragments Per Kilobase Million (FPKM) and Tran-
scripts Per Kilobase Million (TPM) type data were analysed
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to reveal mRNA/miRNA differences between HF and
healthy control (HC) and between cognitive impairment
and HC according to the clinical sample grouping using
the limma package. Differentially expressed RNA between
the two groups was filtered based on a threshold value. |[FC
>1.1| was the threshold of miRNA differential analysis.
DE-miRNAs and DE-mRNAs of HF and HC, as well as
cognitive impairment and HC, were intersected to obtain
common DE-miRNAs and DE-mRNAs. The results were
presented in a Venn diagram using the VennDiagram
package.

2.3. miRNA-TF-mRNA and PPI Network and Subnetwork
Construction. TF and its target mRNA were acquired from
the TTRUST database. The TF and corresponding mRNAs
in the shared DE-mRNA database were compared to
develop a DE-TF-mRNA regulatory relationship network.
Target mRNAs of the shared DE-miRNAs were predicted
by the miRWalk (http://mirwalk.umm.uni-heidelberg.de/)
database. The results were analysed with the DE-TF-
mRNAs to acquire the intersection of the miRNA-
TF/mRNA relationship network. Cytoscape (version 3.8.2)
was employed for the visualisation of the miRNA-TF-
mRNA regulatory PPI network. Finally, the MCODE plugin
(degree cutoff =2, node score cutoff =0.2, k-core =2, and
max.depth = 100) was used to create an aggregation of core
genes and subnetworks in the network. The top two core
subnetworks were selected according to the enrichment
score, and their relational pairs and nodes were acquired
for further analysis.

2.4. Construction of a Logistic Regression Model to Predict the
Incidence of Cognitive Impairment Patterns. Shared DE-
miRNAs and clinical information were analysed by univari-
ate and multivariate logistic regression analyses. Factors
from the common dataset and public database predictive
of cognitive impairment onset were screened to develop
two prediction models by logistic regression. A nomogram
was created using the “rms” package to calculate and predict
cognitive impairment incidence. Furthermore, a calibration
curve was plotted to determine the calibration of the model.
Public dataset and clinically acquired data served as the
training group and the test group, respectively, for model
training. The receiver operating characteristic (ROC) curve
was plotted using the ROCR package [21] and the Hmisc
package, and the C-index was calculated to assess the predic-
tive and discriminatory performance of the model in the
training, overall, and test groups. A C-index between 0.7
and 1 represented a high predictive performance. Finally,
to evaluate the prediction range of the model, decision
curves were plotted using the “rmda” package. The package
was also used to assess the nomogram as well as clinical
applicability and safety of the model.

2.5. Thermal and Volcanic Mapping. Heatmap and volcano
maps of the DE-miRNAs and their target mRNAs in the
prediction model for cognitive impairment and for normal
controls were, respectively, intersected using the pheatmap
and gplots packages. Furthermore, the miRNAs and target
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FiGure 1: Flow chart of the analysis process.

mRNAs shared by both the core genes of the PPI subnet-
work and the prediction model were marked in the volcano
map. The ggalluvial and ggplot2 packages were employed to
develop a mulberry map of differential miRNA-TF/mRNA
axes, which were considered to play a regulatory role in
the pathogenesis of cognitive impairment.

2.6. Functional Enrichment Analysis and Statistical Analysis.
Functional enrichment analysis was carried out using Fun-
Rich (v.3.1.3) for DE-miRNAs shared by both HF and
cognitive impairment. Upregulated and downregulated
genes were identified from the differential mRNAs targeted
by key miRNAs in the prediction model for cognitive
impairment and further subjected to functional GO and
KEGG pathway enrichment mapping. Enrichment analysis
of GO and KEGG pathways was conducted using the
org.Hs.eg.db and clusterProfiler packages, and bar graphs
were created [22]. The pathways were filtered by P value
(<0.05). The TF factors were selected according to the fold
change value and enriched by GSEA software (version
4.1.0), based on the obtained miRNA-TF-mRNA axis.
The gene set “c2.cp.kegg.v7.4.symbols.gmt” was used for
pathway enrichment annotation.

Statistical analysis was performed in R software (version
4.0.5). Hypothesis testing was conducted using a two-sided
test.

