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Abstract

Transcriptome-wide association studies (TWAS) systematically investigate the association of 

genetically predicted gene expression with disease risk, providing an effective approach to 

identify novel susceptibility genes. Osteoporosis is the most common metabolic bone disease, 

associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fractures, 

whereas genetic factors explain approximately 70% of the variance in phenotypes associated 

with bone. BMD is commonly assessed using dual-energy X-ray absorptiometry (DXA) to 

obtain measurements (g/cm2) of areal BMD. However, quantitative computed tomography (QCT) 

measured 3D volumetric BMD (vBMD) (g/cm3) has important advantages compared with DXA 

since it can evaluate cortical and trabecular microstructural features of bone quality, which can 

be used to directly predict fracture risk. Here, we performed the first TWAS for volumetric BMD 

(vBMD) by integrating genome-wide association studies (GWAS) data from two independent 

cohorts, namely the Framingham Heart Study (FHS, n = 3,298) and the Osteoporotic Fractures 

in Men (MrOS, n = 4,641), with tissue-specific gene expression data from the Genotype-Tissue 

Expression (GTEx) project. We first used stratified linkage disequilibrium (LD) score regression 
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approach to identify 12 vBMD-relevant tissues, for which vBMD heritability is enriched in tissue

specific genes of the given tissue. Focusing on these tissues, we subsequently leveraged GTEx 

expression reference panels to predict tissue-specific gene expression levels based on the genotype 

data from FHS and MrOS. The associations between predicted gene expression levels and vBMD 

variation were then tested by MultiXcan, an innovative TWAS method that integrates information 

available across multiple tissues. We identified 70 significant genes associated with vBMD, 

including some previously identified osteoporosis-related genes such as LYRM2 and NME8, as 

well as some novel loci such as DNAAF2 and SPAG16. Our findings provide novel insights into 

the pathophysiological mechanisms of osteoporosis and highlight several novel vBMD-associated 

genes that warrant further investigation.
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INTRODUCTION

Osteoporosis is the most common metabolic bone disease, associated with clinical 

manifestations of reduced bone mineral density (BMD), deterioration of bone tissue, and 

increased susceptibility to low trauma osteoporotic fractures (1). The United States has more 

than 2 million reports of osteoporotic fractures annually with estimated annual medical 

expenses over $19 billion (2).

BMD is commonly assessed using dual-energy X-ray absorptiometry (DXA) to obtain 

measurements (g/cm2) of areal BMD. However, quantitative computed tomography (QCT) 

measured 3D volumetric BMD (vBMD) (g/cm3) of the trabecular compartment is also an 

important measurement technique, which has a direct link with osteoporosis and vertebral 

fracture (3). Some previous studies have also shown a strong significant relationship between 

vBMD and osteoporosis fracture. For instance, Langsetmo et al. reported that lower total 

volumetric BMDs at all peripheral bone sites were each associated with a similarly increased 

risk of incident fracture (4). This can likely be attributed to the fact that QCT imaging 

takes into consideration the construction of microfinite element models of bone strength, 

which can be used to predict fracture risk as well as explain confounding factors such as 

osteophytic or extra-skeletal calcification (5,6).

So far, genome-wide association studies (GWAS) have successfully identified over 500 

susceptibility loci for osteoporosis-related traits (7), including five significant loci associated 

with vBMD identified in a meta-analysis by Nielson et al. (8). However, it remains a 

challenge to understand the biological functions of these genetic loci and the biological 

mechanisms underlying the observed genetic associations. One approach to tackle this 

problem is to directly study the association between gene expression levels in specific 

tissues and the trait of interest. However, due to the specimen availability and the costs, 

such studies are usually not feasible or sufficiently powerful for many tissues and traits. 

The fact that many genetic variants play important roles in gene expression regulations 
(9-12) has motivated the development of methods for transcriptome-wide association studies 
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(TWASs), which can integrate gene expression data from large transcriptome reference 

datasets such as Genotype-Tissue Expression project (GTEx) (13) with GWAS association 

statistics to investigate the association of genetically predicted gene expression with disease 

risk, providing an effective approach to identify novel susceptibility genes (14).

