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Abstract

Background—Cluster-randomized trials allow for the evaluation of a community-level or 

group-/cluster-level intervention. For studies that require a cluster-randomized trial design to 

evaluate cluster-level interventions aimed at controlling vector-borne diseases, it may be difficult 

to assess a large number of clusters while performing the additional work needed to monitor 

participants, vectors, and environmental factors associated with the disease. One such example 

of a cluster-randomized trial with few clusters was the “efficacy and risk of harms of repeated 
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ivermectin mass drug administrations for control of malaria” trial. Although previous work has 

provided recommendations for analyzing trials like repeated ivermectin mass drug administrations 

for control of malaria, additional evaluation of the multiple approaches for analysis is needed for 

study designs with count outcomes.

Methods—Using a simulation study, we applied three analysis frameworks to three cluster­

randomized trial designs (single-year, 2-year parallel, and 2-year crossover) in the context of 

a 2-year parallel follow-up of repeated ivermectin mass drug administrations for control of 

malaria. Mixed-effects models, generalized estimating equations, and cluster-level analyses were 

evaluated. Additional 2-year parallel designs with different numbers of clusters and different 

cluster correlations were also explored.

Results—Mixed-effects models with a small sample correction and unweighted cluster-level 

summaries yielded both high power and control of the Type I error rate. Generalized estimating 

equation approaches that utilized small sample corrections controlled the Type I error rate but 

did not confer greater power when compared to a mixed model approach with small sample 

correction. The crossover design generally yielded higher power relative to the parallel equivalent. 

Differences in power between analysis methods became less pronounced as the number of clusters 

increased. The strength of within-cluster correlation impacted the relative differences in power.

Conclusion—Regardless of study design, cluster-level analyses as well as individual-level 

analyses like mixed-effects models or generalized estimating equations with small sample size 

corrections can both provide reliable results in small cluster settings. For 2-year parallel follow­

up of repeated ivermectin mass drug administrations for control of malaria, we recommend 

a mixed-effects model with a pseudo-likelihood approximation method and Kenward–Roger 

correction. Similarly designed studies with small sample sizes and count outcomes should 

consider adjustments for small sample sizes when using a mixed-effects model or generalized 

estimating equation for analysis. Although 2-year parallel follow-up of repeated ivermectin mass 

drug administrations for control of malaria is already underway as a 2-year parallel trial, applying 

the simulation parameters to a crossover design yielded improved power, suggesting that crossover 

designs may be valuable in settings where the number of available clusters is limited. Finally, the 

sensitivity of the analysis approach to the strength of within-cluster correlation should be carefully 

considered when selecting the primary analysis for a cluster-randomized trial.
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Introduction

Cluster-randomized trials (CRTs) allow for the evaluation of an intervention applied beyond 

the individual at the community or group level. For vector-borne diseases like malaria, 

interventions aimed at controlling mosquitoes are often only applied at the village level, 

making CRTs an appropriate study design.1–3 A recent example of a CRT that evaluated 

a vector control intervention was the “efficacy and risk of harms of repeated ivermectin 

mass drug administrations for control of malaria (RIMDAMAL)” trial.4 Conducted in 2015, 

RIMDAMAL was a two-arm CRT that evaluated the role of ivermectin (a drug that kills 
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mosquitoes) on the incidence of malaria episodes for untreated children in eight rural 

villages in Burkina Faso over one rainy season (NCT02509481). The outcome of interest 

was the number of malaria episodes in children under the age of 5 who did not receive 

the intervention; thus, the primary hypothesis was that ivermectin treatment of adults and 

older children (at least 90 cm tall) would affect the mosquito population structure thereby 

reducing parasite transmission and the risk of malaria episodes in younger children. A CRT 

design was used because the hypothesis requires treatment of the majority of the community 

in order to benefit the community’s younger children. The study reported a risk difference 

of −0.49 malaria episodes in favor of the intervention group (95% confidence interval (CI): 

−0·79 to −0·21).

For studies like RIMDAMAL that require a CRT design to evaluate cluster-level 

interventions aimed at controlling vector-borne diseases, it may be difficult to assess a large 

number of clusters while performing the additional work needed to follow large numbers 

of participants for safety and efficacy outcomes, and to evaluate the vectors, pathogens, 

and environmental factors associated with the disease. The primary purpose of this article 

is to evaluate analysis approaches for CRTs with count outcomes and few clusters in the 

context of RIMDAMAL II (a larger 2-year parallel follow-up study of repeated ivermectin 

mass drug administrations for control of malaria. Furthermore, RIMDAMAL II simulation 

parameters were applied to different study designs (single-year, 2-year crossover) and 

different numbers of clusters (including stronger cluster correlations) to provide guidance 

for other studies with similar outcomes and limited access to large numbers of clusters.

