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Lonicerae japonicae flos (LJF) is widely used for the treatment of inflammation-related diseases in traditional Chinese
medicine (TCM). To clarify the anti-inflammatory mechanism of LJF, 29 compounds with high content in LJF were selected for
network pharmacology. Then, a comprehensive network pharmacology strategy was implemented, which involved compound-
inflammation-target construction, protein-protein interaction (PPI) network analysis, and enrichment analysis. Finally,
molecular docking and in vitro experiments were performed to verify the anti-inflammatory activity and targets of the key
compound. As a result, 279 inflammation-associated proteins were identified, which are mainly involved in the AGE/RAGE
signaling pathway in diabetic complications, the HIF-1 signaling pathway, the PI3K-AKT signaling pathway, and EGFR tyrosine
kinase inhibitor resistance. A total of 12 compounds were linked to more than 35 targets, including apigenin, kaempferol,
quercetin, luteolin, and ferulic acid. The results of molecular docking showed that AKT has the most binding activity, exhibiting
certain binding activity with 10 compounds, including vanillic acid, protocatechuic acid, secologanic acid, quercetin, and
luteolin; the results of qRT-PCR and WB confirmed that two key compounds, secologanic acid and luteolin, could significantly
decrease the secretion of TNF-α and the AKT expression of RAW264.7 murine macrophages stimulated by LPS
(lipopolysaccharide). These results demonstrate that the comprehensive strategy can serve as a universal method to illustrate the
anti-inflammatory mechanisms of traditional Chinese medicine by identifying the pathways or targets.

1. Introduction

Inflammation is the body’s protective response to injury or
infection, but insufficient or excessive inflammation
increases the incidence of many diseases [1]. In the process
of the inflammatory response, cytokines play an important
bidirectional regulatory role. In the early stage of inflamma-
tion, proinflammatory cytokines, such as TNF-α, IL-8, IL-
1β, and IFN-γ, are predominant, which can eliminate the
threat of infection or trauma through activating a variety
of immune cells and promoting the inflammatory response.
In the late stage of inflammation, anti-inflammatory cyto-
kines such as IL-10 and IL-13 are dominant, which can
weaken and control the inflammatory response [2]. How-

ever, in some special cases, the bidirectional regulation
pathway of cytokines is damaged, and proinflammatory
cytokines continue to play their roles, leading to a large
number of immune cells being activated in some parts of
the body and even forming inflammatory storms (also
known as cytokine storms) in severe cases [3]. Inflamma-
tory storms may be one of the leading causes of severe
complications and death in severely affected patients for
some acute respiratory infections, such as COVID-19,
SARS-COV (SARS), MERS-COV (Middle East respiratory
syndrome), and influenza [4–6].

Lonicerae japonicae flos (LJF), the dried flower buds of
Lonicerae japonicae Thunb, also called Japanese honeysuckle
or jīn yín huā, possesses the functions of clearing heat,
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removing toxins, and dispersing wind-heat, which has been
widely used in traditional Chinese medicine to treat various
diseases such as cough, fever, sore throat, and influenza
infection [7]. LJF has significant anti-inflammatory effects,
especially for the prevention and treatment of upper respira-
tory inflammation [8, 9]. LJF contains a variety of com-
pounds, such as phenolic acids, flavonoids, and iridoids
[10]. Most of the studies that have investigated the anti-
inflammatory substance material of LJF have mainly focused
on the single compound or crude extracts [11, 12]; however,
reports are scarce pertaining to the complex interactions
between the Chinese herb and cellular proteins or the influ-
ence of their interactions on the functions and behaviors of
the body [13, 14].

Network pharmacology is an emerging subject involving
the construction of multilayer networks of disease pheno-
types, genes, and drugs. Network pharmacology aids in the
prediction of new drug targets, deciphering the mode of
action, and exploring new drugs [15]. Considering the com-
plexity of the components and functions of TCM, network
pharmacology is considered to be an effective approach for
identifying key targets and signaling pathways. Ephedra
has been widely used to treat asthma in Asia; a strategy of
network pharmacology combined with molecular docking
and in vitro experiments was performed to predict the
anti-inflammatory targets of ephedra in treating asthma;
the results showed that SELE, IL-2, and CXCL10 are critical
targets for ephedra against inflammation due to asthma [16].
In addition, Cui et al. [17] predicted the therapeutic targets
of tanshinone I and cryptotanshinone against inflammation
and investigated the pharmacological molecular mechanism
in vitro using a network pharmacology-based strategy. In
this study, a comprehensive network pharmacology strategy
was carried out, which included the prediction of potential
targets, pathway enrichment analysis, and molecular dock-

ing. Finally, a murine macrophage cell inflammatory model
was built to confirm the predicted result. The entire design
of this study is shown in Figure 1.

2. Methods

2.1. Data Preparation and Construction. The anti-inflammatory
chemical components of LJF were gathered from NCBI and
PubMed, and a total of 29 components with high content in
which were screened for network pharmacology and molecu-
lar docking analysis [18–39]. All compound structures were
downloaded from the TCMSP (https://tcmspw.com/tcmsp
.php) and NCBI PubChem databases (https://pubchem.ncbi
.nlm.nih.gov/) and saved in mol2 format. ChemDraw software
(v16.0) was used to draw 3D diagrams of the components that
were not in the databases.

The online prediction platform SwissTargetPrediction
(https://www.swisstargetprediction.ch/) can be used to
identify potential targets of natural products and synthetic
compounds. The mol2 format files of 29 compounds were
imported into the SwissTargetPrediction and TCMSP data-
base, respectively. Then, the prediction targets of the com-
pounds were obtained by integrating the genes collected
from the two platforms. The targets were converted into
the UniProtKB format using Retrieve/ID mapping (http://
www.uniprot.org/uploadlists/) for subsequent enrichment
analysis. The GeneCards database (https://www.genecards
.org/) was used for collecting inflammation-related targets
by imputing in search item “inflammation.” The inflamma-
tion targets related to the 29 compounds of LJF were
obtained by integrating the compound targets with the
inflammation targets and taking the duplicate targets. The
compound-target network was constructed using Cytoscape
(v3.7.2) software.

Lonicerae japonicae flos

High content
compontents Potential targets Inflammation targets
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Swiss target
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Figure 1: The integrated process of the network pharmacology-based method to identify the anti-inflammatory mechanism of Lonicerae
japonicae flos.
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2.2. Protein-Protein Interaction (PPI) Network. PPI is the
process through which two or more proteins form a protein
complex through noncovalent bonds [16]. The STRING
(v11.0) database (https://string-db.org/) was used to build
compound-inflammation target PPI network. “Homo sapi-

ens” was chosen, and a scoring value of >0.9 was selected
as the high confidence basis for protein interactions [40].
After eliminating the duplicates, the resultant data were
imported into Cytoscape (v3.7.2) for establishing the
protein-protein interaction (PPI) network; then, Cytohubba,
a plugin of Cytoscape, was used to screen hub genes within
the network.

2.3. GO and KEGG Pathway Enrichment Analysis. GO is a
system widely used for the classification of gene functions
and describing the functions of gene products [41]. KEGG
pathway enrichment analysis links genomic information to
higher-order functional information, suggesting the target
that is mainly related to signal pathways. The Metascape
database (https://metascape.org/gp/index.html) was used
for performing GO and KEGG enrichment analysis. A P
value of <0.01 is considered statistically significant, and a
smaller P value indicates a more significant correlation.