Barbeira et al. recently presented a TWAS method termed MultiXcan, which uses 

multivariate regression to test the joint effects of gene expression variation from multiple 

tissues and thus may have increased power compared with traditional single-tissue TWAS 

methods (15). While a few previous TWAS studies have been conducted for osteoporosis 

related traits (15-18), including a multi-tissue TWAS study for areal BMD and fracture by us 
(19), no TWAS study has been reported for vBMD.

In this study, we performed the first TWAS for vBMD by integrating FHS and MrOS, 

with tissue-specific gene expression data from the GTEx project. First, we performed 

a stratified linkage equilibrium (LD) score regression to identify relevant tissues where 

the phenotypic heritability is enriched using 53 tissues from GTEx. Focusing on these 

vBMD relevant tissues, we subsequently leveraged GTEx expression reference panels to 

predict tissue-specific gene expression levels based on the genotype data for individuals 

in FHS and MrOS. MultiXcan, an innovative TWAS method that integrates information 

available across multiple tissues, was used to test the associations between genetically 

predicted gene expression and vBMD variation. Lastly, we made functional annotations 

about significant genes by Protein-protein interaction (PPI) network analysis, Gene ontology 

(GO) and KEGG pathway analysis. An overview of the study is provided in Figure 1. In our 

study, we identified 70 significant genes associated with vBMD, including some previously 

identified osteoporosis-related genes such as LYRM2 and NME8, as well as some novel 

loci such as DNAAF2 and SPAG16. Our findings provide some novel insights into the 

functional mechanisms of osteoporosis and highlight some promising candidate genes for 

future investigation.

MATERIALS AND METHODS

GWAS dataset

GWAS datasets for vBMD were obtained from two independent studies, FHS 

(phs000007.v30.p11) and MrOS (phs000373.v1.p1), through the database of genotype and 

phenotype (dbGaP) portal. We included 3,298 unrelated individuals of European from FHS 

with lumbar vertebral (L2 - L4) integral vBMD and trabecular vBMD, and 4,641 unrelated 

male individuals of European (aged 65 years or older) from MrOS samples with femoral 

neck trabecular vBMD, integral vBMD, and cortical vBMD. All measures of vBMD were 

performed using QCT (20,21). Details of the study design and data collection procedures for 

FHS and MrOS were described previously (22-24).

Genotype quality control (QC) was implemented with PLINK (25). Specifically, SNPs 

violating the Hardy-Weinberg equilibrium (HWE) rule (p value < 1 × 10−5) and/or with 

minor allele frequency (MAF) < 0.01 in the sample were removed. Individuals with imputed 

sex inconsistent with reported sex or of ambiguous imputed sex were removed. When 

Mendelian errors were detected in the FHS samples, the corresponding genotype values 

Liu et al. Page 3

Bone. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were set to missing. Genotype-derived principal components were examined to remove 

population outliers by using the program smartpca from the Eigensoft package with the 

default settings (26).

Comprehensive genome-wide genotype data for FHS and MrOS individuals were imputed 

using the Michigan Imputation Server (27) based on the Haplotype Reference Consortium 

(HRC Version r1.1 2016) reference panel (28). All variants were mapped to GRCh37.

At last, we used PLINK (25) to test the genetic association of 415,792 SNPs with lumbar 

vertebral trabecular and integral vBMDs in FHS, and 691,126 SNPs with femoral neck 

integral , trabecular , and cortical vBMDs in MrOS under an additive model of inheritance, 

accounting for age, gender, height and weight as covariates.