Overview of RIMDAMAL II

The results from RIMDAMAL suggested a reduction in malaria incidence within the 

treatment villages and RIMDAMAL II aims to confirm the role of ivermectin as a malaria 

control mechanism. Currently underway, RIMDAMAL II (NCT03967054) is a double-blind 

placebo-controlled cluster-randomized design that evaluates 14 villages over two rainy 

seasons in Burkina Faso. Expanding the age range from RIMDAMAL, RIMDAMAL II 

aims to observe the effect of ivermectin on the cumulative malaria incidence (the primary 

outcome) for children under 10 years of age via weekly visits over the course of each 

rainy season. Furthermore, RIMDAMAL II employs a monthly ivermectin dosing regimen 

that leverages public health infrastructure already in place for ongoing malaria control 

interventions. RIMDAMAL II is designed to provide 80% power for a rate ratio of 

0.560 under the assumption that the rate of malaria episodes per child per year is 0.619 

with ivermectin and 1.088 without. Full power calculation details can be found in the 

supplementary material.

Overview of CRT designs and analysis approaches

CRT designs have been described in detail elsewhere.5–7 Briefly, CRTs may use a parallel 

design in which one group of clusters receives an intervention and one group serves as 

a control. Alternatively, crossover designs where all groups receive the intervention and 

control in different periods may provide more power over parallel studies, particularly in 

small sample settings.8–10 While other study designs exist, such as stepped-wedge CRTs, 

parallel and crossover designs are emphasized here.
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The analysis of any CRT must account for correlation between participants within the 

same cluster. Cluster-level and individual-level analyses are the two general frameworks 

used to account for the correlation within clusters.5–7 Cluster-level approaches generate a 

summary statistic for each cluster and then analyze those summaries, and individual-level 

approaches model the participant-level data as the outcome. Analyses using cluster-level 

summary statistics have been found to perform robustly for CRTs with a small number 

of clusters and have therefore been recommended in such cases (fewer than 30 clusters) 

although they can also result in a loss of power.7 In spite of this, a recent review showed 

that individual-level analyses are more common and often do not apply small sample 

corrections, potentially leading to an increased Type I error rate.11 The two main approaches 

to individual-level analyses are mixed-effects models and generalized estimating equations 

(GEEs).12 The major distinction between the two methods is that GEEs use a population­

averaged interpretation while mixed-effects models yield cluster-specific interpretations 

because they require a fully specified likelihood.7,12 The analysis of the RIMDAMAL trial 

used an individual-level model in the form of a GEE without a small sample adjustment and 

did not originally account for within-village correlation. Given the relatively small number 

of clusters, a cluster-level analysis was proposed as an alternative.13 Upon re-analysis, which 

explored both cluster-level and individual-level analyses, the conclusions of RIMDAMAL 

were not altered.14

Previous work in the context of continuous (i.e. non-count) outcomes15,16 has 

simultaneously evaluated individual-level analyses with small sample corrections relative 

to cluster-level or fixed-effects models. We aim to extend this work to count outcomes 

by simultaneously evaluating individual-level models and cluster-level summaries within 

three different CRT design frameworks in order to inform the analysis methods for the 

RIMDAMAL II trial and provide guidance for other small sample CRTs with few clusters.

Methods

Analysis strategies

Cluster-level and individual-level analysis methods were applied to simulated data from 

three distinct study designs: a single-period (one-year) CRT, a 2-year cluster-randomized 

parallel trial, and a 2-year cluster-randomized crossover trial. While different study 

designs require different parameters to appropriately evaluate the treatment effect, similar 

approaches were applied to all three designs. All models use the same number of clusters 

and the same number of individuals per cluster; thus, neither the number of clusters nor 

the sample size in each cluster were treated as random (supplementary material—simulation 

details. p. 1). Each model has been labeled (e.g. CL1 to refer to Cluster-Level Analysis 1, 

IL1 to refer to Individual-Level Analysis 1) to direct the reader to the corresponding code 

and model equations in the supplementary material.

Cluster level.

