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Abstract

Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in 

part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung 

manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe 

morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely 

understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances 

for highly morbid manifestations remain hindered by the absence of effective organ-specific 

approaches targeting “irreversible” fibrotic sequelae and difficulties in conducting clinical trials 

in a heterogeneous disease with small patient numbers. The purpose of this document is to 

identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic 

GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, 

and to propose strategies for effective trial design. The working group made the following 

recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, 

to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution 

of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal 

multicenter studies with common definitions and research sample collections; (3) Develop new 

approaches for early identification and treatment of highly morbid forms of chronic GVHD, 

especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) 

Establish primary endpoints for clinical trials addressing each highly morbid manifestation in 

relationship to the time point of intervention (early versus late). Alternative endpoints, such as 

lack of progression and improvement in physical functioning or quality of life, may be suitable for 

clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective 

response assessment and exploration of novel trial designs for small populations are required.
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Chronic graft-versus-host disease (GVHD) may be associated with significant morbidity, in 

part due to development of non-reversible fibrosis (eye, sclerosis, lung) with detrimental 

impact on physical functioning (sclerotic skin manifestations, lung) and survival (lung, 

gastrointestinal) [1,2]. Progress in prevention of long-term severe morbidity and mortality 

associated with chronic GVHD is limited by a complex and incompletely understood disease 

biology and lack of prognostic biomarkers associated with a highly morbid future course. 

Treatment advances for these highly morbid manifestations are limited because of both 

the difficulty in conducting clinical trials in a heterogeneous disease with small patient 

numbers and the absence of effective organ-specific approaches targeting “irreversible” 

fibrotic sequelae.

PURPOSE OF THIS DOCUMENT

The goal of this working group is to address gaps and outline a roadmap of research goals 

including suggestions on trial design for frequent, highly morbid forms of chronic GVHD, 

namely advanced skin sclerosis and fasciitis, and lung, ocular, and gastrointestinal (GI) 

involvement.

SUMMARY OF RECOMMENDATIONS

1. Future studies should phenotype chronic GVHD clinically and biologically, 

to describe the incidence, prognostic factors, mechanisms of organ damage, 

and clinical evolution of highly morbid manifestations including long term 

effects of morbid forms in children. Longitudinal multicenter studies with 

common definitions (diagnostic and inclusion criteria, documentation of organ 

involvement and endpoints with sufficient follow up) and research sample 

collections are needed (Figures 1 and 2).

2. Develop new approaches for early identification and treatment of highly morbid 

forms of chronic GVHD, especially biologically targeted treatments, with a 

special focus on prevention and treatment of fibrotic changes.

3. Establish primary endpoints for clinical trials addressing each highly morbid 

manifestation in relationship to the time point of intervention (early versus late). 

Alternative endpoints, such as lack of progression and improvement in physical 

functioning or quality of life, can provide compelling evidence of clinical benefit 

in clinical trials to evaluate treatment of highly morbid manifestations.

4. Explore novel trial designs for small populations, emphasizing the need for 

objective endpoints.
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METHODS

Each working group was created to encourage global engagement in the topic [3]. Groups 

worked individually to review the relevant literature and create the initial draft of the paper, 

which was circulated for review and comment by the Steering Committee. Two iterative 

rounds of comments from the Steering Committee were collected before the November 

2020 Consensus Conference with appropriate manuscript revisions. Based on additional 

comments from Conference participants and a 30-day public comment period, the paper was 

further revised for submission.

SCLEROSIS OF SKIN AND FASCIA

Current clinical knowledge

Skin is the organ most frequently affected by chronic GVHD. Although inflammatory 

disease manifestations characterized by erythematous or lichen planus-like clinical 

presentations are often responsive to therapy, management options for fibrotic disease 

remain limited although responses have been reported in superficial and deep sclerosis.

Sclerotic chronic GVHD (ScGVHD) at onset of disease occurs infrequently [4] but 

long-standing chronic GVHD is likely to advance to sclerosis, with 20% of patients 

having sclerosis after 3 years of chronic GVHD therapy. The prevalence of sclerosis 

exceeds 50% among those with severe disease [4–7]. ScGVHD can manifest as localized 

disease (morphea-like), diffuse involvement, deep sclerosis, panniculitis, or fasciitis 

without epidermal manifestations. ScGVHD may cause joint contractures, skin breakdown, 

neuropathy (including small fiber neuropathy [8], nerve compression syndrome and painful 

muscle cramping [9]), myopathy as a consequence of fascial compression, and vascular 

insufficiency that contributes to poor wound healing.

Pathophysiology

Fibrosis represents the terminal step of an unchecked inflammatory alloreactivity cascade. 

The role of T cells in chronic skin GVHD development is well defined and supported 

by defined genetic risk factors [10], but their role in an established sclerotic response is 

unknown. ScGVHD biopsy specimens demonstrate variable degrees of CD4+ and CD8+ 

T cell infiltration with unknown clonal architecture [11–14]; and infiltrating T cells may 

represent bystanders or effectors depending on biopsy timing [11,12]. In systemic sclerosis 

(SSc) [15], as well as chronic GVHD [16,17] impaired function of regulatory T cells has 

been reported, and IL-2 treatment, which expands regulatory T cells, has shown efficacy in 

advanced chronic GVHD [18]. Agonist platelet—derived growth factor-receptor (PDGF-R) 

antibodies [19] or other antibodies targeting surface antigens [20] could have a role in 

severe fibrotic forms of chronic GVHD. Poor correlation of chronic GVHD severity, lack of 

damage in grafted donor skin indicating host specificity, and limited response to PDGF-R 

inhibitors in patients with these antibodies argue against the broader relevance of these 

findings [21,22]. A possible mechanistic role of B cells in ScGVHD has been suggested with 

improvement of sclerosis after B cell depletion [23]. Additional work is needed in chronic 
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GVHD, to determine how B cells might promote fibrosis since definitive evidence linking 

antibody-dependent mechanisms to human ScGVHD is lacking [24].

