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Purpose. Radiotherapy resistance is now recognized as the major obstacle to the effective therapeutic management of non-small-
cell lung cancer (NSCLC). As a single biomarker has limited effect in stratifying NSCLC patients, this research aimed to identify
long non-coding RNAs (lncRNAs) correlated with radiotherapy response to ameliorate forecast of NSCLC prognosis.Methods. In
a cohort of NSCLC patients with radiotherapy history (n� 96) from TCGA, genetic data of lncRNA expression profiling were
performed. To identify radioresponse-related lncRNA sets which dysregulated significantly between radiosensitive (RS) and
radioresistant (RR) groups, differential expression analysis was carried out. Cox relative regression was implemented to set up a
radioresponse-related risk model. Moreover, we adopted survival analysis to measure the predictive potentiality of the prognosis
model. Results. Four radioresponse-related lncRNAs (CASC19, LINC01977, LINC02471, and MAGI2-AS3) were screened to
create a prognostic signature. +en, we described a lncRNA signature-based regulatory network and explored the correlation of
the immune microenvironment and the signature. Additionally, in vitro assays uncovered inhibition of LINC01977 weakened
radioresistance of NSCLC cells. Conclusion. We provided a novel radioresponse-related lncRNAs signature with excellent clinical
potency for an effective prognostic forecast of patients.

1. Introduction

Lung cancer is the most prevalent thoracic tumor with the
second incidence of malignancy in the world [1]. Non-small-
cell lung cancer (NSCLC) makes up nearly 85% of lung
cancers, whereas 50% to 75% of patients are already diag-
nosed at the late stages, losing the opportunity for early
surgical resection [2]. +erefore, radiotherapy (RT) has
increasingly become the main clinical treatment choice. In
fact, radiotherapy, as an active and effective therapeutic
modality, has played a central part in the whole process
management of lung cancer [3]. Nonetheless, the persistence
of local control of NSCLC by radiotherapy still has the
problems of inevitable recurrence and tolerance [4]. It has
been reported that the incidence of local failure of

radiotherapy in patients with lung cancer is 24%–40%. Even
with concurrent radical radiotherapy and chemotherapy,
there is a local failure rate of up to 30%–50% [5]. In con-
clusion, radiation resistance will still limit the long-term
control of lung cancer and eventually lead to local control
failure and disease progression of lung cancer [6]. Conse-
quently, we need to further explore the molecular mecha-
nism and develop novel biomarkers, so as to improve the
response rate of radiotherapy and overcome resistance to
radiotherapy in NSCLC.

lncRNAs belong to the noncoding RNA family with a
length of over 200 nucleotides, which usually are not capable
of encoding proteins [7]. With the gradual in-depth study of
lncRNA, they have been shown to participate in a variety of
tumor initiation and development [8–10]. Currently, a total
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of 7,942 cancer-related lncRNAs were identified to be
biomarkers for specific particular tumor types by Iyer and
colleagues [11]. Accordingly, better comprehension of the
effects of lncRNAs in tumors can favor the development of
new diagnostic markers and the exploitation of prospective
therapeutic targets. Increasing evidence has explicitly
pointed out that radioresistance-related lncRNAs also play
crucial roles in the regulation of tumor radiation sensitivity.
For instance, lncRNA KCNQ1OT1 can interact with miR-
372-3p to enhance stereotactic body radioresistance by in-
ducing autophagy in lung adenocarcinoma [12]. HOX
transcript antisense RNA (HOTAIR), best known for reg-
ulating transcription, contributes to tumor radioresistance
via miR-93/ATG12 [13]. However, prognostic biomarkers
based on expression profiles of radioresistance-related
lncRNA have not been elaborated in NSCLC.