For the single-period analysis, four methods were evaluated. Two methods summarized the 

mean rate within each village, one summarized the total number of episodes within each 

village, and one used an adjusted residual model. The two mean rate analyses included an 
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unadjusted t-test (CL1) as well as a variance and size weighted t-test with the weighting 

calculated using estimates from a one-way analysis of variance (ANOVA) as previously 

described (CL2).16 The cluster summaries that modeled the total number of episodes utilized 

a Gaussian error family (referred to as size weighted Gaussian) and included an offset for the 

number of people within each village (CL3). The adjusted residual method (CL4) allowed 

for the addition of covariates by fitting a Poisson generalized linear model without the 

treatment effect, generating cluster-level means based on the residuals, and then applying an 

unweighted t-test to the residuals based on treatment group.7,17

For the 2-year parallel analyses, we used two previously recommended approaches for 

modeling rate data with small sample sizes17 plus two additional models that accounted for 

a time variable. For the recommended models, an unadjusted t-test evaluated the mean rate 

over person-time (CL5), whereas the adjusted residual method accounted for time and sex 

when generating the Poisson residuals (CL6). The two other models summarized mean rate 

within each cluster-period and then modeled a treatment and time covariate in a Gaussian 

regression framework (CL7—unweighted, CL8—weighted). Cluster-period is defined as the 

year of the trial nested within the cluster (14 villages × 2 years = 28 cluster-periods). For 

the crossover analyses, we extended a previously described approach for binary data18 to 

our mean cluster-period rates because the more traditional calculation of differences19 did 

not easily allow for direct comparisons to other methods (CL9). Cluster-level analyses were 

performed using R.20

Individual level.

Individual-level approaches accounted for correlation at the following levels: cluster, cluster­

period, or both. A sex covariate was added to all models in order to evaluate how the 

addition of a relevant covariate to each model impacted the results. Mixed-effects models 

and GEEs were fit in SAS using PROC GLIMMIX, because small sample corrections are 

readily available in the procedure.21 An important caveat is that the utilization of PROC 

GLIMMIX means that a traditional GEE with a quasi-likelihood is not fit. Here, models 

fit using PROC GLIMMIX are referred to as “GEE” models, although technically they are 

often called “GEE-type” models.21 For mixed-effects models, both maximum likelihood and 

pseudo-likelihood approximation methods were evaluated; a Kenward–Roger correction22 

was also evaluated in the pseudo-likelihood approach. For maximum likelihood, both the 

Laplace and Adaptive Gaussian Quadrature methods were used with 10 quadrature points 

used for the latter method, based on previous recommendations.23 For the GEEs, empirical 

standard errors as well as two small sample corrections were evaluated. The first small 

sample correction, proposed by Morel, Bokossa, and Neerchal (MBN),24 has been shown to 

produce unbiased results in both continuous and binary outcomes;25 the second correction, 

proposed by Fay and Graubard,26 has been shown to perform well with highly unbalanced 

data in a binary CRT setting.27

For the single-year study, treatment and sex were treated as fixed effects and village was a 

random effect (IL1–IL8). For the parallel study, two approaches were used; the first utilized 

a fixed effect for treatment, sex, and time with a random effect for cluster (IL9–IL16), 

while the other approach incorporated cluster-period as a second random effect and removed 
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the fixed effect for time (IL17, IL18). In the crossover analyses, cluster was either treated 

as a fixed effect (IL19–IL26) or a random effect (IL27, IL28), and cluster-period was 

analyzed as a random effect regardless of how cluster was treated in the model, as previously 

described.19

Simulation study

As the primary purpose of this article was to determine the most appropriate study design 

and analysis procedure for RIMDAMAL II, simulation parameters were selected that were 

consistent with the assumptions that were made prior to the start of the study. Minimal 

enrollment information (range of cluster sizes, average cluster size) was used to construct 

the simulation study. The final simulations had a total of 1317 subjects distributed across 

14 clusters with a fixed number of subjects in each cluster and in each rainy season 

(supplementary material—simulation details, p. 1). A Poisson mixed-effects model was 

used to simulate individual counts of malaria episodes over two rainy seasons separately 

while maintaining the same within-cluster correlation across seasons. Such approach not 

only allowed for each season to be evaluated separately to explore differences in expected 

treatment effects between years but also allowed for the evaluation of parallel and crossover 

2-year designs by combining both seasons into one dataset. The simulation parameters, 

scenarios, and analysis methods that were compared are summarized in Table 1, and the 

details are provided in the supplementary material along with example code. The analysis 

methods were run on 1000 simulated data sets for each scenario, and methods were 

compared based on the bias of the estimated effect, the power and Type I error rate, and 

the precision of the 95% CI as measured by the proportion of 95% CIs that include the true 

mean effect (the “coverage” probability).