Recently, distinct dermal myeloid cell populations were identified in human skin [25]. In 

animal models, macrophages contribute to development of fibrosis in both transforming 

growth factor beta (TGFβ)-dependent and -independent fashion and their pathogenic 

role in chronic GVHD is increasingly recognized [26–28]. Relevant for ScGVHD, 

myeloid-sourced TGFβ [29,30] promotes fibrosis through positive regulation of fibroblast 

proliferation and differentiation into myofibroblasts [31] and stimulation of extracellular 

matrix overproduction [30]. In addition, macrophage-derived TGFβ promotes epithelial 

mesenchymal transition in models of lung fibrosis [32]. Partial epithelial mesenchymal 

transition is involved in normal wound healing, although its disruption in the inflammatory 

environment can promote pathologic fibrosis in lung and skin [33]. Although fibroblasts 

represent critical mediators of fibrotic tissue injury, little is known about their homeostasis 

during chronic GVHD.

TGFβ is a keystone pathway in many fibrotic disorders and has a documented role in 

preclinical ScGVHD [29,30]. In patients, higher TGFβ levels are associated with adverse 

outcomes taking into account the challenges of correlating expression and activity [34,35]. 

However, TGFβ exerts distinct effects on post-transplantation complications early and late 

after transplantation [30], has pleiotropic roles in different compartments [36], and activates 

distinct downstream signaling pathways [36], making it challenging as a therapeutic target. 

Type I interferon responses feature prominently in SSc skin fibrosis and ScGVHD as well 

[37,38], tightly linking adaptive and innate immune crosstalk in initiation and persistence 

of ScGVHD, with possible therapeutic implications. The recent approval of tocilizumab in 

pulmonary manifestations of SSc highlights the importance of IL-6 in the pathophysiology 

of fibrosis and this cytokine may also play a role in ScGVHD [39–41 ].

Other interconnected pathways, commonly influenced by TGFβ, often create a feed­

forward loop promoting aberrant tissue remodeling such as the developmental (morphogen) 

pathways, particularly Hedgehog, Wnt, and Notch, which are involved in fibrotic disorders 

[33,42–44]. Active Hedgehog signaling has been observed in the skin of patients with 

ScGVHD, and its targeting in preclinical models modulated collagen production by 

myofibroblasts and reduced fibrosis [45]. Hedgehog inhibitors have been tested in chronic 

GVHD with some efficacy, although their use is hindered by significant toxicities [46,47]. 

Recent data in ScGVHD suggested an immunomodulatory role of morphogen pathways with 

broad effects on adaptive immunity promoting chronic GVHD [46,48], thus providing an 

added impetus for clinical translation. The endocannabinoid system is involved in multiple 

inflammatory and fibrotic disorders, with opposing roles for signaling through cannabinoid 

receptor 1 (CB1R; profibrogenic) and cannabinoid receptor 2 (CB2R; antifibrotic/anti­

inflammatory), and agents targeting these receptors (CB1R antagonists, CB2R agonists) 

are already in clinical trials [49–52]. Of the many immune mechanisms that contribute to 

development of chronic GvHD, it will be important to elucidate whether different immune 

pathways lead to specific clinical presentations.
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Gaps in knowledge and unmet needs; highest priorities

The pivotal role of immune injury in the initial steps of fibrosis is well accepted. However, 

the mechanisms responsible for the shift from active inflammation to feed-forward loops of 

dysregulated tissue remodeling remains unknown. Understanding this transition is essential 

to devise approaches with optimal therapeutic indices that minimize immunosuppression. 

Both skin and peripheral blood samples should be queried to identify abnormalities 

along the disease continuum to inform preclinical modeling with a goal of defining 

the mechanistic relevance of the observations. Optimized preclinical ex vivo approaches 

could be well suited for the latter (e.g., to evaluate the effect of TGFβ and TGFβ 
pathway inhibitors on sclerotic skin fibroblasts). Deeper interrogation should use -omics 

methods and novel tissue diagnostic approaches such as multiplex immunohistochemistry/

immunofluorescence, which can be enhanced by artificial intelligence (machine and deep 

learning) to offer a spatial perspective into the disease process and facilitate the development 

of novel biomarker signatures.

Clinical trials need more robust and sensitive endpoints. It is particularly challenging to 

precisely quantify the evolution and the extent of deep-seated (subcutaneous and fascial) 

disease to assess response and the current organ-based grading system is poorly suited 

to detect responses in established sclerosis. Given this limitation, functional improvement 

(e.g., improved joint mobility documented by P-ROM and physician global and skin and 

joint tightening scale per the 2014 National Institutes of Health [NIH] Consensus) could 

be considered an ScGVHD response, even if skin-specific scoring remains unchanged. Data 

supporting such an approach have been published [53], and bedside validation in ScGVHD 

should be actively pursued. Imaging biomarkers that have been suggested include high­

frequency ultrasonography and magnetic resonance imaging, but rapid, safe, less costly, 

and accessible clinical assessment tools are needed (Table 1) [54,55]. Gene expression 

biomarkers in SSc skin correlated highly with changes of the modified Rodnan skin score 

and have been utilized to support response assessment in several clinical trials in that disease 

[56–59], but its use in ScGVHD requires additional exploration.

Translation of knowledge accrued from organ fibrosis (e.g., SSc and idiopathic pulmonary 

fibrosis) to ScGVHD should be accelerated and is critical to improvement in patient care. 