Identification of significant tissues associated with vBMDs

To assess the gene expression enrichment in a tissue for a given trait, we followed the 

procedure described earlier (29). Briefly, we downloaded the gene expression profiling data 

in 53 tissues (Supplementary Table 1 (30)) from GTEx (28,29), with an average of 161 

samples per tissue. For each gene, we computed a t-statistic to compare the expression level 

between a given tissue and all other tissues. We first constructed a design matrix X where 

each row represents a sample either in the target tissue or not in the target tissue. The first 

column of X has a 1 for every sample in the specific tissue and a −1 for every sample not 

in the target tissue. The remaining columns are an intercept and covariates. The outcome Y 
in our model is expression. We fit this model using ordinary least squares, and computed a 

t-statistic for the first explanatory variable (the first column of X):

t = (XTX)−1XTY [0]
MSE . (XTX)−1[0, 0]

where MSE is the mean squared error of the fitted model, i.e.,

MSE = 1
N (Y − X(XTX)−1XTY )T (Y − X(XTX)−1XTY )

where N is the number of rows in X. This process was repeated to compute a t-statistic 

summarizing the importance of each gene in each tissue.

We then ranked all of the genes by their t-statistic within each tissue and defined the 

top 10% of genes with the highest t-statistic to be the specifically expressed genes that 

are representative of a given tissue. A 100-kb window was added on either side of the 

transcribed region of each gene in the set of specifically expressed genes to construct a 

genome annotation that corresponded to the specific tissue. Next, we applied stratified 

LD score regression, in which we jointly modeled the annotation of the given tissue, a 

genome annotation that corresponded to all genes, as well as the 52 annotations in the 

‘baseline model’ (31). Here, the baseline model includes genic regions, enhancer regions and 

conserved regions in mammals, which were conserved and not specific to any cell types 
(31). Stratified LD score regression is a method for stratifying the trait heritability according 
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to the contribution of the genome annotation in each specific tissue (32). We first linearly 

regressed the phenotype Y on genotype X with Y = X · β + ε, where X was a vector of 

SNPs for an individual, and each SNP has been standardized to mean 0 and variance 1 in 

the population. All SNPs can be categorized into one of genomic annotations (C1, …, Ck). 

Given genomic annotations C1, …, Ck, we modeled the effect of SNP i on phenotype Y as 

drawn from a normal distribution with mean 0 and variance

V ar(βi) = ∑k τk1{i ∈ Ck} . (1)

We can call Var(βi) the per-SNP heritability of SNP i.

Under this model, the expected marginal χi2 association statistic at SNP i reflects the 

contribution of both SNP i and SNPs in LD with SNP i. Specifically,

E[χi2] = 1 + Na + N∑k τkℓ(i, k),

where N is the GWAS sample size, a is a constant that measures confounding biases,(33) and 

ℓ(i, k) is the LD score of SNP i to category Ck, defined as ℓ(i, k) = Σjr2(i, j)1{j ∈ Ck}, where 

r2(i, j) is the squared correlation between SNPs i and j in the population. To estimate the τk, 

we first downloaded ℓ(i, k) calculated from the 1000 Genomes project reference panel (34), 

and regressed χi2 on ℓ(i, k) (35).

The regression coefficient τk quantifies the contribution of annotation Ck to vBMD trait 

heritability, conditioning on the set of all genes and the baseline model; τk will equal 

to 0, if Ck is not enriched; τk will be positive if belonging to Ck increases per-SNP 

heritability, accounting for the set of all genes and the baseline model, and vice versa. 

Standard errors of τk, the contribution of annotation Ck to vBMD trait heritability, can be 

computed with a block jackknife(36) and then used to calculate P-values that tested whether 

τk was positive. Tissues for which its specific genome annotations Ck showed significant 

associations (p value < 0.05) with vBMD were deemed as putative vBMD relevant tissues. 