+is article aimed to set up a radioresistance-related
lncRNA prognostic model with an integrated bioinformatics
analysis, which predicts the prognosis of patients with
NSCLC undergoing RT. First, the lncRNAs which correlated
with RT response were collected from 96 TCGA-NSCLC
cases with lncRNA expression profiles. +en, we built up a
radioresistance-related signature consisting of four lncRNAs
and verified its accuracy and reliability in different cohorts.
In addition, the relationship between immunity and sig-
nature was compared by combining the ssGSEAmethod and
immunity-associated algorithm. Finally, we confirmed that
these four lncRNAs were markedly dysregulated in NSCLC
cell lines by a qRT-PCR assay. Moreover, we observed that
the downregulation of LINC01977 significantly blocked the
clonogenic survival of NSCLC cells after irradiation.

2. Methods

2.1.DataSourceandProcessing. +eTCGA-NSCLC lncRNA-
seq expression profiles and related clinical data were collected
from the TCGA project (https:/portal.gdc.cancer.gov/). A total
of 96 NSCLC patients who received RT were selected for this
study. Our inclusion criteria for patients were as follows: (1)
histologically diagnosed with NSCLC; (2) available expression
profiles; and (3) overall survival time greater than 30days. We
divided 96 cases into the radiosensitive (RS) group (n� 53) and
radioresistant (RR) group (n� 43) based on the radiotherapy
response. Patients who presented complete remission after RT
were recognized as radiosensitive whereas those showing stable
disease and progressive disease after RT were considered
radioresistant. All patients’ clinical characteristics are shown in
Table 1.

In order to obtain radioresponse-related lncRNAs
(RRlncRNAs) in NSCLC, we analyzed the differential ex-
pression of lncRNAs between the RS group and RR group by
limma in R software (|fold change (FC)|� 1.0 and p< 0.05)
[14].

2.2. Identification of RRlncRNAs Risk Score Model. To get an
optimal RRlncRNAs model, we randomly divided 96 pa-
tients into the training set and test set at 1 :1 ratio. In the
training set, candidate prognostic lncRNAs were firstly

obtained by the univariate hazard Cox method based on
RRlncRNAs. Next, least absolute shrinkage and selection
operator (LASSO) penalized analysis with multivariate re-
gression method were carried to set up a novel RRlncRNAs
signature through the package “glmnet.” We utilized the
following formula to generate the risk score of NSCLC
patients: risk score� (exp RRlncRNA 1× coef) + (exp
RRlncRNA 2× coef) + . . . + (exp RRlncRNA n× coef). +e
exp means the expression value of each RRlncRNA and the
coef is the coefficient of each RRlncRNA generated by Cox
relative analysis. According to themedian value of risk score,
all cases with RT history were split into high- and low-risk
score groups, and the differences in survival outcome were
compared using K-M analysis.

2.3. Establishment and Validation of Nomogram. +e data
about 96 patients with complete clinical information was
integrated with the risk signature, and the independent
prognostic analysis was conducted by the “survival” package
[15]. Furthermore, the RT response-based nomogram was
established according to risk scores and other clinicopatho-
logical factors to forecast the prognosis of patients. Subse-
quently, the accuracy of the prognostic nomogram was
verified according to the calibration curves which were
generated by comparing the nomogram prediction ability and
the observation for the 1-year, 3-year, and 5-year OS rates.

Table 1: Clinicopathologic characteristics of NSCLC patients with
radiotherapy.

Features Radioresistance group Radiosensitive group
Total 43 (100%) 53 (100%)
Age
＞65 19 (44.2%) 23 (43.4%)
≤65 24 (55.8%) 30 (53.6%)
Gender
Male 23 (53.5%) 31 (58.5%)
Female 20 (46.5%) 22 (41.5%)
Stage
Stage I 8 (18.6%) 15 (28.3%)
Stage II 9 (20.9%) 14 (26.4%)
Stage III 22 (51.2%) 22 (41.5%)
Stage IV 4 (9.3%) 2 (3.8%)
T stage
T1 8 (18.6%) 11 (20.7%)
T2 23 (53.5%) 31 (58.5%)
T3 10 (23.2%) 8 (15.1%)
T4 1 (2.33%) 3 (5.7%)
Unknown 1 (2.33%)
N stage
N0 15 (34.9%) 19 (35.8%)
N1 11 (25.6%) 12 (22.6%)
N2 15 (34.9%) 18 (34.0%)
N3 1 (2.3%) 2 (3.8%)
Unknown 1 (2.3%) 2 (3.8%)
M stage
M0 29 (67.4%) 43 (81.1%)
M1 4 (9.3%) 2 (3.8%)
Unknown 10 (23.3%) 8 (15.1%)
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2.4. Gene Set Enrichment Analysis (GSEA). We employed
GSEA to distinguish the important functional phenotypes
between the high-risk group and the low-risk group. After
1000 substitutions, an enriched gene set was obtained based
on a nominal p value <0.05. +e Hallmark (v7.4) gene sets
were downloaded from the Molecular Signatures Database
v7.4 download page (https://www.gsea-msigdb.org/gsea/
downloads.jsp). GSEA was conducted based on the down-
loaded gene sets by GSEA software (v4.1.0, https://www.
gsea-msigdb.org/).