Some agents have already demonstrated promise in chronic GVHD (e.g. belumosudil, a 

rho-associated coiled coil protein kinase-2 (ROCK2) inhibitor [60]), whereas many others 

have yet to be explored (e.g., connective tissue growth factor or cannabinoid receptor—

directed therapies) (Table 2). Theoretically, avoiding unnecessary immunosuppression and 

side effects is possible with topical delivery methods [61], but most are formulated to 

be effective only against superficial skin conditions affecting the epidermis and papillary 

dermis. Effective topical delivery in ScGVHD may be hampered by increased dermal 

thickness and possibly by lower permeability. Strategies to improve drug delivery include 

physical approaches (microneedles, laser, iontophoresis), particle-based drug carriers (lipid­

based, nanoparticles) and chemical approaches (permeation modifiers, prodrugs) [62]. 

Precision medicine with engineered cell therapies targeting fibrosis have been explored in 

other diseases [63] and could be considered in ScGVHD. Multitargeting approaches may 

Wolff et al. Page 7

Transplant Cell Ther. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be helpful to prevent evolution to sclerosis and to enhance safety without compromising 

efficacy [64].

Highest Priorities and Roadmap for progress for ScGVHD

1. Longitudinal multicenter studies to evaluate pathologic cell populations in 

lesional and unaffected skin and peripheral blood, and cytokine and chemokine 

responses, should be done to identify early signatures for subsequent fibrosis and 

to identify additional target pathways.

2. Capitalize on the enhanced resolution of next generation sequencing strategies, 

including single-cell RNA-, assay for transposase-accessible chromatin (ATAC)-, 

TCR-, and BCR-sequencing to query skin biopsies to provide biological insight 

into the mediators of ScGVHD in individual patients, address the degree of 

temporal and clinical disease heterogeneity, and the origins (recipient versus 

donor) and phenotype of clonally expanded T- and B-cell populations. These 

investigations could be complemented by new proteomic technologies such as 

multiplexed ion beam imaging by time of flight (MIBI-TOF) [65] combined 

with nonlinear dimensionality reduction analysis approaches (visualization of 

t-distributed stochastic neighbor embedding [tSNE]/[viSNE]).

3. Analyze differences in expression and the spatial distribution of mediators and 

targets within the epidermis, dermis, subcutaneous fat, and fascia in an effort 

to understand differences in clinical presentations and identify interventions that 

could be personalized.

4. Test emerging therapies being developed for organ fibrosis and supported 

by biological insights in ScGVHD, focusing on early intervention. Promising 

candidates are listed in Table 2. Combination therapies targeting multiple 

pathways active in fibrosis should be considered to augment efficacy while 

minimizing toxicities aiming to stop or potentially reverse fibrotic changes.

5. Develop novel cost-effective tools for better measurement and documentation 

of change in skin sclerosis for clinical trials. Refinements of the current 2014 

clinical response criteria are needed for skin sclerosis/fascia manifestations.

PULMONARY INVOLVEMENT

Current clinical knowledge

Bronchiolitis obliterans syndrome (BOS) is the only formally recognized manifestation of 

lung chronic GVHD, with an incidence of 3% to 10% of allogeneic hematopoietic cell 

transplant (HCT) recipients [66–68], and 14% [69] in those with chronic GVHD. Although 

the histologic entity of obliterative bronchiolitis is the diagnostic lesion of lung GVHD, 

clinical diagnosis is largely based on pulmonary function studies that cannot be performed 

in children under age 7 [70]. Risk factors for onset include antecedent respiratory viral 

infections [71,72] and impaired lung function early after transplantation [68,73]. Worse 

prognosis is associated with early onset after transplantation and severe impairment of 

forced expiratory volume first second (FEV1) at diagnosis. Contemporary series show a 
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2-year survival rate of 70% after BOS diagnosis [74], and 5-year survival remains low at 

approximately 50%, highlighting the need for novel prevention and treatment strategies [68].

Pathophysiology

The pathology of BOS is characterized by fibrotic narrowing and obstruction of small 

airways, likely the shared outcome of immune and non-immune mediated injury to the 

airway epithelium. A fundamental knowledge gap, however, lies in understanding the 

triggers of lung epithelial cell injury and subsequent mechanisms of altered immune 

and fibrotic responses that result in obliterative bronchiolitis. Mechanisms being explored 

in other disease contexts include airway stem cell depletion [75] and acquisition of a 

persistent inflammatory airway epithelial cell phenotype [76,77]. The immune dysregulation 

associated with BOS after lung allograft or HCT appears to involve oligoclonal expansion 

of CD4+ T cells, reduced T regulatory cells, and higher levels of IL-17 and IL-8 [78]. 

In one murine model, alternatively activated macrophages drove BOS, supported clinically 

by evidence of leukotriene production, and polarized CD4+ immune activation [26]. In 

another preclinical model, donor B cells contribute to airway pathology through local 

antibody production. In this model, genetic disruption of germinal center formation, which 

is supported by T follicular helper cells [79], reduced pulmonary dysfunction [80]. These 

mechanistic insights have not yet been confirmed in humans, although biomarker studies 

support a prominent role of B cells with significantly elevated CD19+CD21low B cells 

and high soluble B-cell activating factor levels [81]. The role of the microbiome, which is 

influential in other airway diseases, should be investigated [82].

Physiological subtypes

Defining clinical phenotypes of BOS remains a significant knowledge gap that hampers 

our ability to identify patients at risk for morbidity and death from lung GVHD. Current 

NIH spirometric criteria used for BOS diagnosis defines this disorder based upon airflow 

obstruction. Although this definition encompasses most cases of BOS, it is unlikely 

to reflect the full spectrum of physiologic and histologic manifestations of BOS, nor 

does it facilitate identification of early disease [83–85]. A concerning pattern is reduced 

FEV1 and forced vital capacity (FVC) with normal FEV1/FVC ratio [83], potentially 

reflecting impaired exhalation caused by air trapping by small airways obstruction, resulting 

in a pattern that suggests restriction. This pattern underlines the need for a complete 

evaluation including lung volumes and a high-resolution chest computed tomography 

scanning in expiration. An open question remains whether lymphocytic bronchiolitis, which 

is responsive to anti-inflammatory agents [84], represents early phase of disease, a distinct 

subtype of BOS, or is a separate entity from BOS. Although some patients demonstrate 

stability of FEV1 after clinical recognition, this plateau could be due to treatment, a distinct 

biology, or the stage of the disease at diagnosis [69,74]. More significantly, the clinical and 

biological risk factors for progressive refractory lung function decline are not known.