Results

Generally, cluster-level and individual-level analyses with a small sample correction 

performed well in all settings. Results are shown in Figures 1–3 and are tabulated in 

Tables 2 and 3, as well as in Supplemental Table 1. For the maximum likelihood models, 

differences between the Laplace and Adaptive Gaussian Quadrature approaches were 

miniscule. Differences in bias are discussed, but all methods provided unbiased estimates, 

and observed differences can be attributed, in part, to simulation variability.

One rainy season

With separate single-year analyses conducted in Year 1 and Year 2, all cluster-level analysis 

methods maintained a Type I error rate at or below 5%. Properties for the single-year 

analyses including Type I error rate are summarized in Supplemental Table 1. The size 

weighted Gaussian model had improved power over the other cluster-level models, along 

with a reduction in the coverage probability at 92.8%. The variance and size weighted t-test 

showed a slight improvement in power over the unweighted method but had a higher Type 

I error rate. For the individual-level models, the pseudo-likelihood models were the least 

biased relative to the maximum likelihood and GEE models with the GEE models having 

the most bias. The 95% CIs from the GEE with MBN correction had the highest coverage 

probability in both years, slightly better than the pseudo-likelihood models. The maximum 
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likelihood models had the best power but the worst Type I error rate at 9.7%. The small 

sample corrections provided good control of the Type I error but somewhat lower power; the 

MBN GEE model had the lowest power (Figure 1).

Two rainy seasons—parallel study design

In contrast to the single-season results, all cluster-level analyses were more biased than 

the individual-level models (Table 2). The inclusion of time as a covariate for the cluster­

level models yielded lower coverage probability relative to the previously recommended 

cluster-level methods, which had the highest coverage probability. Although the time 

covariate cluster models had high power, they had unacceptably high Type I error rates. 

The adjusted residual method had improved power over the unadjusted t-test approach 

but had slightly greater Type I error. Consistent with the single-period analysis, the pseudo­

likelihood models were the least biased and GEEs were the most biased. The GEE with 

MBN correction was the only model above 95% coverage (at 95.68%), outperforming the 

cluster-level analyses. For the pseudo-likelihood models, the coverage was slightly better 

when time was treated as a fixed effect instead of using a random effect for cluster-period. 

The mixed-effects models generally had greater power (Figure 2), but all models had power 

above 97% with the exception of the GEE with MBN correction. The GEEs and pseudo­

likelihood models with two random effects were prone to convergence issues. Only the small 

sample corrections yielded Type I error rates below 5% (Table 2).

Two rainy seasons—crossover study design

The cluster-level approach was the least biased of all crossover models but had low coverage 

probability at 90.90% and slightly elevated Type I error (Table 2). The pseudo-likelihood 

models again had the least biased estimates for the treatment effect, slightly better than 

the GEE. Regardless of random effect designation for time, the pseudo-likelihood models 

had exceptional coverage. All models with the exception of the pseudo-likelihood Kenward–

Roger model had power at 100% (see Table 2 and Figure 2). The small sample size 

corrections had extremely conservative Type I errors, with the pseudo-likelihood Kenward–

Roger model yielding a Type I error rate below 1%. The GEE models were highly prone to 

convergence issues relative to the other methods—around 7% did not converge.

Two rainy seasons—additional simulations.

Applying the 2-year parallel design to a range of different numbers of clusters and 

increasing the expected cluster random effect variance from 0.05 to 0.10 yielded similar 

results. A similar trend was observed where Type I errors were excessive for individual­

level models without a small sample correction (Table 3). Both the Kenward–Roger 

adjusted mixed-effects model and the unweighted t-test maintained acceptable Type I 

error rates and had similar power across different numbers of clusters and stronger within­

cluster correlations, with the individual-level model slightly outperforming in power. The 

differences in power between methods were minimized as the number of clusters increased; 

this convergence toward similar power was slower for the simulations with greater within­

cluster correlations (Figure 3). As the number of clusters increased, the individual-level 

models without small sample size adjustments had lower Type I error rates.
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Discussion

A study must be sufficiently powered, and the analysis methods must produce accurate and 

precise estimates of the intervention effects. In particular, analytic methods for CRTs with a 

small number of clusters must be chosen based on careful comparison of power, Type I error 

rate, bias, and the precision of the estimate (coverage probability).16 Our simulation study 

shows that previously recommended cluster-level analyses for rates and individual-level 

analyses that include a small sample correction both yield reliable power and control the 

Type I error rate without jeopardizing estimate precision.