We applied a lenient threshold in order to be inclusive and ensure that potentially relevant 

tissues were not excluded at this very initial stage. (When reporting quantitative results, we 

normalized the coefficient τk by our estimate of the mean per-SNP heritability ΣiVar(βi)/M 
to make it comparable across phenotypes, where M was the total number of SNPs (32). The 

normalized coefficient can be interpreted as the proportion by which the per-SNP heritability 

of an average SNP would increase if τk were added to it. In addition, we defined the 

enrichment of a category to be the proportion of SNP-heritability in the category divided 

by the proportion of SNPs. Given that Var(βi) is the per-SNP heritability of SNP i, the total 

heritability is defined as ΣiVar(βi) and the heritability in genomic annotation Ck is defined 

as Σi∈CkVar(βi). The total heritability and the heritability in category Ck can be estimated 

by plugging estimates of τk into Equation (1). We calculated the proportion of heritability, 

Σi∈CkVar(βi)/ΣiVar(βi), and compared it with the proportion of SNPs, ∣Ck∣/M.)
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TWAS analyses by MultiXcan

We applied a multi-tissue analysis method, called MultiXcan (15), to test the joint effects 

of gene expression on vBMD in multiple tissues. The transcriptomics panels from the 

GTEx Consortium (V7) for gene expression were downloaded from PredictDB (http://

predictdb.org/) and the prediction models were trained in a total of 48 tissues. For a given 

gene in one tissue, gene expression was characterized as an additive inheritance model using 

PrediXcan (17):

Yg = ∑
k

wk, gXk + ϵ

where

Yg is the expression of gene g,

wk,g is the effect size of marker k for gene g,

Xk is the number of reference alleles of marker k,

ϵ is the contribution of other factors that determine the expression.

The effect sizes (wk,g) were estimated with elastic net regularization (37). The expression 

levels of each gene were estimated by the SNPs in the neighborhood of the corresponding 

gene (within 1 Mb of the gene start or end, minor allele frequency > 0.05, Hardy-Weinberg 

equilibrium P value > 0.05). The detailed description on how to construct prediction models 

could be found in the published studies (38,39) and on the website of PredictDB (http://

predictdb.org/).

To integrate the information across tissues, mainly gene expression levels, MultiXcan 

regresses the phenotype of interest on the predicted expression in multiple tissues as follows:

a = ∑
j = 1

p
tjgj + ε

where

a is the phenotype vector,

gj is the effect size of the predicted gene expression in tissue j,

tj is the predicted gene expression in tissue j,

ϵ is the contribution of other factors that determine the phenotype,

p is the number of available tissue models.

Expression predictions across tissues can be highly correlated. To avoid numerical issues 

caused by collinearity, we use principal components of the predicted expression data 
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matrix as explanatory variables and discard the axes of smallest variation (namely, PCA 

regularization). In this study, we chose the first 30 principal components and considered 

linear regression for modeling so the condition number of the covariance matrix of the 

predicted expression across tissues was below 30. Other settings were as default. In 

summary, we used a machine learning-based method PrediXcan to train genotype and gene 

expression data on the same individuals in the large reference panels in order to predict 

the gene expressions based on the genotype from our new samples. The predicted gene 

expressions were used in gene-trait association studies to identify significant genes. False 

discovery rate (FDR) p values were also calculated for the selection of vBMD-significant 

genes.

Functional annotation analysis

The conversion from Ensemble ID to gene symbol was conducted in the R packages, 

clusterProfiler (40) and org.Hs.eg.db (16). Protein-protein interaction (PPI) network analysis 

was performed with the web-based tool STRING (https://string-db.org/) (41). Gene ontology 

(GO) and KEGG pathway analyses were executed by the tool Database for Annotation, 

Visualization and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/) (42,43).

RESULTS

Characteristics of FHS and MrOS

The sample sizes for different vBMD traits varied in the FHS and MrOS dataset (Table 1). 

In FHS, trabecular and integral vBMDs at lumbar L2 had relatively small sample sizes of 

approximate 800; whereas the lumbar L3 – L4 trabecular and integral vBMDs had sample 

sizes of ~2,000-2,600. In MrOS, about 2,500 samples had data for femoral neck cortical 

vBMD, integral vBMD and trabecular vBMD.

Tissues relevant to vBMDs and genes associated with vBMD through expression

By applying stratified LD score regression analyses on GWAS summary statistics, we 

identified several tissues with significant contributions to vBMD heritability (Table 2). For 

instance, we found that adrenal gland and left ventricle heart were statistically significant 

with all lumbar vertebral (L2 - L4) integral vBMDs and trabecular vBMDs (p < 0.05). 