2.4. Molecular Docking Analysis. Autodock 4.2.0 (http://
autodock.scripps.edu/) was used to perform a docking simu-
lation for verifying the credibility of predicted hub genes. All
compound structures were downloaded from the ZINC
database (http://zinc.docking.org/), and the 3D structures
of the targets were downloaded from the RCSB PDB data-
base (http://www.rcsb.org/). The simulation’s scoring can
be used for evaluating the degree of binding between the
compound and the target; the smaller the score, the stronger
the binding activity.

2.5. Cell Culture. The murine macrophage cell line
RAW264.7 was purchased from the Type Culture Collection
of the Chinese Academy of Sciences, Shanghai, China. The
cells were cultured in DMEM supplemented with 10% FBS
at 37°C in a 5% CO2 atmosphere.

2.6. Drugs and Reagents. Luteolin and secologanic acid were
purchased from Shanghai Yuanye Biotechnology Co., Ltd.
(Shanghai, China), dimethylsulfoxide (DMSO) and lipo-
polysaccharide (LPS) were purchased from Sigma (MO,
USA), Dulbecco’s modified Eagle’s medium (DMEM) and
trypsin were purchased from Gibco (USA), the BCA assay
kit was purchased from SparkJade (Shandong, China), and
antibodies were purchased from Wanleibio (China).
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Figure 2: The structure of the 29 active compounds in Lonicerae
japonicae flos.

38 279 9642

Component target Inflammation target

Figure 3: Venn diagram of 317 component targets and 9921
inflammation targets. The 279 inflammatory targets overlap in
the middle.
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2.7. MTT Assay. The RAW264.7 cells in the treated groups
were pretreated with secologanic acid (5, 10, 20, 40, and
80μM) or luteolin (5, 10, 20, 40, and 80μM) for 1 h,
followed by treatment with LPS (1μg/mL, Sigma) for 24h.
The cells in the control group or LPS group were incubated
with only medium or LPS (1μg/mL) for 24 h. After remov-
ing the culture solution, the cells were washed with PBS 3
times and incubated with 5mg/mL MTT (3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide) at 37°C for
4 h. Then, 150μL of DMSO was added to stop the reaction,
and the reaction liquid was detected at 570nm. Each exper-
iment was repeated 3 times.

2.8. Quantitative Real-Time PCR. The RAW264.7 cells in the
drug groups were pretreated with caffeic acid (5, 20, and
80μM) or luteolin (5, 20, and 80μM) for 1 h, followed by
treatment with LPS (1μg/mL) for 24 h. The cells in the con-
trol group or LPS group were incubated with only medium
or LPS (1μg/mL) for 24 h. The total RNA was collected using
TRIzol (Invitrogen, CA, USA) reagent; the mRNA was
reverse-transcribed to cDNA with a PrimeScript RT Reagent
Kit (Tiangen, China); cDNA was mixed with Universal SYBR
Green Fast qPCR Mix kits (ABclonal, China) and each
primer pair to produce a 20μL reaction mixture. The levels
of β-actin were considered to be an endogenous control,
and the expansion conditions were as follows: heating to
95°C for 3min, 45 cycles of 95°C for 5 s, and 60°C for 32 s,
and the 2−ΔΔCT method was used to calculate the relative fold
changes. The primers are listed as follows: TNF-α, forward:
5′-CTCTTCTGCCTGCTGCACTTTG-3′ and reverse: 5′-
ATGGGCTACAGGCTTGTCACTC-3′; β-actin, forward:
5′-CATTGCTGACAGGATGCAGAAGG-3′ and reverse:
5′-TGCTGGAAGGTGGACAGTGAGG-3′.

2.9. Western Blot. Western blotting was performed as
reported previously [42]. The RAW264.7 cells in the drug
groups were pretreated with secologanic acid or luteolin
(20μM) for 24h and then treated with LPS (1μg/mL) for

0.5 h. The cells in the control group or LPS group were
separately incubated with medium or LPS (1μg/mL) for
24 h. The cells were washed with ice-cold PBS and lysed in
ice-cold RIPA lysis buffer containing PMSF. Homogenates
were centrifuged at 12,000 rpm for 20min at 4°C, filtered
through a Millipore filter with a pore size of 0.45μm, and
stored at −80°C until use. Protein concentrations were quan-
tified by BCA assay. The proteins (20μg) were resolved by
10% sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE) and transferred onto polyvinylidene difluor-
ide (PVDF) membranes. The membranes were blocked for
2 h at room temperature with 5% nonfat milk/TBST, probed
with the appropriate primary antibodies (AKT, p-AKT, and
GAPDH) (1 : 1000 dilution), and incubated overnight at
4°C. Then, the membranes were incubated with an HRP-
conjugated secondary antibody (1 : 5000 dilution) for 1 h at
room temperature, and bands were detected by enhanced
chemiluminescence.

2.10. Statistical Analysis. Integrated band intensities in the
western blot analysis were determined using the ImageJ soft-
ware. All data are presented as X ± SD. Differences between
the groups were analyzed by one-way analysis of variance,
followed by the least significant difference test using IBM
SPSS Statistics (v.25.0) software. A P value of <0.05 was con-
sidered statistically significant.

3. Results and Discussion

3.1. Data Preparation and Construction. More than 217
compounds were isolated and identified from LJF. Among
them, 58 compounds have anti-inflammatory effects. A total
of 29 compounds (Figure 2) with high content, including
flavonoids (compounds 1-9), iridoids (compounds 10-18),
volatile oils (compounds 19-21), and organic acids (com-
pounds 22-29), were selected for network pharmacology
and molecular docking research. Collectively, 1298 target
proteins were retrieved from the SwissTargetPrediction

Figure 4: Component-target (C-T) interaction network of Lonicerae japonicae flos. The purple ellipses represent the component, the pink
nodes represent the target, and the edges represent the relationship between components and the targets. The size of the nodes in the figure
is associated with the degree in the network.
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Table 1: 29 components of Lonicerae japonicae flos corresponding to the inflammation targets.

No. Component Target Counts

8 Apigenin

NOX4, AKR1B1, XDH, MAOA, FLT3, CYP19A1, ESR1, ACHE, ADORA1, PTGS2, ESR2, CDK6,
ADORA2A, SYK, GSK3B, ABCC1, HSD17B1, TTR, CSNK2A1, CFTR, CYP1B1, ABCG2, AKR1B10,
TNKS2, TNKS, ALOX5, PARP1, CA2, ABCB1, ALOX12, CA4, PTPRS, GLO1, APP, MMP9, MMP2,
MMP12, CD38, TOP1, ARG1, ESRRA, PFKFB3, GRK6, ALOX15, TYR, HSD17B2, AHR, CA1, CA9,

CBR1, AR, TERT, PIM1, EGFR, CDK1, LCK, AURKB, TBXAS1, IGF1R, KDR, PLK1, MET, ALK, AXL,
BCHE, ADORA3, CDK2, HTR2C, GPR35, DAPK1, MPG, SLC22A12, F2, ST6GAL1, PLG, AVPR2,