3. Results

3.1. Analysis of Variances and Network Construction. The
flow chart of the study analysis is shown in Figure 1. DE-
miRNA and DE-mRNA were acquired from the down-
loaded datasets, and miRNA-TF/mRNA network and cogni-
tive impairment prediction model were built. Finally, the
core miRNAs and TFs were analysed.

The Venn diagrams showed DE-miRNAs (including
hsa-miR-342-3p, hsa-miR-1246, hsa-miR-615-3p, hsa-
miR-1224-5p, hsa-miR-636, hsa-miR-1257, hsa-miR-551a,
hsa-miR-486-5p, hsa-miR-485-3p, hsa-miR-933, and hsa-
miR-296-3p) incorporating 3097 common DE-mRNAs in
HF and cognitive impairment (see Figures 2(a) and 2(b)).
Functional enrichment analysis of DE-miRNA transcription
factors showed enrichment in EGR1, MEF2A, NKX6-1,
FOXD1, ESX1, and RORA (see Figure 2(c)). Table 1 exhibits
the enrichment of DE-miRNAs in biological processes,
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FIGURE 2: Venn diagram of mRNA and miRNA differential analysis results and differential miRNA pathway enrichment analysis. (a) Venn
diagram shows the number of DE-miRNAs in HF and cognitive impairment, respectively, and the common differentially expressed

miRNAs. (b) Venn diagram depicts the number of DE-mRNAs in HF and cognitive impairment, respectively, and the common
differentially expressed mRNAs. (c) The bar chart exhibits the 11 DE-miRNAs targeted to TFs in cognitive impairment.

TaBLE 1: Results of miRNA enrichment.

miRNA enrichment item Percentage of genes P value
Regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism (biological process) 25 0.044
Nucleus (cellular component) 56 0.007
Transcription factor activity (molecular function) 11 0.032

Integrin-linked kinase signaling (biological pathway) 27 0.041
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FIGURE 3: Protein interaction networks mapped from DE-miRNA, DE-mRNA, and predicted miRNA target gene prediction sites.
(a) miRNA-TF-mRNA-regulated protein interaction network. (b, ¢) The top 2 aggregator network modules predicted according to MCODE.
It represents the core group of genes involved in the disease process. The rectangles represent general protein mRNAs, the inner quadrilateral

represents TF, and the rhombus represents miRNAs.

cellular components, molecular functions, and biological
pathways.

Figure 3(a) displays the PPI mapping and construction
of regulatory networks for DE-miRNAs and their predicted
target DE-mRNAs. Based on the MCODE and filtering con-
ditions, the top two aggregated subnetworks and core genes
were obtained (see Figures 3(b) and 3(c)).

3.2. Single and Multifactor Logistic Regression Analyses. In
cognitive impairment and normal control datasets, univari-
ate and multivariate logistic regression analyses were
performed on the above 11 DE-miRNAs together with two
important clinical factors age and gender. The results of
the univariate analysis were filtered by P value (<0.05) and
showed statistical significance of the factors (see Table 2).
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TaBLE 2: Uni- and multilogistic regression analyses for predicting cognitive impairment.
Variables Unilogistic regression Multilogistic regression
B Odds ratio (95% CI) P value B Odds ratio (95% CI) P value

Age 0.183 1.201 (1.173-1.231) P <0.001 0.185 1.204 (1.174-1.236) P <0.001
Sex -0.783 0.457 (0.352-0.592) P <0.001 -0.510 0.6 (0.442-0.816) 0.001
hsa-miR-636 -0.678 0.508 (0.401-0.637) P<0.001 0.099 1.104 (0.826-1.471) 0.499
hsa-miR-485-3p 0.387 1.472 (1.255-1.726) P <0.001 0.340 1.405 (1.121-1.765) 0.003
hsa-miR-486-5p -0.373 0.689 (0.591-0.803) P <0.001 -0.263 0.769 (0.6-0.985) 0.038
hsa-miR-933 -0.301 0.74 (0.652-0.839) P<0.001 -0.355 0.701 (0.584-0.84) P <0.001
hsa-miR-551a 0.468 1.597 (1.312-1.958) P <0.001 0.299 1.348 (1.038-1.762) 0.027
hsa-miR-296-3p -0.405 0.667 (0.55-0.806) P <0.001 -0.129 0.879 (0.666-1.159) 0.361
hsa-miR-342-3p 0.359 1.432 (1.206-1.701) P <0.001 0.1925 1.212 (0.962-1.531) 0.105
hsa-miR-615-3p 0.315 1.37 (1.174-1.596) P<0.001 -0.0618 0.94 (0.749-1.178) 0.530
hsa-miR-1224-5p -0.360 0.698 (0.569-0.845) P <0.001 -0.2666 0.766 (0.593-0.979) 0.037
hsa-miR-1257 0.583 1.792 (1.305-2.65) 0.001 0.30883 1.362 (0.941-2.103) 0.128
hsa-miR-1246 -0.110 0.896 (0.831-0.968) 0.005 0.05926 1.061 (0.946-1.192) 0.314