The association of chronic GVHD with restrictive lung impairment remains ill-defined 

for HCT survivors and is not currently recognized as a chronic GVHD manifestation. 

Restrictive allograft syndrome is a phenotype of chronic lung allograft dysfunction (CLAD) 

in lung transplantation recipients, and is defined by a reduction in FVC or total lung capacity 
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(TLC) with persistent lung infiltrates and carries a worse prognosis than classic BOS [86–

89]. Although a similar entity is suspected to occur after HCT, confounding diagnoses 

for restrictive physiology and the lack of validated diagnostic criteria in the context of 

chronic GVHD have been barriers to recognition [89]. Although restriction may be due 

to known interstitial lung disease entities including organizing pneumonia, restrictive lung 

impairment in chronic GVHD can also be caused by extraparenchymal processes including 

truncal sclerosis [90], respiratory muscle weakness [85,91], or pleural effusions. In severe 

BOS, histological evidence of interstitial pathology is often associated with the bronchiolar 

lesions [85], suggesting that interstitial abnormalities, in addition to airway pathology, are 

part of the spectrum of lung chronic GVHD. Table 3 summarizes the spectrum of lung 

abnormalities, diagnostic criteria and association with chronic GVHD after HCT.

Treatment

Treatment for manifest BOS is aimed at stabilizing lung function, which reflects the 

sobering observations that diagnosis is usually made at a later stage of disease, and no 

therapies that reverse the end-stage lesion of obliterative bronchiolitis have been established. 

Nonetheless, efforts at early recognition and intervention may be able to reverse BOS [92]. 

The combination of inhaled corticosteroids (fluticasone), azithromycin, and montelukast, 

with or without a long-acting bronchodilator, has been established as organ-specific therapy 

for BOS [93,94]. Observations of potential impaired graft-versus-leukemia effects associated 

with prophylactic azithromycin given in the early posttransplant period raised concerns 

about its use to treat BOS [95]. A subsequent analysis of patients treated for manifest BOS 

did not show an increased risk for relapse [96]. Despite these treatments, lung function 

continues to decline in a significant proportion of BOS patients [97], and intensified 

immunosuppression contributes to lung infections, which in turn worsen lung function 

supporting the need for antimicrobial prophylaxis and pulmonary rehabilitation [98,99]. 

Agents that are currently under investigation have shown utility in other chronic lung 

conditions such as pulmonary fibrosis and include inhaled immunosuppressants [100] and 

anti-inflammatory or antifibrotic agents [101].

Highest priorities and roadmap for progress in pulmonary chronic GVHD

1. Understand the onset and evolution of lung GVHD. A prospective longitudinal 

multicenter patient study cohort including adults and children followed up from 

the time of onset of chronic GVHD, is essential to comprehensively identify 

biologic triggers (e.g., viral infections), enable discovery of biomarkers for 

early diagnosis, provide biospecimens for translational mechanistic studies and 

microbiome analysis, and define lung GVHD subtypes (Figure 1).

a. Serial pulmonary function tests (PFTs) and chest computed tomography 

[90,102] with quantitative lung imaging techniques (e.g., parametric 

response mapping) are clinical tools that could be implemented 

immediately as part of clinical care to delineate phenotypes and 

physiologic biomarkers that associate with BOS. Machine learning 

approaches that combine serial data from PFTs, imaging, and clinical 

risk factors might identify scenarios that predict high risk [103]. 
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Additional modalities including hyperpolarized xenon-129 magnetic 

resonance imaging for the early detection of small airways disease in 

children should be further explored [104].

b. The creation of a shared lung-specific biorepository will support 

biomarker discovery and mechanistic studies. Given the inherent 

challenges of procuring surgical lung tissue, universal protocols should 

be implemented to systematically collect excess bronchoalveolar lavage 

and lung biopsy specimens obtained during clinical care. Less invasive 

means of sampling airway epithelium, e.g., bronchial brushings, and 

development of validated serum or plasma-based assays should be 

explored [102]. Coupling these samples with carefully annotated 

clinical databases will be critical.

2. Test strategies for early diagnosis and novel treatments in clinical trials. 

Early diagnostic strategies coupled with preemptive treatment with targeted 

agents should be evaluated to avert severe BOS forms and potentially 

reverse obstruction before progression to advanced fibrosis. Novel therapies 

for established BOS need to be tested in clinical trials that are informed 

by knowledge of BOS evolution and an understanding of pathogenesis and 

biomarkers of response, which is possible only with a longitudinal prospective 

cohort. Clinically relevant endpoints include FEV1 stability (or lack of 

progression of FEV1 decline), infectious exacerbations, exercise tolerance, 

quality of life, reduction of systemic steroid use, and overall survival.