DRD4, MPO, PIK3R1, SRC, PTK2, MMP13, MMP3, CA3, CA6, PKN1, NEK2, CXCR1, CAMK2B, AKT1

90

1
3-O-

Methylquercetin

NOX4, CYP1B1, APP, AKR1B1, XDH, MCL1, CA2, CA4, ABCG2, ABCC1, PLG, ABCB1, IGF1R, EGFR,
ADORA1, ACHE, ALOX15, ALOX12, AVPR2, MAOA, FLT3, CYP19A1, F2, PIM1, ALOX5, AURKB,
DRD4, GLO1, MPO, PIK3R1, ADORA2A, DAPK1, CA1, GSK3B, SRC, PTK2, HSD17B2, KDR, MMP13,

MMP3, CA3, PLK1, CA6, CDK1, MMP9, MMP2, PKN1, CA9, CSNK2A1, MET, NEK2, CXCR1,
CAMK2B, ALK, AKT1, PLA2G1B, BACE1, AXL, AKR1C2, AKR1C1, AKR1C3, AKR1C4, AKR1A1,
GPR35, CDK6, CDK2, ARG1, SYK, MAPT, TOP2A, INSR, MYLK, PIK3CG, APEX1, TYR, HSD17B1,

AHR, ESRRA, TERT, PTPRS, ESR2, MPG, SLC22A12, ADORA3, PARP1, TTR, MMP12, CD38,
AKR1B10

89

4 Kaempferol

NOX4, AKR1B1, XDH, TYR, FLT3, CA2, ALOX5, HSD17B2, ABCC1, HSD17B1, AHR, ESRRA, ABCB1,
CYP1B1, ABCG2, ADORA1, CA4, ACHE, MAOA, GLO1, SYK, GSK3B, MMP9, MMP2, ALOX15,
ALOX12, PTPRS, ADORA2A, ARG1, GPR35, ESR2, DAPK1, MPG, SLC22A12, CDK6, CDK2, TTR,
AKR1B10, TNKS2, TNKS, CYP19A1, CSNK2A1, EGFR, AVPR2, IGF1R, F2, PIM1, AURKB, DRD4,
MPO, PIK3R1, CA1, SRC, PTK2, KDR, MMP13, MMP3, CA3, PLK1, CA6, CDK1, PKN1, CA9, MET,

NEK2, CXCR1, CAMK2B, ALK, AKT1, PLA2G1B, BACE1, AXL, AKR1C2, AKR1C1, AKR1C3,
AKR1C4, AKR1A1, APP, PARP1, MMP12, CD38, TOP1, ESR1, PTGS2, CFTR, PFKFB3, GRK6, TERT,

BCHE

89

7 Quercetin

NOX4, AVPR2, AKR1B1, XDH, MAOA, IGF1R, FLT3, CYP19A1, EGFR, F2, CA2, PIM1, ALOX5,
AURKB, DRD4, ADORA1, GLO1, MPO, PIK3R1, ADORA2A, DAPK1, CA1, GSK3B, SRC, PTK2,

HSD17B2, KDR, MMP13, MMP3, CA3, ALOX15, ABCC1, PLK1, CA6, CDK1, MMP9, MMP2, PKN1,
CA9, CSNK2A1, ALOX12, MET, CA4, NEK2, CXCR1, CAMK2B, ALK, AKT1, ABCB1, PLA2G1B,

BACE1, CYP1B1, AXL, ABCG2, AKR1C2, AKR1C1, AKR1C3, AKR1C4, AKR1A1, GPR35, SYK, MAPT,
TOP2A, INSR, ACHE, MYLK, PIK3CG, APEX1, ARG1, PTPRS, ESR2, MPG, SLC22A12, CDK6, CDK2,
TYR, HSD17B1, AHR, ESRRA, APP, PARP1, TTR, MMP12, CD38, AKR1B10, TNKS2, TNKS, TOP1,

TERT

89

5 Luteolin

NOX4, AKR1B1, XDH, MAOA, FLT3, CA2, ALOX5, ADORA1, GLO1, APP, SYK, GSK3B, PARP1, TTR,
MMP9, MMP2, CA4, MMP12, CD38, CYP1B1, ABCG2, AKR1B10, TNKS2, TNKS, TOP1, ARG1,
PTPRS, ABCC1, HSD17B1, ACHE, CDK6, ABCB1, HSD17B2, ALOX15, ALOX12, ESR2, CYP19A1,
ADORA2A, CSNK2A1, ESR1, PTGS2, CFTR, GRK6, CDK2, TERT, CA1, CA9, CDK1, TYR, AHR,

ESRRA, GPR35, DAPK1, AVPR2, IGF1R, EGFR, F2, PIM1, AURKB, DRD4, MPO, PIK3R1, SRC, PTK2,
KDR, MMP13, MMP3, CA3, PLK1, CA6, PKN1, MET, NEK2, CXCR1, CAMK2B, ALK, AKT1,
PLA2G1B, BACE1, AXL, AKR1C2, AKR1C1, AKR1C3, AKR1C4, AKR1A1, PFKFB3, PLG, AR

88

24 Ferulic acid

CA2, CA1, CA6, CA9, MAOB, ALOX5, MMP9, MMP1, MMP2, PTPN1, CA3, AKR1B1, APP, NFE2L2,
STAT3, HSD11B1, ESR2, CA4, TLR4, MET, CYP1A1, CYP1A2, CYP1B1, PTGS1, EGFR, TTR, PTGS2,
TUBB1, RELA, ADORA1, ADORA2A, ADORA2B, TLR9, AKR1B10, ALOX15, PRKCE, F3, NOS2, FYN,

LCK, SLC16A1, ABCB1, TOP2A, FBP1, BACE1, GLO1, CPA1, KDM4C, AHR, AMPD3, PARP1

51

19 Alpha-terpineol

AR, CYP19A1, CA2, CA1, CA4, CHRM2, SLC6A4, TRPM8, NR1H3, PTPN1, NR1I3, SREBF2, NPC1L1,
BCHE, ACHE, SQLE, ESR1, SLC6A2, DRD2, ESR2, CYP17A1, CYP2C19, NR3C2, PTPRF, PTPN2,
PLA2G1B, ACP1, AKR1B10, SIGMAR1, TRPV3, NR3C1, ATP12A, PTPN6, SHBG, FABP4, PPARA,
FABP3, FABP5, PPARD, FABP1, RORA, HMOX1, HMGCR, PGR, CD81, G6PD, SCD, ADRA2C,

HSD11B1, SLC6A3

50

22 Caffeic acid

CA2, ALOX5, CA1, CA6, MMP9, MMP1, MMP2, PTPN1, CA9, CA3, AKR1B1, ESR2, CA4, AKR1B10,
HCAR2, MIF, TLR4, ERBB2, ESR1, SLC6A2, TTR, MAPK1, AKR1C3, AKR1C4, AKR1C2, SYK, APP,
EGFR, FYN, LCK, PTGS1, PIK3CB, CYP1A2, CYP2C9, CYP3A4, CYP2C19, PIK3CA, ELANE, F3,

HSD11B1, MAOB, NFE2L2, STAT3

43

11 Adinoside G

ADORA2A, ADORA1, ADORA3, SLC29A1, MMP3, MMP9, ADAM17, ADORA2B, ADK, ST6GAL1,
SLC5A2, MAPK14, SLC5A1, TOP1, IMPDH1, LGALS3, LGALS7, PARP1, TNKS2, TNKS, HSPA5,
MMP1, LGALS9, MMP2, CA2, CA1, CA9, OGA, NRAS, PTGS2, MMP13, MMP7, MMP12, MMP8,

