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Abstract

Background: Surveillance data captured during the COVID-19 pandemic may not be optimal to 

inform a public health response, because it is biased by imperfect test accuracy, differential access 

to testing, and uncertainty in date of infection.

Methods: We downloaded COVID-19 time series surveillance data from the Colorado 

Department of Public Health & Environment by report and illness onset dates for 9-Mar-2020 to 

30-Sep-2020. We used existing Bayesian methods to first adjust for misclassification in testing and 

surveillance, followed by deconvolution of date of infection. We propagated forward uncertainty 

from each step corresponding to 10,000 posterior time-series of doubly adjusted epidemic curves. 

The effective reproduction number (Rt), a parameter of principal interest in tracking the pandemic, 

gauged the impact of the adjustment on inference.

Results: Observed period prevalence was 1.3%; median of the posterior of true (adjusted) 

prevalence was 1.7% (95% credible interval [CrI]: 1.4%, 1.8%). Sensitivity of surveillance 

declined over the course of the epidemic from a median of 88.8% (95% CrI: 86.3%, 89.8%) 

to a median of 60.8% (95% CrI: 60.1%, 62.6%). The mean (minimum, maximum) values of Rt 

were higher and more variable by report date, 1.12 (0.77, 4.13), compared to those following 

adjustment, 1.05 (0.89, 1.73). The epidemic curve by report date tended to overestimate Rt early 

on and be more susceptible to fluctuations in data.

Conclusion: Adjusting for epidemic curves based on surveillance data is necessary if estimates 

of missed cases and the effective reproduction number play a role in management of the 

COVID-19 pandemic.
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Introduction

Epidemic curves are a mainstay of outbreak epidemiology and are used to describe, 

investigate, and track efficacy of the effort to contain disease outbreaks.1 However, they are 

only as good as the information they depict: surveillance data obtained during an outbreak 

may be coarsened by imperfect test accuracy, bias in selection for testing, and uncertainty in 

date of infection.2

For COVID-19, epidemic curves are commonly depicted by “report date” of a positive 

SARS-CoV-2 diagnostic test, the virus that causes COVID-19, in publicly available data. 

Even the widely used “COVID-19 Case Surveillance Public Use Data” for the whole of 

the U.S., assembled by the Centers for Disease Control and Prevention (CDC) and based 

on surveillance collected at state and local health departments, is missing illness onset date 

(when symptomatic, which follows actual infection) for more than half of the cases.3 Thus, 

when depicting an epidemic curve by illness onset, one is tempted to make the tenuous 

assumption that the date of report is the date of illness,2 which implies that there is no 

testing delay (the difference between disease onset and receiving the diagnostic test) and 

no reporting delay (the difference between administration of the diagnostic test and health 

department notification of the results). Assuming one can accurately capture the date of 

illness onset, then the likely window of infection is a function of the pathogen’s incubation 

period. Deconvolution can reconstruct epidemic curves by the date of infection, first being 

widely applied in public health early in the AIDS epidemic,4 and now beginning to be 

used during the COVID-19 pandemic.5 Infection date is of particular relevance to public 

health as evaluating interventions should be done proximal to infection and not reporting,6 

for example by tracking changes in the effective reproduction number (Rt) in response to 

mitigation measures.

While these approaches have greatly improved our understanding of the true pandemic, 

there is another notable shortcoming present in surveillance data: imperfect ascertainment of 

COVID-19 cases in the population. Other studies have strived to improve upon the quality 

and accuracy of surveillance data for COVID-19, albeit by handling the lack of appropriate 

date issue separately from misclassification of case status.7–9 Here we demonstrate a unified 

approach to doubly adjust epidemic curves by 1) accounting for misclassification in case 

ascertainment and 2) imputing the date of infection.

Methods

Description of data

We used publicly available COVID-19 surveillance data from the Colorado Department of 

Public Health & Environment downloaded on 15-Nov-2020.10 We used these data because 

they contain the total number of positive cases by both date of report and illness onset 
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and corresponded to the initial wave of the pandemic. Report date serves as our principal 

designation of case occurrence, given that not all jurisdictions release onset date as part 

of their public surveillance data.3 As such, onset date in our data serves as a point of 

comparison. Data were left truncated before 9-Mar-2020 due to excessive zero daily counts 

and right truncated after 30-Sep-2020 due to the apparent commencement of a subsequent 

pandemic wave.