In addition, skeletal muscle was relevant with lumbar L4 integral vBMD (p = 0.034) and 

trabecular vBMD (p = 0.027). In MrOS, left ventricle heart, atrial appendage heart, stomach, 

artery tibial and lung all showed significant relevance to femoral neck cortical vBMD, 

integral vBMD and trabecular vBMD (p < 0.05).

Subsequently, we applied MultiXcan to integrate predicted gene expression profiles from 

the multiple tissues relevant to specific vBMDs and identified seventy significant genes (p 

value < 0.001, a significance level used in earlier studies (44-46)). One gene, LYRM2, was 

significantly associated with vBMD at 10% false discovery rate (Table 3 and Supplementary 

Table 2 (30)). Some of the significant genes had been identified in the previous GWAS 

studies for osteoporosis, such as NME8 (47). In addition, we also found some novel putative 

osteoporosis-related genes, such as DNAAF2, SPAG16, M6PR, COG4, CCT8, which were 

not reported from GWAS or TWAS for osteoporosis-related traits. Among all the significant 
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vBMD-related genes, nine genes, such as LYRM2, had significant associations with femoral 

neck (FN) trabecular vBMD and nine genes, such as ODF2L, were significantly associated 

with femoral neck cortical vBMD. In addition, twenty genes, for example, SLC2A10, 
CPEB2, achieved the statistical significance for lumbar spine (LS) trabecular vBMD. 

Interestingly, the genes associated with FN trabecular vBMD are distinct from those 

associated with LS trabecular vBMD, which are also different from the genes associated 

with FN cortical vBMD. These results suggest that cortical and trabecular vBMD at different 

skeletal sites may be under different genetic controls.

Functional annotation analysis of significant genes

To explore the functional importance of the significant genes for vBMDs (i.e., significant 

genes in Table 3 and supplementary table 2), we performed PPI analysis to identify the 

potential interactions of the novel genes in our results and known osteoporosis-related genes 

reported in previous GWAS. A significant PPI network was formed among these genes 

(Figure 2). Some novel genes, such as DNAAF2, SPAG16, were connected with some 

known osteoporosis-related genes, like NME8.

To further seek out the biological mechanisms underlying the observed associations between 

these significant genes and vBMDs, we performed the GO and KEGG pathway analysis. 

GO analysis demonstrated that these significant genes were relatively enriched in one 

biological processes (Table 4). However, KEGG analysis did not identify any pathway that is 

significantly enriched for the vBMD associated genes.

CONCLUSIONS

In this study, we performed a novel multi-tissue based TWAS to integrate genetic component 

of gene expression with GWAS results in vBMD and identified a number of putative novel 

osteoporosis-associated gene.

Most previous genetic research for osteoporosis focused on areal BMD, but very few studies 

focused on separate genetic control for bone microstructures, namely, trabecular vBMD 

and cortical vBMD. Our results indicate that trabecular and cortical bone microstructures 

may be under distinct gene control. This conclusion is consistent with the fact that patients 

with idiopathic osteoporosis often have a predominantly cortical or trabecular bone-related 

problem (48). Trabecular bone is more active and likely to be affected compared with 

cortical bone, hence, trabecular bone is more subject to bone remodeling (49). Not only 

BMD, but also bone microstructure would be affected. The weak spicules of trabecular 

bone break are replaced by weaker bone. This explains why the wrist, hip and spine are 

common osteoporotic fracture sites rather than other sites, as these sites have a relatively 

higher trabecular bone to cortical bone ratio (50). Different genes/biological pathways 

may contribute to the variances in bone compositions at different skeletal sites (51,52). In 

accordance, we observed that different genes were associated with trabecular and cortical 

vBMDs. Specifically, twenty-nine genes had significant associations with trabecular vBMD 

while nine different genes were significantly associated with cortical vBMD. We compared 

our results with the previous GWAS study by Nielson et al.(8) who identified significant 

vBMD associations at five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, 
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containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. However, none of 

the 5 genes showed significant association of predicted gene expression with vBMD in our 

study.