Because RIMDAMAL II is conducted over 2 years, we have emphasized results relevant 

to the analysis of 2-year trials but briefly summarize the results for single-period designs. 

For cluster-level approaches, we recommend the unweighted t-test or the adjusted residual 

model if covariates are included. The variance and size weighted Gaussian models for 

cluster-level analysis did not confer any clear advantage over other approaches. Although 

the variance weighted approaches have been shown to perform better for cluster-level 

analysis with more unbalanced data,16 we concur that caution must be exercised when 

estimating variances in small sample settings.7 The pseudo-likelihood Kenward–Roger 

model is recommended for individual-level analyses, consistent with previous work.23 In 

the RIMDAMAL II setting, the pseudo-likelihood Kenward–Roger model was less biased 

and had better power but worse coverage and Type I error compared to the unweighted 

t-test, suggesting that the strengths and weaknesses of either approach must be carefully 

considered when selecting an analysis method (as discussed below).

For the parallel two-period analysis, we again recommend the unweighted t-test or adjusted 

residual method in a cluster-level setting and the pseudo-likelihood Kenward–Roger 

approach with time as a fixed variable for an individual-level model. When examining 

the crossover study design, we found improved power and coverage over the parallel study 

design. This observation reflects the reduced variability of a within-cluster estimate of 

the treatment effect from a crossover design, which can in turn improve power.10 Since 

the cluster-level crossover approach performed worse than the individual-level models, 

we recommend an individual-level approach using the pseudo-likelihood Kenward–Roger 

method given the increased flexibility and improved coverage in this setting.

Although RIMDAMAL II is currently ongoing and designed as a parallel group trial, our 

results show that a crossover study can provide greater power given similar parameters. Such 

results suggest that crossover designs could potentially be considered for CRTs with count 

outcomes and a small number of clusters as a means to improve power—a finding that has 

been previously discussed with respect to continuous, binary, and count outcomes.8–10,28 

Although higher power is an important consideration, we acknowledge concern over the 

potential for unforeseen period and carryover effects that might introduce bias in a crossover 

design. In Burkina Faso, a washout period over an entire dry season could minimize 

carryover effects from a previous season of ivermectin distribution, but unforeseen carryover 

effects would be an important consideration. While the crossover design would allow for 

all clusters to receive the ivermectin intervention, the parallel design offers the ability to 

evaluate both the long-term effect of ivermectin and the robustness of the treatment in the 
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same villages across years with potentially different levels of transmission. More complex 

simulation studies that further compare the merits of crossover studies relative to parallel 

studies in small sample settings may help define scenarios where one design is superior to 

the other.

Based on the additional simulations, it is clear that individual-level models should use 

small sample corrections when the number of clusters is small. Furthermore, the strength 

of within-cluster correlation should be considered when choosing an analysis method 

because it is clear that differences in correlation will impact the power and Type I error 

rate. Regarding the selection of methods that yield population-averaged (GEEs) versus 

cluster-specific interpretations (mixed-effects models), the estimand for both methods is the 

incidence rate ratio between treatment arms even though the methods differ in their approach 

to estimating that ratio. Ultimately, the selection of the analysis method may depend on a 

variety of factors (e.g. random effect complexity, strength of correlation, number of clusters, 

interpretation), and we did not conduct an in-depth evaluation of the direct relationships 

between these two models. Previous work discusses these kinds of models, and their 

relationship, in the context of count outcomes in greater detail.29

For the analysis of RIMDAMAL II, we recommend an individual-level analysis using the 

pseudo-likelihood Kenward–Roger approach. While the individual-level and cluster-level 

analysis approaches had their strengths in the simulation study, the question of interest must 

also guide the analysis decision. As there are other relevant mechanisms of interest (effect 

of age, sex, direct effect of ivermectin for children old enough to receive it) on the outcome, 

an individual-level model is appealing because it allows for the simultaneous evaluation of 

these variables along with the treatment effect. We must note, however, that RIMDAMAL 