2.5. Immunity Analysis of the Signature. To uncover the
immune activity of the RRlncRNAs signature, six immunity
algorithms, including TIMER, CIBERSORT, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC, were applied to eval-
uate immune responses between two risk subgroups by
single-sample gene set enrichment analysis (ssGSEA) [16].

2.6. Competing Endogenous RNA (ceRNA) Network
Construction. +e DIANA prediction tools were used to
detect the target miRNAs of each lncRNA and the threshold
for the relationship between lncRNAs and miRNAs was set
to 0.95. +en, we explored the potential target mRNAs
binding to miRNAs using three miRNA databases (miRDB,
TargetScan, and miRTarBase). Based on the predicted cor-
relation of lncRNA-miRNA andmiRNA-mRNA, the ceRNA
network was created by Cytoscape.

2.7. Functional Enrichment Analysis of the Target mRNAs.
To determine the underlying function of mRNAs in the
ceRNA regulatory network, we conducted the Gene On-
tology (GO) function and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis by
“clusterProfiler” package. p< 0.05 was found statistically
important.

2.8. Cell Culture and Cell Transfection. Two human NSCLC
cell lines (A549 and NCI-H520) and one human lung epi-
thelial cell line (BEAS-2B) were purchase from the Chinese
Academy of Sciences (Shanghai, China). Above NSCLC cells
and BEAS-2B were cultured in RPMI-1640 medium (Key-
GEN, Nanjing, China) with 10% fetal bovine serum (FBS,
PAN-Seratech, Germany) and 1% penicillin/streptomycin
with 5% CO2 at 37°C. We purchased siRNA negative control
and si-LINC01977 from Ribobio Biotechnology and trans-
fected them into NSCLC cell lines using the Lip-
otransfectamine 3000 (+ermo). +e target sequence of si-
NC and si-LINC01977 are presented in Supplementary
Table S1. After 48 h, transfected NSCLC cells were collected
for the next in vitro experiments.

2.9.QuantitativeReal-TimePCR(qRT-PCR). Total RNA was
extracted from cell lines via RNA-easy isolation reagent
(Vazyme biotech) and was reversed into synthesizing
complementary DNA (cDNA) using PrimeScript Mix re-
agent (Takara). +e PCR reaction system was prepared to

utilize SYBR Green® Premix Ex Taq™ (Vazyme biotech).
Results of individual lncRNAs were normalized to the ex-
pression of GAPDH.+e primer sequences for each gene are
shown in Supplementary Table S2.

2.10. Clonogenic Survival Assay. NSCLC cells were seeded in
6-well plates at 200, 400, 800, 1600, and 3200 cells/well. 24
hours later, we irradiated them with a single dose of 0, 2, 4, 6,
and 8Gy, respectively. +en, cultured for 2 weeks later, 1%
crystal violet was applied in staining clonogenic cells. +e
clonogenic survival curves were generated according to the
following formula model: SF� 1− (1− e−kd)n as previously
described [17].

2.11. Immunofluorescence Assay. +e immunofluorescence
of cH2AX was detected by the anti-cH2AX primary anti-
body (1 : 500, Abcam, UK) and the detailed process was
described in the previous protocol [17]. Cells were snapped
under a confocal fluorescence microscope (Leica).