Note: 8 is the regression coefficient.

TaBLE 3: Prediction factors for prevalence of cognitive impairment.

Prediction model

Variables B QOdds ratio (95% CI) P value
(Intercept) -10.561 0 (0-0) P <0.001
Age 0.184 1.202 (1.172-1.234) P<0.001
Sex -0.511 0.6 (0.443-0.812) P<0.001
hsa-miR-485-3p 0.368 1.445 (1.178-1.774) P <0.001
hsa-miR-486-5p -0.189 0.828 (0.678-1.011) 0.064
hsa-miR-933 -0.392 0.676 (0.575-0.792) P <0.001
hsa-miR-551a 0.356 1.427 (1.123-1.827) 0.004
hsa-miR-1224-5p -0.290 0.748 (0.591-0.939) 0.014

Note: 8 is the regression coefficient.

Moreover, all the factors were subjected to multifactorial
analysis. Here, we found that age, sex, hsa-miR-485-3p,
hsa-miR-486-5p, hsa-miR-933, hsa-miR-551a, and hsa-
miR-1224-5p were independent predictors.

3.3. Logistic Regression Model Construction and Testing.
Table 3 shows the weights of the coefficients in the con-
structed model and the results of the statistical test of vari-
ance. Based on the constructed logistic regression model,
the nomogram was plotted as a predictive model (see
Figure 4(a)). Information on clinical patient characteristics
was shown in Supplementary Table 1, and these data were
the validation group for the predictive model. Figure 4(b)
shows the calibration assessment of the predictive model in
a calibration graph. Figure 4(c) shows the ROC and AUC
of the model in the training, test, and overall groups.
Table 4 displays the C-index values that ranged from 0.812
to 0.816 for the three groups. This indicated that the model
had good predictive classification performance. Figure 4(d)

shows a wide clinical applicability and high safety of the
prediction model in the training, test, and overall groups,
according to the decision curve analysis (DCA) curves.

3.4. Heatmap of DE-miRNA and Targeted DE-mRNA in
Logistic Prediction Model. Based on the coeflicients of the
prediction model, the expression of five of the miRNAs in
each cognitive impairment group and normal samples was
presented as a heatmap (see Figure 5(a)). In relation to over-
all miRNA expression, factors such as age and gender were
also shown. Based on the previously calculated PPI network,
the expression of the target DE-mRNAs of these 5 miRNAs
(hsa-miR-485-3p, hsa-miR-486-5p, hsa-miR-933, hsa-miR-
551a, and hsa-miR-1224-5p) was presented in a heatmap
(see Figure 5(b)).

3.5. Functional Enrichment Analysis. The GO and KEGG
pathways were enriched to the five miRNA-targeted DE-
mRNA genes in the model. The upregulated and downreg-
ulated GO pathways in cognitive impairment patients are
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FIGURE 4: Logistic model based on DE-miRNA prediction of cognitive impairment. (a) Nomogram shows column plots for calculating the
predicted incidence of cognitive impairment. (b) The calibration plot shows the calibration of the prediction results of the model. (c) The
ROC curves show the classification and prediction performance of the prediction models. The training group, the clinical test group, and
the overall group were evaluated separately. (d) Reliable range of model prediction probabilities demonstrated by DCA curves.

TABLE 4: C-index of the nomogram prediction model.