II is not powered to conduct inference on such secondary and tertiary questions of interest 

and similarly designed studies should be mindful of such issues. Notwithstanding these 

considerations related to power, the ability to simultaneously generate estimates on other 

variables is a valuable, hypothesis generating tool that only individual-level models can 

provide. While we recommend the individual-level analysis, we caution against the use of 

overly complex models in the context of small sample size CRTs.23 Namely, additional 

nested random effects to account for households within clusters and repeated measurements 

on individuals may be too complex in small sample settings and sensitivity studies may be 

required to explore how more complex designs may impact the results. Furthermore, we note 

as others have that CRTs with small sample sizes may only be justified with very strong 

treatment effects.16

In the vector-borne disease community, when interventions must be randomized at the 

village level, it is vital to find a balance between the often-limited number of clusters and the 

often-conservative recommended statistical approaches. For our simulation study, we found 

that an individual-level model confers improved power and increased flexibility over the 

more conservative unweighted t-test approach and therefore recommend the more flexible 

approach. However, as with any simulation study, these results inform the properties of 

the analysis methods in the scenarios that were studied. Additional simulation studies are 

required to extend these results into other settings.
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Limitations

This article focused on providing a recommendation for one particular study. We did not 

explore differences in cluster sizes and note that further exploration into the matter may 

help elucidate when weighting strategies are well justified. The simulation study uses data 

simulated from the assumed Poisson model, so results may not extend to misspecified 

models or to non-Poisson count data. We did not study additional sources of correlation 

such as household nested within a village. The simulation studies of this article would have 

to be extended to evaluate the merits, and possible disadvantages, of including additional 

levels of nesting within the village. In our discussions of coverage probability, we only 

utilized Wald CIs and did not investigate other score-based options that might provide 

better coverage probability. We note that carryover effects and cluster-period random effects 

were not explored in the simulation study, and studies of these effects are needed to fully 

evaluate analysis methods for crossover designs. Finally, we did not consider Bayesian 

approaches despite previous work suggesting strong performance in small sample settings.15 

Although the RIMDAMAL results might suggest an informative prior for RIMDAMAL 

II, the differences in study design make it difficult to adequately recommend priors, an 

aspect of the Bayesian framework that is non-trivial because in studies with few clusters, 

informative priors may give biased estimates relative to frequentist methods.30

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Difference in power relative to unweighted t-test (one rainy season).
Single-year graphs indicating the difference in one-sided power (in favor of protective 

ivermectin effect) for the three analysis frameworks, mixed-effects models (MM), 

generalized estimating equations (GEE), and cluster-level summaries relative to the 

unweighted t-test for a range of rate ratios. A rate ratio of 1 reflects the null model. The first 

rate ratio of approximately 0.56 reflects the expected rate ratio for RIMDAMAL II.
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Figure 2. Difference in power relative to unweighted t-test (parallel versus crossover—two rainy 
seasons).
Graphs indicating the difference in one-sided power for the three analysis frameworks (MM, 

GEE, and cluster-level summaries) and two multi-season study designs (parallel versus 

crossover) relative to the parallel unweighted t-test for a range of rate ratios. A rate ratio of 

1 reflects the null model. The first rate ratio of approximately 0.56 reflects the expected rate 

ratio for RIMDAMAL II. Models with two random effects were excluded because they were 

generally similar and difficult to discriminate in the figure.
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Figure 3. Difference in power relative to unweighted t-test (2-year parallel design—cluster sizes 
and random effect variance).
Graphs indicating the difference in one-sided power for the three analysis frameworks 

relative to the unweighted t-test for a range of cluster sizes and two different random effect 

variances. Only 2-year parallel designs are shown; crossover and single-year study designs 

with differing cluster and random effect sizes were not simulated.
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Table 1.

Summary of simulation study.

Analysis methods were evaluated using the results from 1000 simulated data sets, each of which was analyzed 

using the analysis methods applied to the simulated number of episodes
a
 for each of the villages in the 

two treatment conditions. Simulation details and model code are given in the supplementary material. Any 

abbreviations that have been used for ease of readability in all following tables and figures have been defined 

here.