2.12. Statistical Analysis. R software (4.0.1) was utilized for
all statistical analyses. Differences in OS of both risk groups
were assessed through the Kaplan–Meier analysis. By the
combination of univariate and multivariate Cox regression
methods, the independence of our risk model was detected.
In addition, receiver operating characteristic (ROC) analysis
was utilized to examine the reliability of our risk model.
p< 0.05 was considered statistically significant for each
analysis.

3. Results

3.1. Determination of Radioresponse-Related lncRNAs.
+e infographic flowchart of the present study is shown in
Figure 1. We selected 96 NSCLC cases for the entire analysis.
+e lncRNAs expressions were detected between 43 RR cases
and 53 RS cases. Next, 60 highly expressed lncRNAs and 72
lowly expressed lncRNAs were obtained. Figures 2(a) and
2(b) revealed that radioresponse-related lncRNAs
(RRlncRNAs) differed dramatically between RS and RR
groups.

3.2. Construction of the RRlncRNAs Signature. Firstly, we
randomly divided all samples into training cohort (n� 48)
and test cohort (n� 48). After applying the univariate Cox
method on the training set, we screened 26 representative
prognostic lncRNAs significantly correlated with survival
(Figure 3(a)). +en, LASSO-penalized regression was ap-
plied to diminish the overfitting of signature (Figures 3(b)
and 3(c)). Moreover, a signature of four radioresponse-re-
lated lncRNAs (CASC19, LINC01977, LINC02471, and
MAGI2-AS3) was built up by the multivariate Cox analysis
(Table 2). +e risk value of each NSCLC case was generated
using the following formula: [exp CASC19× (0.3999)] + [exp
LINC01977× (0.3693)] + [exp LINC02471× (−0.0701)] +
[exp MAGI2−AS3× (−0.0238)]. Subsequently, all patients
were separated into the high-risk score group and low-risk
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score group by the median risk value.+e layout of risk score
and OS outcomes of NCSLS patients in two risk subgroups
are presented in Figure 3(d).

In the training cohort, the KM survival curves indicated
a notable difference in survival outcome between the low-
risk group and high-risk group (Figure 3(e)). ROC plots
were applied to measure the reliability of our constructed
model. +e area under the ROC (AUC) values of 1-, 3-, and
5-year OS rates were 0.805, 0.904, and 0.903, pointing out the
powerful predictive ability of the signature (Figure 3(f)).
Similarly, the survival outcome of cases could be distin-
guished well by the model through KM survival curves in
both the test set and entire cohort (Figures 4(a) and 4(b)).
Meanwhile, the value of AUC for the test cohort and entire
set is shown in Figures 4(c) and 4(d). In addition, risk score
layout and OS outcome in the test set and entire cohort are
shown in Figures 4(e) and 4(f ).

3.3. Development of the Radioresponse-Based Nomogram.
To determine the independence of the four-RRlncRNA
signature, we carried out univariate and multivariate Cox
methods to analyze the clinical characteristics and risk scores
generated by the model. As shown in Figure 5(a), stage
(p � 0.011), M stage (p � 0.005), N stage (p � 0.026), and
risk score (p< 0.001) were meaningful for predicting sur-
vival outcome. Multivariate Cox analysis disclosed that only
risk score (p< 0.001) was remarkably correlated with sur-
vival time, suggesting our signature could be independent of
the clinical factors (Figure 5(b)). Afterward, a survival
prognosis nomogram was established with clinical charac-
teristics and a radioresponse-based model in the entire
cohort (Figure 5(c)). At the same time, the calibration curves
for the predictive ability of 1, 3, and 5 years presented no
declination between the ideal reference line and prediction
by prognostic nomogram (Figures 5(d)–5(f )).