We first used stratified LD score regression to identify vBMD relevant tissues, for 

which vBMD heritability is enriched in regions surrounding genes with the highest 

specific expression in a given tissue. Several tissues, such as adrenal gland, left ventricle 

heart, skeletal muscle, and stomach, showed significant associations with multiple vBMD 

traits. Through literature mining, we found interesting evidence supporting the biological 

connections between these tissues and bone metabolism.

Adrenal Gland

The adrenal gland is composed of the outer cortex and the inner medulla. Glucocorticoids 

are secreted by the middle region of the adrenal cortex (53). Excess glucocorticoids can cause 

detrimental effects on bone physiology, which leads to osteoporosis and bone fracture. The 

cellular mechanisms by which glucocorticoids affects bone are complicated with a range of 

direct and indirect effects on the multiple cell types present in bone and on other tissues 

important in fracture protection (54). The most important effects among them appear to be 

direct actions of glucocorticoids on osteoblasts to reduce their activities and cause their 

apoptosis and the stimulatory action on the activity of osteoclasts (55,56).

Left Ventricle Heart

In a mouse model of postinfarction heart failure, bone marrow plasma levels of RANKL 
were significantly (p = 0.03) increased in mice with severely impaired left-ventricular 

function (57). The alterations in bone marrow plasma levels of RANKL in chronic 

postinfarction mice were consistent with similar findings observed in patients with chronic 

heart failure (CHF). Studies have shown that bone marrow plasma from patients with 

CHF stimulated the formation of osteoclasts, and this effect could be blocked by RANKL 
antibodies (57). Additionally, studies have provided evidence that increasing RANKL 
expression by various stress conditions could stimulate osteoclast differentiation (58). These 

results suggested a direct pathophysiological pathway linking the function of the left 

ventricle heart with bone remodeling.

Skeletal Muscle

Results from basic and clinical research of bone and muscle suggested close interactions 

between bone and skeletal muscles via local and humoral signaling pathways in addition 

to their musculoskeletal functions (59). In fact, age-related muscle loss may coexist with 

osteoporosis, establishing a vicious cycle between dysfunctional muscle and bone (60). 

Meanwhile, endocrine factors influence muscle and bone through protein catabolism. For 

example, active vitamin D can increase osteoglycin level, which leads to rescuing the 

decrease in myotubular differentiation and suppressing osteoblast differentiation through 

muscle-derived soluble factors (61). Insulin-like growth factor binding proteins are secreted 

from muscle. Insulin-like growth factor binding protein 2 (IGFBP-2), which is a member 

of insulin-like growth factor binding protein, facilitates the differentiation of osteoblasts 

through an interaction of the heparin binding domain-1 with receptor tyrosine phosphatase 
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β (62). Other factors, such as inflammatory, nutritional states, etc., can also affect the 

interaction of bone with skeletal muscle from different points of view.

By integrating information available across multiple vBMD relevant tissues, we identified 

seventy genes associated with vBMDs at various skeletal sites. Among them, many genes, 

such as NME8, LYRM2, and RGS5 have previously been reported to have a connection with 

BMD/osteoporosis.

NME8 -- NME/NM23 Family Member 8, has an extremely high expression specifically 

in bone tissue (63). Estrada et al. discovered rs10226308, a SNP mapped with NME8, 

was significantly associated with lumbar spine BMD (p = 6 × 10−13) (47). However, the 

functional roles of NME8 in bone metabolism are currently unknown.

LYRM2 -- LYR motif containing 2, is the one of the top ten most significantly upregulated 

differentially expressed genes in trabecular osteocytes between osteoporosis and normal 

controls (64,65). In a previous study, LYRM2 was found to be significantly differentially 

expressed in peripheral blood monocytes between osteoporosis patients and normal controls 
(65). However, the functional roles of LYRM2 associated with bone metabolism are still 

unknown and warrants further investigation.