GPR55, GBA, HK2, HK1

38

29
Isochlorogenic

acid C

AKR1B1, APP, AKR1B10, MMP12, MMP2, MMP13, PRKCD, CA4, PRKCA, CA6, CA2, CA1, ABCB1,
SLC37A4, CA9, FYN, TTR, MMP1, PDE5A, ELANE, SELE, SELP, PDE4D, PDE9A, PDE1B, HCAR2,

PTGDR2, CASP3, MGLL, PIM1, FOLH1, CASP6, CASP7, CASP8, CASP1, EDNRA
36
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database. After overlapping, 317 protein targets were con-
verted to 317 UniProtKB identifiers by employing ID
mapping (http://www.uniprot.org/uploadlists/) for the fol-
lowing enrichment analysis. A total of 279 repeated targets
(Figure 3) were selected as LJF inflammation-related tar-
gets by comparing the 317 target proteins with the 9921
inflammation-related targets obtained from the GeneCards

database. The compound-target (C-T) network was built
in Cytoscape (3.7.2) software by converting the 29 com-
pounds (purple ellipses) and the 279 targets (pink circles)
to nodes, totaling 308 nodes and 1119 edges (Figure 4). The
different sizes of the target nodes indicated the degree of
compounds with the common target protein. The larger the
degree, the more the number of corresponding targets or

Table 1: Continued.

No. Component Target Counts

13 Loganin

TYR, ADORA1, CA2, CA1, CA9, HSP90AA1, ADORA3, ADORA2A, EPHX2, CA4, SLC5A2, ADA,
HRAS, LGALS3, LGALS9, CA6, ADK, FUCA1, AKR1B1, TYMP, AKR1C3, SLC29A1, SLC5A1, IGFBP3,
ADORA2B, ATIC, ALOX12, PNP, PABPC1, SLC5A4, MMP13, AMPD3, MMP1, MMP7, MMP12,

MMP8

36

28
Isochlorogenic

acid A

AKR1B1, MMP2, MMP12, APP, MMP13, AKR1B10, ELANE, SLC37A4, CA4, PRKCD, CA2, CA1, CA9,
ABCB1, PDE9A, PDE1B, POLB, PDE5A, CASP3, ABL1, EPHA2, SRC, KDR, MAP3K9, FGFR1, AURKA,

BTK, PRKCA, BACE1, MME, ECE1, HCAR2, PTGDR2, EDNRA, PIM1
35

14 7-epi-Vogeloside
LGALS3, LGALS9, ADORA1, ADORA2A, ADK, OGA, ADORA3, CA1, CA9, CA2, SLC5A2, HK2, HK1,

EGFR, SLC29A1, SLC5A4, SLC5A1, AKR1B1, GBA, ADORA2B, PTGS2, GAPDH, GAA, PYGM,
EDNRA, TYR, ADA, PNP, LGALS7, MAPK10, HSPA5, HSPA8, PTPN11, SLC28A2

34

21 Linalool
CA2, CA1, CA4, TRPV3, TRPM8, NR3C2, NR3C1, PGR, SLC6A3, SIGMAR1, HSD17B2, SQLE,

HMOX1, IDO1, DRD2, ADRA2C, PTGS2, OPRM1, OPRD1, OPRK1, SCN5A, SCN9A, PTAFR, PARP1,
ADRA1A, JAK1, JAK2, AR, MAPK8, LRRK2, TYMS, HRH3, HRH4, LTA4H

34

18 Vogeloside
LGALS3, LGALS9, ADORA1, ADORA2A, ADK, OGA, ADORA3, CA1, CA9, CA2, SLC5A2, HK2, HK1,

EGFR, SLC29A1, SLC5A4, SLC5A1, AKR1B1, GBA, ADORA2B, PTGS2, GAPDH, GAA, PYGM,
EDNRA, TYR, ADA, PNP, LGALS7, MAPK10, HSPA5, HSPA8, PTPN11, SLC28A2

34

15 Secologanic acid
ADORA1, ADORA2A, FUCA1, TYR, ADK, CA2, CA1, CA9, CA6, CA4, CA3, AKR1C3, LGALS3,
LGALS9, ADORA3, FOLH1, AKR1B1, PNP, HK2, HK1, ADA, HRAS, SLC5A2, HSP90AA1, ATIC,

ALOX12, TYMP, SLC5A1, SLC5A4
29

17 Sweroside
ADORA1, ADORA2A, FUCA1, TYR, ADK, CA2, CA1, CA9, CA6, CA4, CA3, AKR1C3, LGALS3,
LGALS9, ADORA3, FOLH1, AKR1B1, PNP, HK2, HK1, ADA, HRAS, SLC5A2, HSP90AA1, ATIC,

ALOX12, TYMP, SLC5A1, SLC5A4
29

10 Adinoside F
IMPDH1, MMP3, MMP9, MMP1, ADAM17, ADORA1, ADORA2A, ADORA3, ADORA2B, MMP13,
MMP7, MMP12, MMP8, SLC5A2, SLC29A1, ST6GAL1, MMP2, SLC5A1, IL2, ADA, CA2, CA1, CA9,

TOP1, HSPA8, DNMT1, ADK, HRAS
28

6
Luteolin-7-o-
glucoside

TNF, IL2, AKR1B1, ADORA1, XDH, CA2, NOX4, ADRA2C, ALDH2, NMUR2, ADRA2A, ACHE,
RPS6KA3, CA4, CD38, PRKCA, MMP1, MMP7, MMP8, CA1, CA9, ALOX5, PTGS2, SLC29A1,