GASTROINTESTINAL INVOLVEMENT

Current clinical knowledge

Historically, the intestine has been less commonly affected by chronic GVHD, which may 

be partly explained by lack of documentation of GI involvement in the past. The 2005 

NIH consensus (updated in 2014) provided for the first time a definition and severity 

grading for GI manifestations in the context of chronic GVHD [105]. The 2014 consensus 

requires the presence of other diagnostic or distinctive manifestations to distinguish chronic 

GVHD from acute GVHD diagnosis in patients with upper and lower GI symptoms (loss of 

appetite, diarrhea) that are typical of acute GVHD. However, the 2014 NIH organ scoring 

of chronic GVHD does not distinguish between the site of GI involvement (esophagus, 

upper GI, and lower GI), although the response criteria provide a more detailed framework 

for reporting and grading these manifestations [105,106]. Applying the NIH criteria, the 

respective incidence rates of esophageal, upper GI, and lower GI involvement are 16%, 

20%, and 13%, according to a cross-sectional analysis from the Chronic GVHD Consortium 

[107]. Most importantly, intestinal involvement is associated with greater risk of non-relapse 

mortality and patients with histologically confirmed severe lower GI involvement as part 

of chronic GVHD are usually treated with regimens recommended for management of 

acute GVHD [108–110]. Of note, esophageal web or strictures or stenosis of the upper to 

mid third part are the only manifestations regarded as diagnostic signs of chronic GVHD 

[105]. Major limitations in diagnosis and management of GI symptoms such as nausea, 
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loose stool and anorexia include multiple potential causes unrelated to GVHD [111] (i.e., 

maldigestion, toxic effects of medication, autonomic nervous system dysfunction, bacterial 

overgrowth, endocrinological sequelae, etc.). Histopathology may not be able to completely 

resolve diagnostic uncertainty due to limited sampling, patchy involvement and nonspecific 

histological abnormalities in mild cases [112,113].

Risks factors for intestinal involvement in chronic GVHD remain to be elucidated. Ethnicity, 

genetic diversity, environmental differences, diet, antibiotic use, supportive care, and 

microbiota or microbe-derived metabolites may all influence GI GVHD [114–118]. Age 

is a potential risk factor because children appear to be particularly susceptible to late 

GI-acute GVHD which affects up to 25% of pediatric transplant recipients [119] and can 

persist to and beyond the diagnosis of chronic GVHD. A small study showed that increased 

relative abundance of butyrogenic bacteria after the onset of acute GVHD was associated 

with subsequent steroid-refractory acute GVHD or chronic GVHD [118] indicating the 

need for further investigations of dysbiosis and antibiotic strategies and their association 

with GI-chronic GVHD and other manifestations of the disease [117]. GI manifestations of 

chronic GVHD may have complex causes but are rarely directly fatal, and the mechanisms 

that increase the subsequent risk for nonrelapse mortality remain to be elucidated.

Pathophysiology

In many tissues chronic GVHD is characterized by atrophy and destruction with subsequent 

fibrosis, but intestinal fibrosis is a rare GI-manifestation of chronic GVHD [120,121]. 

Intestinal epithelium is the most rapidly self-renewing tissue in adults; intestinal epithelial 

cells are continuously regenerated from intestinal stem cells, which are key to the 

regeneration of damaged intestinal epithelium [122]. Tissues having squamous epithelium 

(e.g., skin, mouth, esophagus, and vagina) and tissues having cuboidal epithelium (e.g., 

sweat, lacrimal, and salivary glands) appear to be more prone to dysregulated fibrosis 

in chronic GVHD than those having columnar epithelium (e.g., stomach, intestine, and 

trachea). Animal studies have demonstrated that both intestinal stem cells and their 

Paneth cell niche are impacted in acute GVHD, with impaired regeneration of the injured 

epithelium [123–129]. The rapid and potent repair ability of the intestine may protect against 

early fibrotic processes that often accompany repair processes in other tissues. Profiling of 

immune cell populations and plasma markers at day 100 after HCT demonstrated biological 

differences between chronic GVHD and late-onset acute GVHD [130].

Highest priorities and roadmap for progress in gastrointestinal chronic GVHD

1. Enforcement of the NIH 2014 classification terminology distinguishing acute 

from chronic GVHD within and across studies [112,131–136] since current 

longitudinal observational and clinical trials revealed a significant number of 

incorrectly classified patients [119]. According to the NIH 2014 terminology 

any patient developing diagnostic or distinctive signs of chronic GVHD during 

treatment of acute GVHD should be classified as having chronic GVHD with 

documentation of all manifestations. The presence and severity of individual GI 

manifestations (esophagus, upper GI, lower GI) should be also recorded and the 

use of the 2014 response criteria form to document individual GI manifestations 
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is necessary at the time of diagnosis and in response to therapeutic strategies. 

Electronic tools such as the GVHD App may assist [137]. Adhering to these 

terminology will allow more reliable future studies of GI GVHD.

2. Develop diagnostic tools (i.e., blood and/or histopathological biomarkers among 

others) to differentiate GVHD from other causes of GI-symptoms.

3. Generate experimental and clinical models able to address the role of dysbiosis 

and intestinal inflammation in chronic GVHD involving organ manifestations 

outside the GI tract.

4. Collect blood, stool and or other body sites samples (e.g., saliva) and GI biopsies 

in either longitudinal observational cohorts or interventional clinical trials to 

allow development of biomarkers [138–140], through metabolomic alterations 

and microbiome compositions with sufficient sampling. These studies should 

include follow-up of acute GVHD trials.

OCULAR INVOLVEMENT

Current clinical knowledge

Chronic ocular GVHD (oGVHD) is one of the most frequent, rapidly-progressive 

organ manifestations with characteristic inflammatory, immune dysregulatory and fibrotic 

pathophysiological mechanisms [31,141–143]. Ocular GVHD is usually diagnosed between 

5-24 months after HCT [144–146], and it can severely impact quality of life and vision 

[147,148] because of severe symptoms such as burning, dryness [105,149–151], and loss of 

visual function [152]. Pre-existing dry-eye disease (DED) and Meibomian gland disease as 

a consequence of chemotherapies or possibly irradiation increases the risk for later oGVHD 

[153,154]. Early after transplantation, some patients already have impaired tear quantity and 

quality [155], yet eye involvement is recognized only after damage exceeds the eye’s ability 

to compensate. Most importantly, oGVHD is not another form of DED, and approaches and 

therapies for DED may fail in oGVHD. Table 4 summarizes the differences between DED 

and oGVHD.