RGS5 -- Regulator of G Protein Signaling 5, which is a GTPase activating protein, 

was found to have overexpression in parathyroid tumors associated with primary 

hyperparathyroidism (PHPT) and previous research showed that the calcium-sensing 

receptor (CASR) signaling could be inhibited by RGS5. Given the characteristics of the 

bone in PHPT patients, namely, preserved or increased trabecular bone and cortical bone 

loss (66), Balenga et al. assessed the microstructure of trabecular bone in mice femurs 

and discovered that the significant increase of trabecular bone volume correlated with 

parathyroid hormone (PTH) levels regulated by RGS5 parathyroid-specific overexpression 
(67). In our study, RGS5 was also found to have a significant association with femoral neck 

cortical BMD, which was also worth further validation.

In addition, we identified a number of novel putative vBMD associated genes, such 

as DNAAF2, SPAG16, M6PR, COG4, CCT8. Many of these novel genes formed 

significant PPI network with known osteoporosis-related genes, highlighting their functional 

potentials on regulating osteoporosis risk. Interestingly, based on GeneCards (https://

www.genecards.org/), some of these novel genes (e.g., DNAAF2, SPAG16) exhibit higher 

expression levels in bone marrow compared with other tissues, suggesting that these novel 

genes may be associated with bone metabolism in some degree.

In light of the novel findings of vBMD associated tissues and genes, our study also has 

a few limitations. First, we were unable to include bone tissue/cells (e.g., osteoblast, 

osteoclast) in our TWAS analysis. This is because there is no gene expression data of 

bone tissue/cells in the GTEx reference panel used in this study. In addition, though there 

are a few published osteoblast/osteoclast eQTL (expression quantitative trait locus) studies 
(68,69), these studies did not release the individual-level genotype and transcriptome data for 

data sharing, and thus we were unable to leverage these studies for the TWAS analysis. 

Second, the sample sizes of GTEx reference panels were relatively small at present, and 
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thus some gene expression levels may not be accurately predicted (70). Third, TWAS tend 

to identify multiple significant genes per locus, and many of them may not be causal due 

to confounding through linkage disequilibrium among SNPs. There may exist a concern 

of collinearity(71). Fourth, the GWAS cohorts for vBMD are relatively small compared to 

many other osteoporosis-related traits, which may limit the statistical power of this study 

to identify osteoporosis-related genes. Future studies are needed to expand the sample sizes 

of both gene expression reference panel and GWAS cohorts, to develop new methods to 

overcome the confounding problem of linkage disequilibrium among SNPs, as well as to 

acquire gene expression data in primary human bone tissues/cells.

In summary, we performed the first multi-tissue TWAS for vBMD and identified a number 

of novel vBMD associated genes in several tissues that are significantly relevant to vBMD. 

Our findings highlighted the power of integrating tissue-specific gene expression data with 

GWAS statistics to reveal novel insights into the potential pathogenesis mechanisms of 

osteoporosis.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We performed the first TWAS for volumetric BMD across multiple tissues.

• We identified 70 significant genes associated with vBMD.

• NME8 and LYRM2 have been revalidated to have a connection with BMD/

osteoporosi.

• DNAAF2 and SPAG16 were identified to be putative vBMD associated genes.
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Figure 1. 
Overview of the analyses.
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Figure 2. 
PPI network of significant genes associated with vBMD. The minimum required interaction 

score is set to 0.400. Line thickness indicated the strength of data support.
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Table 1.

Sample sizes of the FHS and MrOS subjects for different types of vBMDs

vBMD Number of subjects Males Females

FHS

Lumbar vertebrae

L2 trabecular vBMD 806 232 574

L3 trabecular vBMD 2,440 1,263 1,177

L4 trabecular vBMD 1,920 1,138 782

L2 integral vBMD 800 228 572

L3 integral vBMD 2,423 1,254 1,169

L4 integral vBMD 1,902 1,129 773

MrOS

Femoral Neck (FN)

Cortical vBMD 2,519 2,519 0

Integral vBMD 2,520 2,520 0

Trabecular vBMD 2,517 2,517 0
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Table 2.