132 differentially expressed
radioresponse related lncRNAs

Univariate Cox
regression analysis

Multivariate Cox
regression analysis

LASSO Cox
regression analysis

Radioresponse
Related–lncRNAs

signature

Kaplan–Meier
survival analysis

ROC analysis

Prognostic nomogram

Functional enrichment
and GSEA

Immune infiltration
analysis

Construction of
ceRNA network

Verification by
in vitro

experiments

lncRNA seq data and clinical
information of Non–small cell lung
cancer cases with radiotherapy from

TCGA

Analysis of differentially expressed
lncRNAs by limma

Figure 1: Brief flowchart of the whole study.
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3.4. GSEA Enrichment of the Signature. As displayed in
Figure 6, the top six hallmark pathways were “p53 pathway,”
“IL6/JAK/STAT3 pathway,” “Notch pathway,” “DNA re-
pair,” “glycolysis,” and “apoptosis.” +e results indicated
that these hallmark pathways related to radioresistance
regulation were activated in the patients with the high-risk
group.

3.5. �e Association between the Clinical Traits and the Sig-
nature in NSCLC. To evaluate the clinical potency of our
signature, we employed clinical relative analysis. +e heat
map demonstrated that the high-risk score was remarkably
related to the status, stage, gender, age, histological type, and
radiotherapy response (Figure 7(a)).

3.6. Immune Activity Analysis of the Signature. Immune
microenvironment has been proved to be closely bound up
with the regulation of tumor progression and radioresistance
[18, 19]. To investigate the power of our model for mirroring
the condition of the immune microenvironment in NSCLC,
we performed immunity analysis by the ssGSEA method.
Figure 7(b) shows the difference in immune responses be-
tween both risk score groups. We then estimated the as-
sociation between risk score and immunocyte
subpopulations infiltration by ssGSEA of TCGA-NSCLC. As
uncovered by (Figure 7(c)), except for B cells, CD8 T cells,
and pCDs, the remaining immunocyte populations were
highly enriched in the high-risk group.

3.7. Construction and Functional Analysis of the Radio-
response-Related ceRNA Network. Currently, a growing
body of evidence indicates that lncRNAs could bind with
microRNAs (miRNAs) to regulate the expression s of target
mRNAs, which may modulate the biological process of

malignant tumors [20–22]. We set up a ceRNA regulatory
network consisting of four lncRNAs, 15 miRNAs, and 257
mRNAs based on interaction relationships predicted by
DIAND, miRDB, TargetScan, and miRTarBase (Figure 8).
Moreover, GO and KEGG analyses were implemented to
better unearth the underlying function of the network.
Figure 9(a) illustrates that the most distinctively enriched
biological process contained “cell growth,” “positive regu-
lation of secretion,” “ERK1 and ERK2 cascade,” “response to
oxidative stress,” “cell junction assembly,” and “DNA
damage stimulus.” In terms of the KEGG pathway, the main
important pathways included “MAPK pathway,” “Hippo
pathway,” and “Wnt pathway” and “p53 pathway”
(Figure 9(b)).

3.8. Determination of the Expression Patterns and the Prog-
nostic Performance of the Four-lncRNA Signature. As
revealed by Figure 10(a), CASC19 and LINC01977 were
greatly upregulated in NSCLC carcinoma than in normal
tissues, whereas LINC02471 and MAGI2-AS3 were down-
regulated in normal tissues. In addition, CASC19 and
LINC01977 were highly expressed in the RR group, while
LINC02471 and MAGI2-AS3 had lower expressions in the
RR group (Figure 10(b)). Based on the dataset of TCGA-
NSCLC patients with radiotherapy history, KM survival
analysis indicated that LINC01977 was accompanied with
dismal OS in NSCLC patients with RT (Figure 10(c)).