Dataset group C-index of the prediction model

C-index The C-index (95% CI)
Training set 0.816 0.788-0.843
Validation set 0.815 0.789-0.841
Entire cohort 0.812 0.725-0.899

shown in Figure 6, and the upregulated KEGG pathways
are shown in Figure 7.

3.6. Volcano Map and Sankey. The significance of miRNA
differential analysis and fold change in cognitive impairment
and normal controls was shown in a volcano plot (see
Figure 8(a)). Figure 8 also demonstrates the differential
expression of DE-miRNAs in HF and cognitive impairment
both in the cognitive impairment prediction model and in
the core PPI subnetwork. Some miRNAs, such as hsa-miR-
933 and hsa-miR-1224-5p, were present in both the cogni-
tive impairment prediction model and PPI subnetwork
which could be found in Figure 8(b). The DE-mRNA
expression in cognitive impairment and normal controls
was integrated in volcano plots. Furthermore, the DE-
mRNAs targeted by the DE-miRNAs shared by both the
cognitive impairment prediction model and PPI subnetwork
were labelled. In Table 5, the results of the differential anal-

ysis of the two miRNAs mentioned above and their targeted
DE-mRNAs could be found. The miRNA-TF-mRNA axes of
these 2 miRNAs and their target genes were presented in a
mulberry map (see Figure 8(c)).

3.7. GSEA of Core Genes. The mulberry map was constructed
based on the targeted DE-mRNA of miRNAs selected. Com-
bined with Table 5, the transcription factor RELB with the
largest differential fold was determined, and the hsa-miR-
933/RELB/CCL21 regulatory axis was developed, according
to the prediction model and subnetwork. GSEA was per-
formed on RELB in high- and low-expression groups (see
Figures 9(a) and 9(b)). The results showed that the RELB
high-expression group was enriched to KEGG_RETINOL_
METABOLISM (P =0.032) and KEGG_GAP_JUNCTION
(P =0.032), suggesting that the role of the regulatory axis
may be similar in the development of HF and cognitive
impairment.

4. Discussion

The treatment of HF is highly challenging in modern
medicine. The present study was the first to investigate
the correlation between HF and cognitive disorders from
the perspective of miRNA-mRNA via a potential vascular-
neural pathway. The crosstalk between HF and cognitive
impairment as well as the underlying mechanisms was
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comprehensively investigated. This work will generate fresh
insight into the theoretical basis for clinical translation by
demonstrating that the hsa-miR-933/RELB/CCL21 regula-
tory axis played an important role in HF and cognitive
disorders.

In this study, based on the GEO dataset, serum DE-
miRNAs and DE-mRNAs in brain tissue from cognitive
impairment patients and normal controls were obtained.
Similarly, corresponding subjects were also acquired from
HF patients and their controls. DE-miRNAs and DE-
mRNAs present in both HF and cognitive impairment were
detected to map a PPI network jointly associated with the
two diseases. At the same time, a logistic regression model
for predicting cognitive impairment incidence was estab-
lished and further validated by comparing the results with
clinical observations; here, the prediction model was verified
to have a strong predictive performance. Moreover, the key
miRNAs in the logistic regression model and the core TF in
the PPI subnetwork were used to build a miRNA-TF-
mRNA pathway. Further GSEA on the cores was performed,
and the retinol metabolism and gap junction pathways were
found to play similar regulatory roles in the development of
HF and cognitive impairment.

The hsa-miR-933/RELB/CCL21 regulatory axis was
speculated to function critically in HF and cognitive disor-
ders. Also, the intron microRNA hsa-miR-933 is potentially
associated with the development of neurodegenerative
diseases and diabetes, and its important role in regulating
ATF2 target genes could explain the observed association
to some extent [23]. In addition, the miR-933 expression is
correlated with numerous cancers, including oral squamous
cell carcinoma, breast cancer, and colon cancer [24-26].
RELB, a TF for NF-kappaB, plays an important function in
endothelial cells [27], which are vital components of the
circulatory system and are partially involved in the develop-
ment of HF and cognitive impairment [28]. The study also
indicated the active role of RELB in neurodevelopment and
central nervous system functions [29]. Our enrichment
analysis revealed that the group with higher RELB expres-
sion was enriched to retinol metabolism and gap junction.
In the present study, RELB as a TF regulating CCL21
expression was found to be possibly regulated by hsa-miR-
933. Moreover, a previous study observed that RELB is pos-
itively correlated with CCL21 expression in dendritic cells
[30, 31]. In cardiac tissues, CCL21 is considered a possible
biomarker for the development of HF [32]. Previous
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prediction model.