Ocular GVHD mainly presents as ocular surface disease demonstrating features such as 

blepharitis, Meibomian gland disease, qualitative and quantitative alteration of tear film, loss 

of goblet cells, corneal and conjunctival epitheliopathy, corneal vascularization and fibrosis 

of ocular tissues including conjunctiva and lacrimal glands [144,156–159]. In addition, a 

few reports have described intraocular involvement including choroid and retina [160,161]. 

However, no specific signs that are currently diagnostic for oGVHD, although certain 

combinations of findings, such as conjunctival subepithelial scarring and superior bulbar and 

limbal keratoconjunctivitis are frequently present [143,162–164]. Without early diagnosis 

and appropriate treatment, oGVHD progresses towards loss of visual function by complete 

loss of aqueous tear production and tear film stability, and scarring of the cornea. The 

impaired epithelial barrier can lead to complications such as infection, corneal ulceration 

and melting, and endophthalmitis. High-risk corneal transplants fail frequently presumably 

due to immunological rejection and impaired tear production, eventually resulting in loss of 

the eye [165–168].
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The 2013 International Chronic Ocular GVHD Consensus Group (ICOGVHD 2013) 

Diagnostic Criteria filled an existing gap by adding recommendations for specific 

examinations to be performed by eye care specialists [150,169] to previous NIH consensus 

criteria [170]. The 2013 classification facilitates diagnosis of oGVHD by providing a 

structured clinical approach for distinguishing definite oGVHD from probable or “none” 

categories. However, the 2013 classification is not designed to detect preclinical oGVHD 

or to assess severity, and it does not translate into the NIH 0-3 eye score. Other grading 

systems have been suggested and validated [171], but they have not yet been established 

internationally.

Pathophysiology

Conditioning chemotherapy, radiation and infection often precede the onset of oGVHD 

and may induce homing signals for mobilization and migration of circulating bone marrow 

derived hematopoietic cells and mesenchymal stromal/stem cells into the microenvironment 

of the ocular surface and lacrimal gland. However, it is not understood how innate and 

adaptive immune mechanisms are triggered and how these common mechanisms initiate 

oGVHD only in selected patients. Studies show increased concentrations of ICAM-1, 

IL-1β, IL-6, IL-8 [172,173], neutrophil extracellular traps (NETs) [142], extracellular 

DNA [174,175] and decreased concentrations of lactoferrin [176], DNAse [175], IL-7, 

and epidermal growth factor (EGF) [173] in the tear film. In lacrimal glands affected 

by oGVHD, early fibrosis and myxedematous tissue may herald a rapidly progressive 

fibrosis [143] with activated fibroblasts already infiltrating into the lacrimal gland. Stromal 

fibroblasts in the lacrimal gland and conjunctiva interact with pathogenic T cells and 

antigen-presenting cells including macrophages [143,177], resulting in the proliferation 

and activation of fibroblasts through cytokines, such as IL-4, IL-6, and IL-17 [178,179]. 

Macrophages and fibroblasts activated through both the classical immunological and 

sterile inflammatory pathways involving NETs [142] and extracellular DNA from the 

damaged tissue [175], activation of the endoplasmic reticulum stress pathway [180] and 

the tissue renin angiotensin system [181] synthesize an excessive amount of extracellular 

matrix, resulting in rapid interstitial inflammation and fibrosis [179,182,183]. The limited 

knowledge about key pathological mechanisms translates into the current lack of biomarkers 

for early diagnosis of oGVHD and the absence of effective topical and systemic anti­

inflammatory, antifibrotic, and possibly preventive therapies.

Information from animal models and clinical analyses

Several animal models have been used to study biology, onset, time course, and therapies 

for oGVHD [177,184–189]. These models showed that donor derived T cells infiltrate the 

cornea and lacrimal glands and lead to an oGVHD phenotype [187,189] with subsequent 

fibrosis. Perez et al introduced a scoring system for murine models of oGVHD [184]. 

Several preclinical studies tested potential therapeutics such as siRNA [190], bromodomain 

inhibitors [191], rebamipide [192], vascular adhesion protein-1 [193], and a spleen tyrosine 

kinase inhibitor [194]. Because clinical signs in oGVHD are also present in isolated 

forms in other ocular disease (e.g., conjunctival fibrosis in ocular cicatricial pemphigoid 

or chronic allergic keratoconjunctivitis), it may be necessary to use such models [195,196] 
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as comparators in experimental studies to distinguish organ-specific chronic GVHD 

pathologies from secondary, damage-related disease.

Gaps, highest priorities, and roadmap for progress in oGVHD

Currently, no treatments have been specifically approved for treatment of oGVHD, in 

part because the clinical evolution of oGVHD is largely undefined and the innate and 

adaptive immune mechanisms that trigger and sustain oGVHD are incompletely understood. 

Furthermore, oGVHD clinical trials are challenging because of the lack of well-defined 

and specific primary efficacy outcome measures, and small sample sizes. Clinical metrics, 

such as the Schirmers test or intravital staining of the ocular surface, that are established 

for diagnosing generic DED, should be amended with specific oGVHD metrics and 

defined for better application as clinical endpoints. Gaps in clinical management include 

uncertainty regarding whether to perform baseline examinations before HCT and then refer 

patients for scheduled reevaluations or for evaluations only as needed after HCT. Another 

uncertainty is whether to start oGVHD treatment with aggressive anti-inflammatory and 

immunosuppressive topical therapy followed by tapering based on improvement (step-down 

treatment) or to start with lubrication therapy followed by escalation based on progression or 

lack of improvement (step-up treatment).