3.9. Inhibition of LINC01977 Enhanced Radiosensitivity in
NSCLC. Firstly, we applied the qRT-PCR assay to confirm
the expression level of four lncRNAs in BEAS-2B, H520, and
A549 (Figure 11(a)). Subsequently, we selected LINC01977
for further in vitro experiment. As observed from
Figure 11(b), LINC01977 expression evidently down-
regulated within H520 and A549 cells by si-LINC01977
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Figure 3: Identification of the radioresponse-associated lncRNAs biomarker model in the training cohort. (a) Univariate Cox analysis for
determination of prognostic radioresponse-associated lncRNAs. (b) LASSO regression method for construction of radioresponse-related
lncRNAs signature. (c) LASSO coefficient of 26 radioresponse-related lncRNAs in NSCLC. (d) Distribution of increasing risk scores based
on radioresponse-related lncRNAs (upper) and clinical outcome of NSCLC cases with increasing risk scores (below). (e) Kaplan–Meier
curves of NSCLC cases were classified by a median value of risk. (f ) ROC methods reveal the potentiality of employing the risk score to
forecast the prognosis of NSCLC patients.
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Table 2: Four radioresistance-related lncRNAs remarkably correlated with OS.

lncRNA Coefficient Hazard ratio (95% CI) P value
CASC19 0.3999 2.36 (1.44–3.86) <0.001
LINC01977 0.3698 2.34 (1.41–3.89) 0.012
LINC02471 −0.0702 0.72 (0.57–0.91) 0.027
MAGI2-AS3 −0.0238 1.53 (1.20–1.95) <0.001
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Figure 4: Verification of the radioresponse-associated lncRNAs biomarker model. Kaplan–Meier curves for both risk groups in the test set
(a) and entire set (b). ROC curves for verifying model performance in the prediction of NSCLC prognosis in the test set (c) and entire set (d).
Predictive characteristics of four radioresponse-related lncRNAs’ biomarker model in the test set (e) and entire set (f ).
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transfection. By performing a clonogenic survival assay, the
roles of TRPM2-AS on the radiosensitivity of NSCLC cells
were detected. After being exposed to an increasing dose of
irradiation (IR), colony survival fractions were dramatically
reduced by LINC01977 downregulation (Figure 11(c)). +e
same results were acquired by DNA damage assay.We found
that NSCLC cells with si-LINC01977 greatly promoted the

expression of cH2AX (DNA damage marker) after receiving
an 8Gy dose of RT (Figure 11(d)).

4. Discussion

Non-small-cell lung cancer (NSCLC) is a primary thoracic
tumor with a terrifically malignant behavior, which is the
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Figure 5: A nomogram based on radioresponse-related lncRNAs biomarker model and clinical parameters. +e results of independent
prognostic analysis by univariate Cox regression (a) and multivariate Cox regression (b). (c) A radiobiological nomogram created by
combining signature and clinical parameters. (d-f ) Calibration curves for the predictive probability and accuracy of the radiobiological
nomogram.
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leading cause of cancerous death. Despite the considerable
success of radiotherapy in the treatment of NSCLC, radi-
oresistance is still considered a major obstacle to effective
radiotherapy. +erefore, it is highly essential to unearth
novel biomarkers predicting radiation response, to obtain
new therapeutic targets and develop new treatment options.
Accumulated evidence has reported that lncRNAs act as
regulators in NSCLC radioresistance [23]. Recently, re-
searchers have attached more attention to lncRNA-based
signatures because of their powerful predictive ability
compared to TNM staging systems or standard benchmarks
[24–26]. However, prognostic markers based on radio-
response associated lncRNA expression profiling have not
been analyzed in NSCLC cases with RT history.

Here, according to the TCGA-NSCLC project, we cre-
ated a newly radioresponse-related lncRNAs signature that
could accurately determine high-risk patients and exploit the
clinical utility in NSCLC patients. We first collected 132
differentially expressed radioresponse-related lncRNAs
based on 96 NSCLC patients who received RT. +en, four
radioresponse-related lncRNAs were screened by Cox rel-
ative regression methods in the training set. +ese four
lncRNAs were used to build up a risk model for forecasting
the survival outcome of NSCLC samples. KM survival
method demonstrated a notable difference in OS between
the two risk subgroups. Both the test cohort and the entire
cohort were employed to confirm the above results. To
simplify our proposed model, we created a radiobiological
nomogram by combining the RRlncRNAs signature and
other clinical factors. +e calibration plots indicate that our
model exhibits a favorable fit and better clinical effectiveness.