HSP90AA1, PLG
26

27
Neochlorogenic

acid
AKR1B1, AKR1B10, MMP13, MMP2, APP, MMP12, ELANE, SLC37A4, PRKCD, PRKCA, BACE1,

PDE4D, PDE9A, PDE1B, CA6, ABCB1, CA2, CA1, CA9, NEU2, CASP3, CASP6, CASP7, CASP8, CASP1
25

26 Vanillic acid
CA2, CA1, CA9, CA3, CA6, CA4, TPMT, TTR, FUT7, KDM6B, FTO, KDM4C, FYN, LCK, FBP1,

AKR1C3, MMP9, MMP1, MMP2, MMP8, SQLE, POLA1, POLB, SERPINE1, TUBB1
25

23 Chlorogenic acid
AKR1B1, AKR1B10, MMP12, MMP13, MMP2, APP, ELANE, SLC37A4, PRKCD, PRKCA, CA2, CA1,

CA9, BACE1, PDE4D, PDE9A, PDE1B, CA6, ABCB1, NEU2
20

25
Protocatechuic

acid
CA2, CA1, CA6, CA9, CA4, CA3, FUT7, SQLE, LDHA, LDHB, TTR, ESR2, COMT, BCL2L1, IGF1R,

ALK, SERPINE1, AKR1C3, GPR35, ALB
20

3 Hyperoside
NOX4, ADRA2C, AKR1B1, CA2, CA4, ACHE, RPS6KA3, NMUR2, ADRA2A, PTGS2, CD38, PDE5A,

TNF, IL2, ADORA1, XDH, ALOX5, SLC29A1, TERT
19

9 Lonicerin
IL2, XDH, TNF, ADORA1, AKR1B1, NMUR2, ADRA2A, ADRA2C, ACHE, NOX4, CA2, RPS6KA3,

PTGS2, CD38, PRKCA, CA4, ALDH2, PDE5A, CA1
19

2 Rutin
NMUR2, ADRA2A, ADRA2C, ACHE, AKR1B1, CA4, NOX4, CA2, RPS6KA3, XDH, CD38, PTGS2,

PDE5A, TNF, IL2, ADORA1, ALOX5, TERT
18

20 Geraniol
SQLE, PTGS1, PTGS2, PGR, HMGCR, KCNH2, UGT2B7, EPHX2, JAK1, JAK2, CYP11B1, CYP11B2,

PIM1, PIM3
14

12 Loganic acid NEU2, ADORA1, SELP, SELL, CA2, CA1, CA9 7

16 Secoxyloganin SELP, ADORA1, LGALS3, NOD2 4
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the more corresponding components of this target. Com-
pounds 8 (apigenin), 1 (3-O-methylquercetin), 4 (kaemp-
ferol), 7 (quercetin), 5 (luteolin), 24 (ferulic acid), 19 (alpha-
terpineol), 22 (caffeic acid), 11 (adinoside G), 29 (isochloro-
genic acid C), 13 (loganin), and 28 (isochlorogenic acid A)
were linked to more than 35 targets and can be considered
the main active compounds of LJF (Table 1). Critically, the
degree values of 25 compounds were higher than 19, and most
of them had anti-inflammatory effects. The degree values of 22
targets, including CA2, CA1, CA9, CA4, and AKR1B1, were
higher than 10, indicating that these targets perhaps play a
key role in the anti-inflammatory effect for LJF (Table 2).
The results of this study show that multiple targets can con-
nect with the same compound, and a single target can interact
with multiple compounds, indicating that LJF plays a thera-
peutic role through the synergy of multiple compounds and
targets.

3.2. Protein-Protein Interaction (PPI) Network. The
compound-inflammation target PPI network was constructed
by inputting all the 279 LJF inflammation-related targets into
the database of STRING and then inputting the PPI network
into Cytoscape 3.7.2 software to be visualized. As shown in
Figure 5, the PPI network contained 224 functional nodes
and edges. The bigger the nodes, the higher the degree of inter-
activity, indicating a stronger interaction among the proteins.
Then, Cytohubba (a plugin of Cytoscape) was used for screen-
ing hub genes in the PPI network. As shown in Table 3, the
degree values of 20 targets were higher than 23, which indi-
cates that they had more interaction with other targets and
might play key roles in treating inflammation. The top 10

Table 2: Top 20 targets of degree value in component-target
interaction network.

Target Degree Target Degree

CA2 27 MMP12 12

CA1 25 MMP13 12

CA9 22 CA3 11

CA4 20 APP 11

AKR1B1 20 TTR 10

ADORA1 19 TYR 10

CA6 15 AKR1C3 10

MMP2 14 MMP9 10

PTGS2 13 ALOX5 10

ADORA2A 13 ACHE 10

AKR1B10 12 ABCB1 10

Figure 5: Protein-protein interaction (PPI) network analysis of 224
potential targets. The nodes indicate proteins, and edges represent
protein-protein associations. The closer and the larger the nodes
are, the higher the degree of freedom they have.

Table 3: Top 20 targets of the protein-protein interaction network.

No. Targets Degree
Betweenness
centrality

Closeness
centrality

1 PIK3CA 45 0.056863 0.420118

2 MAPK1 44 0.146963 0.441909

3 PIK3R1 43 0.045671 0.418468

4 SRC 41 0.048756 0.416016

5 APP 38 0.124074 0.394444

6 HRAS 35 0.020650 0.375661

7 STAT3 34 0.097739 0.408829

8 HSP90AA1 31 0.087902 0.407266

9 NRAS 30 0.017837 0.365352

10 FYN 29 0.009133 0.381720

11 AKT1 27 0.048552 0.397388

12 EGFR 27 0.044610 0.404175

13 JAK2 27 0.011099 0.370435

14 MAPK8 27 0.031883 0.401887

15 LCK 26 0.005706 0.376991

16 PRKCD 26 0.040957 0.387273

17 PTPN11 24 0.005269 0.371080

18 NMUR2 24 0.017057 0.345779

19 JAK1 23 0.004552 0.372378

20 RELA 23 0.036432 0.401130

HSP90AA1

FYN MAPK1 APP NRAS

STAT3
PIK3CA PIK3R1

HRAS

SRC

Figure 6: Top 10 genes’ interaction network of Lonicerae japonicae
flos. The nodes indicate proteins, and edges represent protein-
protein associations. The depth of the color shade indicates the
high degree of the node.
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targets, including PIK3CA (phosphatidylinositol-4,5-bispho-
sphate 3-kinase catalytic subunit alpha), MAPK1 (mitogen-
activated protein kinase 1), PIK3R1 (phosphoinositide-3-
kinase regulatory subunit 1), SRC (SRC proto-oncogene),
APP (amyloid beta precursor protein), HRAS (HRas proto-
oncogene), STAT3 (signal transducer and activator of tran-
scription 3), HSP90AA1 (heat shock protein 90 alpha family
class A member 1), NRAS (NRAS proto-oncogene), and
FYN (FYN proto-oncogene), were selected according to their

degree values (Figure 6). Among them, target PIK3CA inter-
acted the most with other proteins.

3.3. GO (Gene Ontology) Analysis. GO is a widely used sys-
tem for the classification of gene functions and describing
the functions of gene products [41]. GO analysis of the
anti-inflammatory targets of LJF was executed for three fac-
tors: biological process (BP), molecular function (MF), and
cell composition (CC). The P values of 1844 biological