Scenarios simulated

 Treatment effect
Rate ratio: eβ1 = 1.0, 0.9, 0.8, 0.7, 0.6, 

0.619
1.088

 Number of clusters 6, 10, 14, 18

 Effect of year α: Year 1 = e0.0843–0.1054 year 2 = e 0.0843 – 0.1054

 One rainy season Separate analyses of the first- and second-year results

 Two rainy seasons (parallel) Analysis of combined Year 1 and Year 2 data

 Two rainy seasons (crossover) Analysis of data from a crossover design

Metrics evaluated

 Bias Difference between the estimated and true value for β1

 Coverage Proportion of 95% confidence interval that includes β1

 Power Probability of rejecting the null hypothesis: eβ1 = 1.0

Summary of models compared

Category Name Method of model fitting

MM Mixed models PL: Pseudo-likelihood

PLKR: Pseudo-likelihood, Kenward-Roger correction

ML: Laplace: Laplace approximation to the likelihood

ML: AGQ-10: Adaptive Gaussian quadrature

GEEs Generalized estimating equations

Using model-based standard error

Using empirical standard error

Using MBN correction, proposed by Morel, Bokossa, and Neerchal

Using FG correction, proposed by Fay and Graubard

Cluster-level analyses
Unweighted t-test

Size weighted

Variance weighted

Adjusted residual

a
The number of episodes was simulated to follow a Poisson distribution with mean rate λijk denoting the rate with treatment i = (0,1) in village j = 

1 ,…, 7 and subject k = 1 ,…, Nij; X1 = 0 satisfying log(λijk) = α + β1Xi + β2Xijk + uij, where Xi = 0 (control) or Xi = 1 (Ivermectin), and Xijk 
= 0 (female) or Xijk = 1 (male) and α = intercept; β1 = log of the rate ratio treatment versus control; β2 = log of the rate ratio male versus females; 

and uij = random village effect: uij ∼ N(0, 0.05 or 0.10).
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Table 2.

Two rainy seasons: comparison of the crossover and parallel designs.

Bias Coverage Power Type 1 error

Two-year parallel design

  MM 1: PL (IL9) −0.0018 93.10 99.10 7.92

  MM 1: PLKR (IL11) −0.0018 93.10 98.60 4.91

  MM 1: Laplace (IL10) −0.0025 91.10 99.40 10.10

  MM 1: AGQ-10 (IL12) −0.0025 91.10 99.40 10.10

  MM 2: PL (IL17) −0.0017 92.88 99.08 7.76

  MM 2: PLKR (IL18) −0.0017 92.88 98.58 4.59

  GEE: Model-based SE (IL13) −0.0027 92.96 98.39 5.25

  GEE: Empirical SE (IL14) −0.0027 90.95 98.59 7.77

  GEE: MBN correction (IL15) −0.0027 95.68 94.87 2.52

  GEE: FG correction (IL16) −0.0025 93.16 97.28 4.74

  Cluster level: Treatment + Time (CL7) −0.0030 89.80 99.70 16.40

  Cluster level: Weighted treatment + Time (CL8) −0.0040 86.60 99.50 17.10

  Cluster level: Unweighted t-test (CL5) −0.0030 94.70 97.50 4.70

  Cluster level: Adjusted residual (CL6) 0.0050 94.00 98.20 5.20

Two-year crossover design

  MM 3: PL (IL19) 0.0049 97.27 100.00 2.46

  MM 3: PLKR (IL21) 0.0049 97.47 93.02 0.92

  MM 3: Laplace (IL20) 0.0071 95.00 100.00 5.20

  MM 3: AGQ-10 (IL22) 0.0071 95.00 100.00 5.20

  MM 4: PL (IL27) 0.0061 97.37 100.00 2.37

  MM 4: PLKR (IL28) 0.0061 97.47 100.00 1.86

  GEE: Model-based SE (IL23) 0.0051 96.36 100.00 1.82

  GEE: Empirical SE (IL24) 0.0051 88.54 100.00 9.09

  GEE: MBN correction (IL25) 0.0051 96.57 100.00 2.03

  GEE: FG correction (IL26) 0.0052 90.16 100.00 7.39

  Cluster level: Treatment + Time + Fixed cluster (CL9) −0.0030 90.90 100.00 5.80

PL: pseudo-likelihood; PLKR: pseudo-likelihood Kenward–Roger correction; AGQ-10:: Adaptive Gaussian Quadrature with 10 quadrature points; 
GEE: generalized estimating equation; SE: standard error; MBN: Morel, Bokossa, and Neerchal; FG: Fay and Graubard.

Bias, coverage, power, and Type I error rate for 2-year, 14-cluster, crossover, and parallel designs. These models were simulated from an assumed 
village random effect variance of 0.05. Mixed-effects model 1 (MM1): Time modeled as fixed, random effect for cluster; Mixed-effects model 
2 (MM2): Random effects for cluster and cluster-period; Mixed-effects model 3 (MM3): Cluster modeled as fixed effect, random effect for 
cluster-period; Mixed-effects model 4 (MM4): Random effects for cluster and cluster-period. Labels in the parentheses (e.g. (IL9)) are meant to 
direct the reader to model descriptions in the text and code in the supplementary material.
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Table 3.