In order to exploit the clinical potency of our radiobi-
ological model, we analyzed the relationship between clinical
traits and the signature and observed that low-risk score

negatively associated with stage, age, and radiotherapy re-
sponse. We further explored the lncRNA-related ceRNA
network to elucidate the underlying biological function and
potential pathway of the selected four lncRNAs. +ere were
many radioresistance associated signal pathways about
ceRNA network regulation, such as MAPK pathway,”
“Hippo pathway,” and “Wnt pathway” and “p53 pathway”.

To explore the possible biological function of the sig-
nature, the GSEA method was employed. GSEA revealed
that the gene sets in the high-risk score group were enriched
in “DNA repair” “glycolysis,” “apoptosis,” and pathways
related to cancer, including p53 pathway, JAK-STAT3 signal
pathway, and Notch signal pathway, providing strong evi-
dence that these Hallmark pathways play a central part in in
the resistance to radiotherapy in NSCLC. +e main
mechanism of irradiation-induced tumor cell death is DNA
damage. However, cancer cells could correct DNA double-
strand breaks by activating DNA damage repair, subse-
quently promoting radioresistance and tumor cell survival
[27]. Glucose uptake supplies energy and biosynthetic
materials for tumor cell proliferation [28]. Overexpression of
glucose transporter proteins and glycolytic enzymes are
common oncogenic signals [29, 30]. Currently, several
studies have shown that the radiosensitivity of NSCLC can
be enhanced by modulating glycolysis [31]. It has been
shown that there is a large amount of P53-dependent ap-
optosis in irradiation-sensitive tissues, but p53-deficient
proved notable radioresistance in the mouse model [32, 33].
Targeting the P53 signaling pathway could enhance radio-
sensitivity, which has been demonstrated in a variety of
cancers [34–36]. Notch signaling mainly regulates the cell
cycle, inhibits apoptosis by suppressing PTEN expression,
and triggers tumor progression together with PI3K-AKT
signaling [37]. Activation of the Notch pathway in NSCLC
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Figure 7: +e association of the radiobiological model with different clinical factors and immune microenvironment. (a) Heat map of the
radiobiological signature with different clinical traits. (b) Heat map for radiobiological model and immune activity. (c) ssGSEA for the
relationship between 16 types of immunocyte subpopulations and risk score (∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001).
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patients is closely bound up with a worse prognosis, and
cancer cells with high Notch expression are more resistant to
irradiation [38].

Radiotherapy-induced immunosuppressive changes
in the TME are conducive to the immune escape of cancer
cells, which in turn confers radioresistance in tumors [18].
+us, we evaluate the condition of the NSCLC immune
microenvironment by the ssGSEA algorithm. As revealed
by immunocyte infiltration analysis, patients with high
risk showed dramatically higher proportions of M2-like
macrophages. M2-like macrophage, as a protumor sub-
type of tumor-associated macrophage (TAM), shows
radioresistance activity in TME. Apoptotic cells,
appearing after radiotherapy, activate macrophages with
the M2 phenotype to secrete a range of cytokines such as

TGF-B which could induce radioresistance and block the
development of ”tumor vaccine” [39–41]. Zhang et al.
revealed that M2 macrophage-derived exosome could
heighten resistance to RT through transferring AGAP2-
AS1 into lung cancer cells [42]. Other immunosuppressive
immune Tregs were also highly infiltrated in a high-risk
group. +e existence of Tregs might curb the effectiveness
of RT. With the increased recruitment level of Tregs after
irradiation, the immunomodulatory effects induced by RT
were greatly reduced [43]. In addition, Treg is more re-
sistant to irradiation than other T cell populations due to
its increased expression of Akt [44].