HIGHEST PRIORITIES AND ROADMAP FOR PROGRESS IN CHRONIC 

OCULAR GVHD

1. Establish early diagnostic criteria (clinical signs and biomarkers) distinguishing 

oGVHD from other forms of DED so that appropriate interventions can 

be promptly instituted. This revision requires a better understanding of the 

immunopathology derived from appropriate animal models for oGVHD that 

mimic the human situation as closely as possible. These animal models should 

also be used to identify therapeutic targets and to enable preclinical testing of 

promising drug candidates and identification of functional connections between 

organ systems that are sequentially or simultaneously affected by chronic 

GVHD.

2. Identify biomarkers associated with active oGVHD at the earliest possible time 

points. As the eye is easily accessible, tear film or impression cytology can be 

tested. Besides cytokines and genetic markers, optical biomarkers may be useful, 

including optical coherence tomography or confocal microscopy that can be used 

noninvasively.

3. Develop and validate efficacy outcome measures that are specific for oGVHD 

clinical trials. Preferential primary outcome measures are corneal fluorescein 

staining and ocular discomfort measured by visual analog scale or ocular 

surface disease index until more appropriate measures that assess specific 

interventions (e.g., punctal plugs, contact lenses, serum eye drops, amniotic 

membrane transplantation) are identified. Such measures should distinguish 

ophthalmologist-driven tools from assessments that can be done in the 
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hematologist’s office. Clinical trial designs that circumvent the challenges 

imposed by limitations of small sample size are also needed (Figure 2).

4. Conduct eye-targeted studies, for example, (a) punctal occlusion or not; (b) 

referral as-needed for eye care versus prescheduled frequent follow ups; (c) step 

down (start treating aggressively then taper) versus step up (escalate treatment 

based on response).

5. Evaluate systemic treatment options for efficacy in oGVHD. Currently oGVHD 

is treated with topical interventions independently of other organ manifestations 

despite obvious similarities in the pathophysiology. A systematic analysis of 

ocular effects of systemic immunosuppression is needed.

OTHER MORBID CONDITIONS

Other conditions that are either part of NIH-defined chronic GVHD or occur in association 

with chronic GVHD require further research efforts. These include genital involvement, 

which occurs more frequently than reported in large registries due to the lack of routine 

screening [197], oral manifestations that impair quality of life and may increase the risk for 

secondary malignancies [198], isolated fasciitis [199], and wasting syndrome not explained 

by GI manifestations. Although these are NIH consensus-defined conditions, limited 

understanding of organ-specific pathophysiology prevents the development of targeted 

treatment approaches. Moreover, associated syndromes seen with chronic GVHD [200,201], 

such as polyserositis, which occurs infrequently but is difficult to treat [202], immune 

mediated cytopenias and renal complications (e.g., glomerulonephritis, nephrotic syndrome) 

require more study. All have in common the lack of knowledge of their incidence, their 

specific pathophysiology and relationship in the context of chronic GVHD.

In addition, other potential organs may also be targeted by chronic GVHD, but the exact 

relationship has not been established. For example, central nervous system dysfunction is 

reported by a significant percentage of long-term survivors mainly as cognitive dysfunction 

[203]. It remains to be established whether cognitive dysfunction is caused by cumulative 

neurotoxicity and acute GVHD, as demonstrated in experimental models and clinical 

investigations [204–206], or whether chronic GVHD further contributes. Rare cases of 

chronic GVHD with acute disseminated encephalomyelitis have been reported [161,207]. 

Similarly, peripheral nervous system dysfunction is seen in a high proportion of chronic 

GVHD patients [8,9,208], but a relationship to alloimmunity has not been established. 

Autonomic nervous system dysfunction with dry mouth or eyes, dry skin, obstipation, 

diarrhea, and sweating disturbances are of interest due to overlap with symptoms of chronic 

GVHD. For example, impaired sensitivity of the ocular surface has been reported after HCT 

[209]. Endothelial dysfunction could be part of the pathophysiology of chronic GVHD in 

a variety of organs based on experimental [210–212] and clinical evidence [213,214] and 

may contribute to long term cardiovascular morbidity and mortality [215,216] Therefore 

additional study is warranted.
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OTHER KNOWLEDGE GAPS

An additional gap is the limited knowledge of the age-dependent disease features and 

associated morbidity and mortality of chronic GVHD in children and individuals older 

than 70 years, 2 populations that are especially vulnerable to comorbidity induced by 

chronic GVHD. Although chronic GVHD in children may be difficult to diagnose, chronic 

GVHD manifestations involving the lungs and eyes [119] and other sequelae may have 

significant life-long consequences [217–219]. In older patients, chronic GVHD has been 

associated with decreased physical functioning [220], but the detailed contributions of 

chronic GVHD to mortality and potential insights for prevention and treatment of chronic 

GVHD in older patients are unknown. Moreover, while preliminary data indicate that racial 

and ethnic background are associated with long term outcomes including GVHD, large 

studies are lacking [114,116,221]. Finally, clinical care of morbid forms of chronic GVHD 

requires long-term care engagement of a multidisciplinary team [222,223]. Development and 

evaluation of survivorship care structures to provide access to multidisciplinary subspecialty 

care taking into account the socioeconomic and travel situations of individual patients 

remain an urgent research need [224].

STUDY DESIGN CONSIDERATIONS

Because of the rare incidence and limited prevalence of the highly morbid conditions, 

feasibility is a concern in clinical trials, and novel approaches to clinical investigation are 

needed [225–228]. Careful selection of endpoints that can reliably demonstrate objective 

clinically significant benefit with a realistic number of patients is critical. Studies should 

be designed with attention to sample size, statistical power, and control of bias. A detailed 

discussion of innovative trial designs is beyond the scope of this paper, but we offer the 

following recommendations.

1. Careful consideration of eligibility criteria utilizing enrichment strategies based 

on diagnostic criteria, phenotype, or biomarkers [229] may identify a smaller 

but more informative study population where a drug effect can be observed 

[230]. Patients not meeting the eligibility criteria may be treated in observational 

cohorts.