Significant tissues relevant to vBMDs

Trait Name Coefficient Coefficient P value

L2 integral vBMD Esophagus Mucosa 1.73E-11 0.010

Skin Not Sun Exposed (Suprapubic) 1.38E-11 0.015

Heart Left Ventricle 1.35E-11 0.020

Adrenal Gland 1.42E-11 0.025

Heart Atrial Appendage 9.88E-12 0.038

Brain - Spinal cord (cervical c-1) 9.94E-12 0.040

L2 trabecular vBMD Esophagus Mucosa 1.84E-11 0.003

Adrenal Gland 1.39E-11 0.017

Heart Left Ventricle 1.21E-11 0.021

Skin Not Sun Exposed (Suprapubic) 1.21E-11 0.022

Transverse Colon 1.19E-11 0.045

L3 integral vBMD Heart Left Ventricle 1.66E-12 0.011

Adrenal Gland 1.67E-12 0.014

Esophagus Mucosa 1.48E-12 0.020

Transverse Colon 2.08E-12 0.021

L2 trabecular vBMD Heart Left Ventricle 1.87E-12 0.004

Adrenal Gland 2.01E-12 0.009

Esophagus Mucosa 1.75E-12 0.013

Transverse Colon 1.97E-12 0.026

Heart Atrial Appendage 1.14E-12 0.040

Skin Not Sun Exposed (Suprapubic) 1.28E-12 0.049

L4 integral vBMD Transverse Colon 2.88E-12 0.017

Adrenal Gland 2.05E-12 0.019

Heart Left Ventricle 1.81E-12 0.027

Esophagus Mucosa 1.85E-12 0.034

Skeletal Muscle 1.69E-12 0.034

L4 trabecular vBMD Transverse Colon 3.68E-12 0.007

Heart Left Ventricle 2.50E-12 0.011

Esophagus Mucosa 2.57E-12 0.015

Adrenal Gland 2.21E-12 0.024

Skeletal Muscle 2.10E-12 0.027

Skin Not Sun Exposed (Suprapubic) 2.30E-12 0.031

Esophagus Muscularis 1.88E-12 0.041

FN cortical vBMD Heart Left Ventricle 8.20E-12 <0.001

Heart Atrial Appendage 4.22E-12 0.006

Stomach 4.26E-12 0.024

Artery Tibial 3.55E-12 0.024

Lung 3.11E-12 0.032
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Trait Name Coefficient Coefficient P value

FN trabecular vBMD Heart Left Ventricle 3.95E-12 <0.001

Heart Atrial Appendage 2.01E-12 0.007

Stomach 2.08E-12 0.023

Artery Tibial 1.74E-12 0.024

Lung 1.53E-12 0.031

FN integral vBMD Heart Left Ventricle 6.93E-12 <0.001

Heart Atrial Appendage 3.57E-12 0.006

Stomach 3.60E-12 0.023

Artery Tibial 2.99E-12 0.024

Lung 2.63E-12 0.031

Notes: Bold tissues are associated with multiple vBMD traits at lumbar spine or femoral neck, respectively.
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Table 3.

Most significant genes associated with vBMDs

Ensemble ID Gene Symbol P FDR P Traits

ENSG00000083099 LYRM2 <0.00001 0.01 FN trabecular vBMD

ENSG00000086288 NME8 0.00007 0.52 L2 integral vBMD

ENSG00000173638 SLC19A1 0.00004 0.22 L3 integral vBMD

ENSG00000197496 SLC2A10 0.00008 0.25 L4 trabecular vBMD

Notes: Genes with p < 0.0001 are listed here, and the rest of significant genes (p < 0.001) are listed in Supplementary Table 2.
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Table 4.

Enriched GO terms in vBMD associated genes

Data Source Term Count P Genes

GO-BP GO:0007288 ~ sperm axoneme assembly 2 2.1E-2 IQCG, SPAG16

BP: Biological Process.
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