36 
34 34 34 33 

33 
31 31 31 

29 

20 20 19 

9 
7 

13 
12 

11 

7 7 

29 
28 27 

16 

23 

19 

17 16 16 15 

0

5

10

15

20

25

30

35

40
G

O
:0

00
96

36
:re

sp
on

se
 to

 to
xi

c s
ub

sta
nc

e

G
O

:0
01

00
35

:re
sp

on
se

 to
 in

or
ga

ni
c s

ub
sta

nc
e

G
O

:1
90

16
99

:ce
llu

la
r r

es
po

ns
e t

o 
ni

tr
og

en
 co

m
po

un
d

G
O

:0
04

34
10

:p
os

iti
ve

 re
gu

la
tio

n 
of

 M
A

PK
 ca

sc
ad

e

G
O

:0
04

34
08

:re
gu

la
tio

n 
of

 M
A

PK
 ca

sc
ad

e

G
O

:0
05

13
47

:p
os

iti
ve

 re
gu

la
tio

n 
of

 tr
an

sfe
ra

se
 ac

tiv
ity

G
O

:0
03

36
74

:p
os

iti
ve

 re
gu

la
tio

n 
of

 k
in

as
e a

ct
iv

ity

G
O

:0
07

14
17

:ce
llu

la
r r

es
po

ns
e t

o 
or

ga
no

ni
tr

og
en

 co
m

po
un

d

G
O

:0
04

66
77

:re
sp

on
se

 to
 an

tib
io

tic

G
O

:0
00

69
79

:re
sp

on
se

 to
 o

xi
da

tiv
e s

tr
es

s

G
O

:0
04

51
21

:m
em

br
an

e r
aft

G
O

:0
09

88
57

:m
em

br
an

e m
ic

ro
do

m
ai

n

G
O

:0
09

85
89

:m
em

br
an

e r
eg

io
n

G
O

:0
00

59
01

:ca
ve

ol
a

G
O

:0
04

48
53

:p
la

sm
a m

em
br

an
e r

aft

G
O

:0
03

19
83

:v
es

ic
le

 lu
m

en

G
O

:0
06

02
05

:cy
to

pl
as

m
ic

 v
es

ic
le

 lu
m

en

G
O

:0
03

47
74

:se
cr

et
or

y 
gr

an
ul

e l
um

en

G
O

:0
00

03
23

:ly
tic

 v
ac

uo
le

G
O

:0
00

57
64

:ly
so

so
m

e

G
O

:0
01

67
73

:p
ho

sp
ho

tr
an

sfe
ra

se
 ac

tiv
ity

, a
lc

oh
ol

 g
ro

up
 as

 ac
ce

pt
or

G
O

:0
00

46
72

:p
ro

te
in

 k
in

as
e a

ct
iv

ity

G
O

:0
01

63
01

:k
in

as
e a

ct
iv

ity

G
O

:0
00

46
74

:p
ro

te
in

 se
rin

e/
th

re
on

in
e k

in
as

e a
ct

iv
ity

G
O

:0
01

64
91

:o
xi

do
re

du
ct

as
e a

ct
iv

ity

G
O

:0
01

67
05

:o
xi

do
re

du
ct

as
e a

ct
iv

ity
, a

ct
in

g 
on

 p
ai

re
d 

do
no

rs

G
O

:0
04

80
37

:co
fa

ct
or

 b
in

di
ng

G
O

:0
02

00
37

:h
em

e b
in

di
ng

G
O

:0
00

44
97

:m
on

oo
xy

ge
na

se
 ac

tiv
ity

G
O

:0
04

69
06

:te
tr

ap
yr

ro
le

 b
in

di
ng

Biological process Cellular component Molecular function

P value (-log)

Figure 7: Gene ontology enrichment with top 10 P value for each item. The blue columns, the orange columns, and the gray columns are
biological process, cellular component, and molecular function, respectively. The y-axis stands for the P values of fold change.
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processes, 41 cell components, and 236 molecular functions
were less than 0.01. As shown in Figure 7, the top 10 enrich-
ment results of BP were as follows: response to toxic
substance, response to inorganic substance, cellular response
to nitrogen compound, positive regulation of MAPK
cascade, regulation of MAPK cascade, positive regulation
of transferase activity, positive regulation of kinase activity,
cellular response to organonitrogen compound, response to

antibiotic, and response to oxidative stress. The top 10
enrichment results of MF were phosphotransferase activity
(alcohol group as acceptor), protein kinase activity, kinase
activity, protein serine/threonine kinase activity, oxidore-
ductase activity, oxidoreductase activity acting on paired
donors with the incorporation or reduction of molecular
oxygen, cofactor binding, heme binding, monooxygenase
activity, and tetrapyrrole binding.

Table 4: Top 10 pathways ranked according to P value.

Pathway P value Count

hsa04933: AGE-RAGE signaling pathway in diabetic complications 7:94E − 24 23

hsa04066: HIF-1 signaling pathway 3:56E − 22 22

hsa01521: EGFR tyrosine kinase inhibitor resistance 1:09E − 21 20

hsa05205: proteoglycans in cancer 5:5E − 21 27

hsa04931: insulin resistance 3:31E − 20 21

hsa04917: prolactin signaling pathway 8:97E − 20 18

hsa04151: PI3K-Akt signaling pathway 5:81E − 19 31

hsa01522: endocrine resistance 1:8E − 18 19

hsa05161: hepatitis B 2:05E − 17 21

hsa05230: central carbon metabolism in cancer 2:22E − 17 16

hsa04151:P13K-Akt signaling pathway

hsa04066:HIF-1 signaling pathway

hsa04917:prolactin signaling pathway

hsa05230:central carbon metabolism in cancer

hsa05161:hepatitis B

hsa04931:insulin resistance

hsa01521:EGFR tryosine kinase inhibitor resistance

hsa01522: endocrine resistance

hsa05205:proteoglycans in cancer

hsa04933:AGE-RAGE signaling pathway in diabetic complications

6 7 8 9 10 11
Enrichment

Pathway analysis
–log 10 (p value)

23

22

21

20

19

18

17

16

20

24

28

Count

Figure 8: KEGG pathway enrichment with the top 10 P value. The y-axis stands for enriched pathways of the targets. The color of the
bubble is associated with the P value, and the size is related to the enrichment number of targets.
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3.4. KEGG Pathway Enrichment Analysis. The inflammatory
process can trigger different diseases depending on the spe-
cific inflamed tissue or organ involved. However, all disor-
ders have common features or a conjoint cellular process,
such as the activation of a stress signaling pathway and the
concomitant production of inflammatory cytokines [43]. A
total of 279 LJF inflammation-related targets were input to
the Metascape database, and 173 pathways that had statisti-
cal significance were input for pathway enrichment analysis.
The 10 pathways with the lowest P values are documented in
Table 4 and include the following: the AGE-RAGE signaling

pathway in diabetic complications, the HIF-1 signaling path-
way, the EGFR tyrosine kinase inhibitor resistance, the pro-
teoglycans in cancer, the insulin resistance, the prolactin
signaling pathway, the PI3K-AKT signaling pathway, the
endocrine resistance, the hepatitis B, and central carbon
metabolism in cancer.

The top three pathways containing the most LJF
inflammation-related targets were as follows: the PI3K-
AKT signaling pathway, the AGE-RAGE signaling pathway
in diabetic complications, and the HIF-1 signaling pathway
(Figure 8), which indicates that the three pathways play a

AGEs EGF

EGFR
EGFR

signaling pathway
MAPK

signaling pathway

AGE-RAGE
signaling pathway

JAK-STAT
signaling pathway

P13K-AKT
signaling pathway

mTOR
signaling pathway

HIF-1
signaling pathway

NF-kB
signaling pathway

RAGE

IL-2, IL-6, TNF-𝛼,...

Inflammation

HIF 1-𝛼 mRNA

Figure 9: Pharmacological mechanism cascade pathway of Lonicerae japonicae flos impact on inflammation.

Figure 10: Component-target-pathway (C-T-P) interaction network. The purple, pink, and blue nodes are the pathway, the component, and
the target, respectively. The edges represent the relationship between pathway, component, and target. The size of the nodes in the figure is
associated with the degree in the network.
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crucial role in the anti-inflammation properties of LJF. The
cascade pathway of pharmacological mechanism of LJF act-
ing on inflammation is illustrated in Figure 9.