Power and Type I error for different 2-year parallel design.

6 clusters 10 clusters 14 clusters 18 clusters

Power Type 1 
error

Power Type 1 
error

Power Type 1 
error

Power Type 1 
error

Models—Random effect of 0.05

 MM 1: PL (IL9) 80.8 12.2 94.7 7.7 99.1 7.9 99.7 6.5

 MM 1: PLKR(ILII) 58.0 4.5 89.3 4.4 98.6 4.9 99.4 5.2

 MM 1: Laplace (ILI0) 88.0 18.4 96.6 11.2 99.4 10.1 99.9 8.3

 MM 1: AGQ-10 (ILI2) 88.0 18.4 96.6 II.1 99.4 10.1 99.9 8.3

 GEE: Model-based SE (ILI3) 59.2 5.1 89.0 4.6 98.4 5.3 99.3 5.2

 GEE: Empirical SE (ILI4) 73.3 8.2 92.4 7.0 98.6 7.8 99.6 6.5

 GEE: MBN correction (ILI5) 48.5 2.9 80.7 2.5 94.9 2.5 98.8 3.8

 GEE: FG correction (ILI6) 56.1 3.6 87.8 3.6 97.3 4.7 99.3 4.8

 Cluster level: Treatment + Time (CL7) 85.8 16.8 97.3 13.9 99.7 16.4 100.0 16.0

 Cluster level: Weighted treatment + 
Time (CL8)

88.2 17.8 97.6 16.5 99.5 17.1 100.0 17.4

 Cluster level: Unweighted t-test (CL5) 57.7 4.8 88.5 4.6 97.5 4.7 99.3 5.4

 Cluster level: Adjusted residual (CL6) 57.8 4.8 88.2 4.6 98.2 5.2 99.3 5.2

Models—Random effect of 0.10

 MM 1: PL (IL9) 60.0 10.1 77.4 8.7 90.6 6.8 93.8 6.8

 MM 1: PLKR(ILII) 35.6 3.8 66.2 5.3 86.4 4.4 90.9 5.0

 MM 1: Laplace (ILI0) 71.2 15.5 83.1 12.8 92.8 8.1 95.9 8.6

 MM 1: AGQ-10 (ILI2) 71.2 15.5 83.1 12.8 92.8 8.1 95.9 8.6

 GEE: Model-based SE (ILI3) 34.7 4.1 67.1 5.3 86.8 5.1 91.4 5.8

 GEE: Empirical SE (ILI4) 51.0 7.9 74.0 8.6 89.2 6.6 92.1 6.9

 GEE: MBN correction (ILI5) 28.8 2.8 54.6 2.4 75.6 2.3 86.6 3.5

 GEE: FG correction (ILI6) 35.4 3.2 64.6 3.9 83.6 4.4 89.7 4.5

 Cluster level: Treatment + Time (CL7) 65.8 14.2 86.8 16.9 96.1 15.7 98.1 15.4

 Cluster level: Weighted treatment + 
Time (CL8)

71.7 16.9 88.4 18.9 96.5 17.0 97.9 19.4

 Cluster level: Unweighted t-test (CL5) 32.9 4.0 61.9 5.2 83.1 4.2 90.2 4.6

 Cluster level: Adjusted residual (CL6) 33.0 4.2 62.3 5.0 83.0 4.3 90.1 4.7

PL: pseudo-likelihood; PLKR: pseudo-likelihood Kenward-Roger correction; AGQ-IO: Adaptive Gaussian Quadrature with 10 quadrature points; 
GEE: generalized estimating equation; SE: standard error; MBN: Morel, Bokossa, and Neerchal; FG: Fay and Graubard; RIMDAMAL II: 2-year 
parallel follow-up of repeated ivermectin mass drug administrations for control of malaria.

Power and Type I error rates for 2-year parallel designs with a range of total cluster numbers (6, 10, 14, and 18) and two different village random 
effect variances for (0.05 and 0.10). The simulated intervention effect is the expected effect for RIMDAMAL II, as in Table 2. Labels in the 
parentheses (e.g. (IL9)) are meant to direct the reader to model descriptions in the text and code in the supplementary material.
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