2. Some established chronic GVHD manifestations may be permanent, and a 

worthy goal could be “stable disease or improved trajectory” (reflecting 

prevention of new damage) or functional or symptom improvement instead of 

partial or complete response. These endpoints require acceptance that lack of 

worsening or improved patient functioning or patient-reported outcomes are 

meaningful clinical benefits in a given patient even if chronic GVHD organ 

function does not measurably improve. Lack of worsening can be documented 

in comparison to concurrent or historical controls [231] or the patient’s prior 

trajectory if well documented in real time.

3. Although a nonrandomized single arm study, without concurrent controls, may 

seem attractive, this design is necessarily less precise, and outcomes are less 

definitive. Alternatives to consider include use of historical controls or using 
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each patient as their own control. Single case experimental design or N-of-1 

trials may be the most feasible option for the very rare highly morbid forms of 

chronic GVHD. In such trials, each individual participant serves as their own 

control, and may receive multiple interventions in a crossover fashion. Multiple 

N-of-1 studies may then be combined in a meta-analysis. Of note, efforts should 

be made to document the course and response using objective response measures 

focused on clinically meaningful changes.

4. Efficiency of study design should be optimized. The more complex designs 

are adaptive [232–234], with the design being modified during the conduct of 

the study according to pre-specified rules to increase efficiency. For example, 

a Bayesian approach [235] is a statistical inference framework for leveraging 

existing data from different sources, synthesizing evidence of different types, 

including retrospective data and information gained during the conduct of the 

study. In particular, the data deficits of “small” clinical trials can be mitigated 

by incorporating past information. The combination of observed data and prior 

opinion is governed by Bayes’ theorem and can result in smaller sample sizes 

needed to reach conclusions. The major criticisms of the Bayesian approach are 

the uncertainty regarding the prior probability and the subjective interpretation 

of results since formal significance testing is not required, although this problem 

could be addressed by using independent or blinded assessors.

5. Optimize data analysis strategies, for example, by using more efficient 

continuous outcomes when the sample size is small. Consider longer duration 

of studies and use covariate adjustment, such as statistical stratification. Consider 

whether the distribution is likely to be parametric (modeled by a probability 

distribution that has a fixed set of parameters) or non-parametric when designing 

the analysis plan.

6. When multiple agents are available, consider efficient study designs to rank the 

agents and eliminate less-effective ones through futility or selection designs.

7. Selection of the primary endpoint depends on the mechanism of action and 

targeted manifestations (e.g., if an antifibrotic agent is tested to target sclerotic 

lesions, response of inflammatory manifestations may be captured only as a 

secondary endpoint). However, all systemic and topical agents given and all 

changes in organs should be recorded. Evaluation of agents given systemically, 

even if targeted to a single specific organ manifestation, requires documentation 

of all other organ manifestations since broader effects cannot be excluded. 

The same documentation of systemic immunosuppression is needed in studies 

that evaluate topical agents. Protocols should specify how non-study systemic 

and topical agents are handled and how responses in nontargeted organs are 

interpreted. In addition, efficacy measures developed for studies of comparable 

diseases other than chronic GVHD may also be evaluated in chronic GVHD 

[236]. Last but not least, predictive biomarkers indicating response to specific 

treatments should be developed and validated.
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8. Efforts should be made to enhance access of children, older patients and racial 

and ethnic minorities to clinical trials since these characteristics are relevant 

covariables. Inclusion of pediatric cohorts into adult trials should be considered 

if feasible.

9. Rare manifestations (e.g., glomerulonephritis, restrictive lung disease) 

mimicking well-characterized immune-mediated diseases outside the 

transplantation setting may be potentially included in basket trials that include 

nontransplant patients, acknowledging potential variations in pathophysiology.

CONCLUSIONS

The need to identify approaches for effective treatment and prevention of highly morbid 

manifestations has emerged as one of the most important future goals in the field. During 

the next 3 years, identification of new diagnostic tools including biomarkers of all types and 

clinical risk factors will be crucial to prevent highly morbid complications. In the next 3 

to 7 years, we expect that a better understanding of local tissue pathophysiology will lead 

to identification of therapeutic targets. Eventually, organ-specific therapeutic clinical studies 

will be necessary. Careful study design recognizing the small size of the eligible population 

and designating appropriate endpoints will increase the likelihood of informative results.
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Figure 1. 
Potential Longitudinal Trial Design Proposal for Highly Morbid Manifestations of chronic 

GVHD using BOS as example. The proposed study approach aims to simultaneously 

address identified fundamental knowledge gaps in several domains, including (1) description 

of clinical evolution and clinical phenotypes, (2) early detection and predictive biomarker 

discovery, (3) mechanisms of disease through translational work, and (4) evaluation of novel 

treatments. High-risk patients are enrolled at a pre-diagnosis phase based on biomarker 

and clinical risk factors and followed over time through phases of chronic GVHD. Patients 

may also enter the longitudinal cohort at the time of chronic GVHD diagnosis, and if they 

develop a highly morbid manifestation, they are followed in that specific cohort category 

and may be enrolled on clinical trials. Longitudinal clinical data and serial tissue samples 

and specimens will be collected. In this Figure, lung disease is used as an example for 

the enrollment entry, interventions, endpoints, and data and samples to be collected. This 

schema can be easily expanded to reflect skin, GI, and other manifestations with relevant 

data collection and treatment agents. SOC indicates standard of care; f/u, follow-up; HRCT, 

high-resolution chest tomography; BAL, bronchoalveolar lavage; 6MWT, 6-minute walk 

test.
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Figure 2. 
Potential longitudinal trial design proposal for oGVHD. OSDI indicates ocular surface 

disease index; VAS, visual analog scale.
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