AKT is a key downstream signaling protein of PI3K.
After PI3K is activated, it binds to AKT in the plasma mem-
brane. Then, the activated AKT can promote the expression
and secretion of proinflammatory cytokines by activating
the NF-κB pathway, resulting in an imbalance of cytokine
secretion and a series of inflammatory reactions [44–46].
Several studies have shown that the inhibition of the PI3K
signal can inhibit the secretion of proinflammatory factors
in macrophages and dendritic cells and increase the secre-
tion of anti-inflammatory factor IL-10 when a Toll-like
receptor- (TLR-) mediated inflammatory response occurs
[47–52]. The important role of PI3K/AKT/NF-κB signaling
pathways in the anti-inflammatory effects of LJF was con-
firmed in a previous report [53].

In the AGE-RAGE signaling pathway in diabetic compli-
cations, highly abundant AGEs in the diabetic milieu of the
kidneys upregulate RAGE expression, and ligand-evoked
RAGE stimulation leads to the activation of intracellular
signaling pathways, including JAK/STAT, MAPK/ERK,
PI3K/AKT/mTOR, and NF-κB, of which the common end
is the activation of nuclear transcription factors involved in
the inflammatory and fibrotic processes [54].

Crosstalk between HIF-1α and NF-κB regulates essen-
tial inflammatory functions in myeloid cells. HIF-1α
increases macrophage aggregation, invasion, and motility

and drives the expression of proinflammatory cytokines,
such as TNR-α and IL-6 [55].

The 17 pathways with P values of less than 3 × 10−15
were selected, and the compound-target-pathway (C-T-P)
network was constructed using Cytoscape software
(Figure 10). In a network, nodes with high degree values indi-
cate high interconnectedness [56]. The targets AKT1,
PIK3CA, PIK3CB, and PIK3R1 were related to all 17 path-
ways; thus, they were recognized as key targets. Target
MAPK connected to 16 pathways simultaneously and had
more interactions with other targets in the PPI network.
The top five components with higher degree values, includ-
ing compounds 8 (apigenin), 7 (quercetin), 4 (kaempferol),
1 (3-O-methylquercetin), and 5 (luteolin), were recognized
as the key components, with degree values of 90, 89, 89, 89,
and 88, respectively, indicating that these components are
correlated with at least 88 of the 90 targets within the 17
pathways. In addition, another seven components, including
compounds 24 (ferulic acid), 19 (α-terpineol), 22 (caffeic
acid), 11 (adinoside G), 18 (vogeloside), 14 (7-epi-vogelo-
side), and 13 (loganin), had degree values higher than 30,
which suggests that they also play important roles in the
anti-inflammation effects of LJF.

3.5. Molecular Docking Analysis. The dock results of 29 com-
ponents and hub genes (AKT, PIK3R1, PIK3CA, and
MAPK1) are shown in Figure 11, and the docking ligand-
protein binding energy is summarized in Table 5. It is
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Figure 11: Heat maps show docking scores of hub genes combining to 29 components of Lonicerae japonicae flos. Color represents binding
energy score.
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generally considered that the value of the Autodock Vina
score indicates the binding activity between a compound
and a protein [16]. Molecular docking was used for the
verification of the interactions between ingredients and
target genes [57]. Among the four targets, AKT has the
most binding activity, which exhibited binding activity
with 10 compounds, and their Vina scores were all less
than -5. These 10 compounds are as follows: vanillic acid,
protocatechuic acid, caffeic acid, secologanic acid, quercetin,
apigenin, adinoside F, luteolin, ferulic acid, and alpha-
terpineol. In addition, there were four components, including
secologanic acid, adinoside F, apigenin, and kaempferol,
which exhibited binding activity (binding energy ≤ −5) with
the targets PIK3R1 and MAPK1. In addition, luteolin and
target MAPK1 also had binding activity. The top four
compound-target complexes were screened by sorting the
docking scores in descending order, as shown in Figure 12.
Compounds 26 (vanillic acid), 25 (protocatechuic acid),
and 22 (caffeic acid) exhibited binding activity with the target
AKT1, and compound 10 (adinoside F) showed binding

activity to the target MAPK1. Previous studies showed that
protocatechuic acid may inhibit the LPS-stimulated inflam-
matory mediator production in keratinocytes by reducing
the Toll-like receptor-4-dependent activation of AKT,
mTOR, and NF-κB pathways and the activation of JNK and
p38-MAPK [58]. Caffeic acid inhibited the inflammatory
response by downregulating the phosphorylation of several
important transcriptional factors, such as NF-κB and
STAT-3 [59]. In addition, vanillic acid inhibited the LPS-
induced production of tumor necrosis factor TNF-α and
interleukin IL-6 by suppressing the activation of NF-κB and
caspase-1 [60].

3.6. The Appropriate Concentrations of Luteolin and
Secologanic Acid. According to the results of the compound-
target-inflammation network (Figure 10) analysis, secologanic
acid and luteolin are the main active compounds of LJF. MTT
was performed to detect the viability of RAW264.7 cells, and
the suitable concentrations of luteolin and secologanic acid
in treating RAW264.7 cells were obtained. Figure 13 shows

Table 5: Binding energy (kcal/mol) of Lonicerae japonicae flos molecular docking.

No. Component
Target

AKT1 PIK3CA PIK3R1 MAPK1

C1 3-O-Methylquercetin -4.27 -4.73 -4.17 -4.39

C15 Secologanic acid -5.98 -4.69 -5.52 -5.24

C11 Adinoside F -5.4 -3.73 -5.9 -6.01

C2 Apigenin -5.48 -4.2 -5.88 -5.2

C6 Luteolin -5.37 -3.98 -4.79 -5.78

C4 Kaempferol -4.55 -4.23 -5.8 -5.16

C8 Quercetin -5.54 -4.69 -4.66 -4.26

C22 Caffeic acid -6.11 -3.91 -4.52 -4.25

C19 Alpha-terpineol -5 -4.69 -4.2 -4.85

C29 Vanillic acid -6.52 -4.04 -3.89 -4.07

C28 Protocatechuic acid -6.39 -3.91 -3.93 -4.15

C24 Ferulic acid -5.19 -3.39 -4.08 -4.8

C10 7-epi-Vogeloside -4.54 -3.21 -3.42 -3.84

C7 Luteolin-7-o-glucoside -3.86 -3.58 -3.74 -3.82

C21 Linalool -4.44 -3.43 -3.31 -3.64

C23 Chlorogenic acid -5.17 -2.82 -3 -3.68

C20 Geraniol -4.12 -3.12 -3.67 -3.71

C27 Neochlorogenic acid -4.94 -2.06 -2.78 -4.34

C13 Loganic acid -4.59 -2.6 -3.48 -3.15

C17 Sweroside -3.93 -2.72 -3.54 -3.41

C18 Vogeloside -4.5 -3.05 -2.82 -3.22

C16 Secoxyloganin -3.75 -1.42 -1.95 -3.7

C25 Isochlorogenic acid A -3.72 -1.92 -3.51 -1.28

C14 Loganin -4.12 -1.27 -1.97 -2.32

C5 Lonicerin -1.93 -0.45 -3.76 -2.42

C12 Adinoside G -3.69 -0.76 -1.39 -2.45

C26 Isochlorogenic acid C -2.91 -2.34 -1.13 -1.51

C3 Hyperoside -2.19 -0.75 -2.39 -2.24

C9 Rutin -1.24 -0.42 -1.82 -1.19
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that treatment with various concentrations of luteolin (5, 10,
20, 40, and 80μM) and secologanic acid (5, 10, 20, 40, and
80μM) for 24h had no cytotoxicity on the vitality of

RAW264.7 cells. Therefore, concentrations of 5, 20, and
80μM for luteolin and secologanic acid were selected as the
treating concentrations in this study.