findings demonstrated a regulatory role of chemokines vital
in physiological or pathological conditions of the central
nervous system [33]. As a well-studied neuronal chemokine,
the pathological expression of CCL21 has been detected in
cerebral ischemia [34], axonal injury [35], amyotrophic
lateral sclerosis [36], and spinal cord injury [37]. Thus,
hsa-miR-933, RELB, and CCL21 may be correlated with
HF and neurological disorders.

Previous studies have found that miRNAs in circulat-
ing blood alone also have the potential to predict dementia
and HF [38-40]. This is because the information in circu-
lating blood miRNAs is suggestive of essential organismal
conditions such as ischemic, cardiomyopathy, diabetes,
and valvular [41-44]. Thus, heart failure may influence
the development of dementia by affecting miRNA expression
in the blood microenvironment, a speculation that was first
tentatively confirmed in this study. Moreover, severity of
HF was found to be associated with the expression profile
of circulating blood miRNAs [45]. Notably, miR-485-3p
was also found to be potentially relevant to severity of HF
in a previous study [46]. High expression of miR-485-3p
was also found to be associated with dementia risk in the

present study. In this research, the chi-squared test also
showed that the severity of heart failure was significantly
associated with the risk of developing cognitive impairment;
that is, as the degree of heart failure increased, the risk of
developing cognitive impairment increased, which is consis-
tent with the results of previous studies [47, 48]. Thus, this
study suggested that the severity of HF is also related to
dementia. In addition, miR-486-5p was also found to be a
biomarker for the development of heart failure and dementia
in a previous study [49, 50]. In conclusion, the present study
is a preliminary one, and although we identified some inter-
esting targets, further studies are necessary in the future.

In this study, based on the GEO dataset, DE-miRNAs
and DE-mRNAs present in both HF and cognitive impair-
ment were acquired and analysed. A logistic regression
model with a high performance in predicting cognitive
impairment incidence was established using the DE-
miRNAs. The core miRNA-TF-mRNA pathway was built
by mapping the PPI network jointly associated with cognitive
impairment and HF. Moreover, GSEA showed that RELB as
a core TF was enriched in retinol metabolism and gap junc-
tion pathways. Investigating the potential relevancy of the
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TaBLE 5: Two DE-miRNAs and nine DE-mRNAs.

id logFC t P value Adjusted P value B

hsa-miR-933 -0.31 -4.77 P<0.001 P <0.001 4.47
hsa-miR-1224-5p -0.18 -3.62 P<0.001 0.002 -0.21
RELB 0.06 5.32 P<0.001 P <0.001 5.85
MAD2L1 -0.02 -4.2 P <0.001 P <0.001 0.61
ARNT 0.02 4.10 P<0.001 P <0.001 0.19
CCL21 0.02 3.63 P <0.001 0.003 -1.56
CUX1 0.02 3.06 0.002 0.015 -3.48
NCAM1 0.01 2.87 0.004 0.025 -4.04
RACGAP1 0.01 2.72 0.007 0.035 -4.46
RUNX1 -0.01 -2.59 0.010 0.045 -4.78

SUMO1 -0.01 -2.27 0.023 0.087 -5.56
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hsa-miR-933/RELB/CCL21 in more clinical samples is highly
necessary in the future. We will also explore the mechanisms
of the hsa-miR-933/RELB/CCL21 regulatory axis in the
development of HF and cognitive disorders by performing
animal and cellular experiments.

5. Conclusion

In summary, this study was the first to examine the crosstalk
between HF and cognitive impairment and the underlying
mechanisms applying bioinformatics analysis. Based on
PPI networks, the hsa-miR-933/RELB/CCL21 regulatory
axis was considered a potential culprit in the development
of both HF and cognitive disorders. The current findings
provide a theoretical and experimental basis, but the mech-
anisms of the hsa-miR-933/RELB/CCL21 regulatory axis in
the development of HF and neurological disorders should
be validated by cellular and animal experiments.
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