In the present study, our constructed risk signature
consisted of four lncRNAs which were closely related to
NSCLC prognosis. Among these five lncRNAs, CASC19
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Figure 10: Expression pattern and survival prognosis of CASC19, LINC01977, LINC02471, and MAGI2-AS3. (a) +e expression levels of
CASC19, LINC01977, LINC02471, and MAGI2-AS3 in the radiosensitive (RS) group and radioresistant (RR) group. (b) +e expression
levels of CASC19, LINC01977, LINC02471, and MAGI2-AS3 in NSCLC and adjacent normal tissues. (c) Kaplan–Meier curves for the four
signature lncRNAs.
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and LINC01977 are potential risky indicators, but
LINC02471 and MAGI2-AS3 are potential protective
indicators. CASC19 (Cancer Susceptibility 19) has been
reported to mediate the progression and radioresistance
of several tumors. In pancreatic cancer (PC), CASC19

could facilitate malignant growth and metastasis of PC via
miR-148b/E2F7 ceRNA axis with sponge activity [45]. As
suggested by Liu et al., CASC19 was highly expressed in
radioresistant nasopharyngeal carcinoma (NPC) cells and
could confer radioresistance in NPC through autophagy-
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Figure 11: Inhibition of LINC01977 boosts radiosensitivity of NSCLC cells. (a) Detection of four signature lncRNAs’ expression by qRT-
PCR. (b) Transfection efficiency of inhibition LINC01977 by siRNA. (c) Clonogenic survival assay in H520 and A549. (d) LINC01977
knockdown boosted cH2AX after irradiation in H520 and A549 (scale bar� 10 μm; ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001).
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related AMPK-mTOR pathway [46]. In addition, CASC19
also has an oncogenic effect on NSCLC. Wang et al. found
that CASC19 could bind with miR-301b-3p to regulate the
expression of low-density lipoprotein receptor (LDLR),
which promotes NSCLC cell proliferation and metastasis
[47]. +e LINC01977 is a novel carcinogenic promoter
reported in breast cancer (BC). Silencing LINC01977
could greatly repress BC development and chemo-
resistance to doxorubicin. In terms of molecular mech-
anism, LINC01977 might sponge miR-212-3p to attenuate
the expression of the GOLM1 gene [48]. Notably,
LINC01977 has not been studied in lung cancer, which
suggests that we can do further investigation. LINC02471,
a member of the intergenic lncRNA family, is recognized
as a crucial enhancer in papillary thyroid carcinoma
(PTC). Chen et al. observed that downregulation of
LINC02471 could hinder PTC cell metastasis and trigger l
apoptosis by binding with miR-375, indicating that it can
be considered as a potent predictor for metastasis of
patients with PTC [49]. MAGI2-AS3 was originally
identified as an antisense RNA of Membrane Associated
Guanylate Kinase 2 (MAGI2) involved in regulating the
malignant behaviors of various types of cancers. As dis-
covered by Cheng et al., MAGI2-AS3 could enhance
sensitivity to radiotherapy in esophageal cancer by
inhibiting the HOXB7 gene, offering a valuable molecular
marker for radioresistance [50]. Another research studied
that bladder cancer (BC) patients with upregulation of
MAGI2-AS3 display a lower incidence of cancer metas-
tasis. MAGI2-AS3 may reinforce the stability of MAGI2 to
mediate epithelial-mesenchymal transition (EMT) of BC
[51]. Our results are in line with these studies, suggesting
the MAGI2-AS3 is a protective factor (HR < 1) in NSCLC.

Finally, we explored the relationship between
LINC01977 expression and radioresistance in NSCLC cell
lines. We found that silencing LINC01977 significantly
suppressed clonogenic survival and boosted DNA damage
repair, implying that LINC01977 could be a possible ther-
apeutic target for promoting radiotherapy sensitivity in
NSCLC patients.

+ere are some limitations to our study. First, all re-
search populations processed in this subject were merely
collected from the TCGA database. +e large-scale clinical
cohort data or other external datasets need to be warranted
to confirm our signature. Moreover, considering our in vitro
assays mainly focus on the cell phenotype of tumor, mo-
lecular mechanism and in vivo experiments are need to
verify the results in further exploration.

In summary, we firstly created a radioresponse-related
lncRNAs signature based on four prognostic lncRNAs as-
sociated with radiation therapy which offer a reliable ref-
erence for the prognostic forecast. Our subject brings new
sights into the clinical strategy of NSCLC patients who
received radiotherapy.
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