(a) (b)

(c) (d)

Figure 12: Component-target docking combination: (a) caffeic acid-AKT1 (score -6.11); (b) protocatechuic acid-AKT1 (score -6.39); (c)
vanillic acid-AKT1 (score -6.52); (d) adinoside F-MAPK1 (score -6.01).
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Figure 13: Effect of different concentrations of luteolin and secologanic acid on RAW264.7 macrophage viability. (a) RAW264.7 cells
were incubated with luteolin (5, 10, 20, 40, and 80 μM) for 24 hours after being treated with 1 μg/mL LPS. (b) RAW264.7 cells were
incubated with secologanic acid (5, 10, 20, 40, and 80 μM) for 24 hours after being treated with 1 μg/mL LPS. Data are expressed as
the mean ± SD of three independent experiments. ##P < 0:01 compared with the control group; ∗P < 0:05 and ∗∗P < 0:01 compared
with the model group.
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3.7. Luteolin and Secologanic Acid Inhibit the Production of
TNF-α. Tumor necrosis factor-alpha (TNF-α) is one of the
major mediators of inflammation. Induced by a wide range
of pathogenic stimuli, TNF-α induces other inflammatory

mediators and proteases that orchestrate inflammatory
responses. The proinflammatory effects of TNF-α are pri-
marily due to its ability to activate NF-κB. Studies showed
that downregulating the expression of TNF-α could inhibit
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Figure 14: Effect of luteolin and secologanic acid on the mRNA levels of TNF-α. TNF-α levels of RAW264.7 were analyzed by qRT-PCR
after incubation with LPS by 24 h. LU: luteolin; SA: secologanic acid. ##P < 0:01 versus the control group. ∗∗P < 0:01 versus the LPS group. ∗
Above the horizontal line P < 0:05 versus other dose groups. The data were represented as themean ± SD of three independent experiments.
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Figure 15: Effect of luteolin and secologanic acid on the expression of AKT and p-AKT in LPS-induced RAW264.7. (a) AKT and p-
AKT levels of RAW264.7 were analyzed by western blotting after incubation with LPS for 0.5 h. (b) Relative AKT expression of control.
(c) Relative p-AKT expression of control. LU: luteolin; SA: secologanic acid; C: control. ##P < 0:01 versus untreated macrophage control.
∗∗P < 0:01 versus the LPS group.
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inflammatory reactions, improve cardiac function, and
inhibit oxidative stress [61]. To further confirm the anti-
inflammatory activity of secologanic acid and luteolin, the
levels of TNF-α in LPS-induced RAW264.7 cells were
detected. As shown in Figure 14, LPS significantly increased
the secretion of TNF-α compared to the control group.
Luteolin, at 5, 20, and 80μM, significantly inhibited the
generation of TNF-α in a dose-dependent manner. Similarly,
the expression of TNF-α in the 5, 20, and 80μM secologanic
acid-treated groups also significantly decreased compared to
the LPS groups, but not in a dose-dependent manner.

3.8. Luteolin and Secologanic Acid Downregulated the
Expression of AKT. AKT is a subset of the AGC protein
Ser/Thr kinase family and plays an important role in cell
growth, metabolic regulation, cancer, and other diseases
[62]. In the process of inducing inflammation, AKT can be
activated through phosphorylation; mediate the activation
of downstream NF-KB, mTOR, and other signaling path-
ways; promote the secretion of proinflammatory cytokine
TNF-a; and aggravate inflammation [44]. Studies found that
the flavonoid extracts of LJF can reduce the expression level
of p-AKT, participate in the PI3K/AKT signaling pathway,
and inhibit the secretion of proinflammatory factors [53].
The PPI network and KEGG results all show that LJF’s
anti-inflammatory functions are involved with AKT, which
was further confirmed by molecular docking technology.
To further verify the role of AKT, the protein levels of
AKT and p-AKT in RAW264.7 macrophagocytes treated
with secologanic acid (20μM) or luteolin (20μM), sepa-
rately, were determined in vitro. As shown in Figure 15,
luteolin and secologanic acid significantly inhibited the rela-
tive expression of AKT and p-AKT compared to the LPS
treatment (P < 0:01). Among them, secologanic acid showed
better inhibition effects on the expression and activation of
AKT than luteolin, which is consistent with the result of
AKT binding (the Vina score of secologanic acid and luteo-
lin with AKT was -5.98 and -5.37, respectively) in molecular
docking. This study reveals that network pharmacology and
molecular docking are powerful approaches for searching
active compounds and hub targets for TCM.

4. Conclusions

In this study, the key anti-inflammation compounds and
targets of LJF were screened using a network pharmacology
strategy and then verified by molecular docking and in vitro
experiments. The main results are as follows. First, 279
targets were selected as LJF inflammation-related targets by
comparing compound-related targets with inflammation-
related targets. Second, the network analysis of compounds
and targets shows that 12 compounds are linked to more
than 35 targets, including apigenin, 3-O-methylquercetin,
kaempferol, quercetin, luteolin, ferulic acid, alpha-terpineol,
caffeic acid, adinoside G, isochlorogenic acid C, loganin, and
isochlorogenic acid A. Third, hub genes, such as PIK3CA,
MAPK1, PIK3R1, AKT1, SRC, APP, HRAS, and STAT3,
were screened from the protein-protein interaction network.
Fourth, the bioactivity of 279 inflammation targets spreads

widely, involving response to toxic substance, response to
inorganic substance, cellular response to nitrogen com-
pound, positive regulation of MAPK cascade, positive regula-
tion of kinase activity, cellular response to organonitrogen
compound, response to antibiotic, and response to oxidative
stress. Through building and analyzing the C-T-P network,
the top four pathways, including the PI3K-AKT signaling
pathway, the AGE-RAGE signaling pathway in diabetic com-
plications, the EGFR tyrosine kinase inhibitor resistance, and
the HIF-1 signaling pathway, are assumed to play a crucial
role in the anti-inflammation effects of LJF. Fifth, the results
of molecular docking show that 10 compounds, including
vanillic acid, protocatechuic acid, caffeic acid, secologanic
acid, quercetin, apigenin, adinoside F, luteolin, ferulic acid,
and alpha-terpineol, exhibited binding activity with target
AKT1. Finally, the anti-inflammatory effects and anti-
inflammatory mechanisms of two key components, includ-
ing secologanic acid and luteolin, were tested in vitro for
further confirming the network pharmacological screening
results. The results of qRT-PCR show that both secologanic
acid and luteolin can inhibit TNF-α generation at the mRNA
level. The western blotting results show that the expression
levels of AKT and p-AKT were significantly decreased after
secologanic acid and luteolin treatment. Secologanic acid
showed better inhibition effects than luteolin on the activa-
tion of AKT, which is consistent with the results of AKT
binding in molecular docking. Notably, secologanic acid is
the most abundant iridoid glycoside in LJF [7]. In this study,
the anti-inflammatory activity and mechanism of secolo-
ganic acid were verified by molecular docking and in vitro
experiments for the first time.

In conclusion, the results of our study suggest that net-
work pharmacology is a powerful tool for discovering the
active compounds and mechanisms of action in TCM.
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