Adjustment #1: Misclassification in testing and surveillance

We adapted a previously described Bayesian approach for COVID-19 time-series 

misclassification.9 Briefly, this method worked as follows. We specified priors for sensitivity 

and specificity of the surveillance process (accounting for errors in testing and surveillance) 

as well as true prevalence of infection in the population, and the model relating the observed 

apparent number of reported cases to the true number of cases, accounting for time series 

nature of the data and accuracy of the surveillance process. Specificity was assumed to 

be constant in time, but sensitivity could have linear trends across the entire times. We 

used a uniform prior on sensitivity where the bounds varied stochastically, with a lower 

bound ≥0.30 and an upper bound ≤0.81. These bounds covered the posterior sensitivity 

observed in a similar study of another jurisdiction, where the median posterior values were 

observed to be approximately 60% with credible intervals between 30% and 80%.11 The 

priors for specificity and prevalence were also bounded by uniform distributions between 

0.95 and 1.00 for specificity, and between 0 and 0.05 for prevalence (independently for 

each day). Using the R2jags package,12 4 Markov chains were run for 400,000 iterations, 

discarding the first 1,000 for burn-in, with a thinning interval of 200. Diagnostics included 

kernel density visualizations of the posterior distributions and traceplots (available in the 

eAppendix). A parameter was considered to have converged if its Gelman–Rubin statistic 

was <1.2. By sampling from the posterior, we arrived at our estimate of the true distribution 

of cases on a given day. Further details may be found in Burstyn, Goldstein, and Gustafson9 

and the source code (linked below). The only deviation from the previously described 

method is that we considered the number tested for COVID-19 to be the total population 

of Colorado, not numbers tested, such that misclassification referred to errors due to both 

testing and selection for testing. As such, and due to near-constant observed prevalence from 

the large denominator, only two knots were used corresponding to the start and end of the 

time-series, in the linear piecewise model for sensitivity.

Adjustment #2: Imputation of the latent date of infection

While adjustment #1 above yields a set of adjusted daily case counts, estimating the 

reproduction number, Rt, requires us to first make inference on the daily incidence of 
infection. To achieve this, we used the EpiNow2 package13, which models daily case 

counts as being negative binomially distributed with a mean equal to the product of 

a “true” underlying case count and a day-of-the-week adjustment parameter to account 

for differences in how data are reported.14 This “true” underlying case count was then 

modeled as a function of underlying daily incidence of infection counts, which were 

modeled as arising from a temporally smooth process, and a parameter that accounts for 

uncertainty in the incubation period and delay in reporting. The output from this model thus 

contains imputed samples of the daily incidence counts. To incorporate misclassification 
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in the reported case time-series in our imputation step, we randomly drew 100 iterations’ 

worth of samples from the posterior distribution described in adjustment #1. To model the 

incubation period – or time from infection to illness – we assumed a log-normal distribution 

corresponding to a mean of 5.06 days and standard deviation of 1.52 days, informed by 

Lauer et al.15 Similarly, we assumed the reporting lag period had a log-normal distribution 

with a median of 3.5 days (interquartile range=5 days) and capped to a maximum of 30 

days, based on media reporting on delays in test results in Colorado.16 The functionality 

of the EpiNow package was implemented using the rstan package,17 in which 4 Markov 

chains were run for 2,000 time-steps following a 200 step warmup period. We retained 

100 random time-series from the posterior of the infection imputation for each of the 100 

misclassified adjusted time-series. This corresponded to 10,000 doubly adjusted posterior 

time-series representing the number of COVID-19 infections for each day.

Estimation of reproductive numbers

In order to contrast the differences in inference that may result based on the observed and 

doubly adjusted epidemic curves, we estimated the (real time) effective reproduction number 

(Rt) and its accompanying 95% certainty interval using the R0 package.6 Rt was calculated 

using the real-time, time-dependent method of Cauchemez et al.,18 a Bayesian adaption 

of the likelihood-based approach of Wallinga and Teunis19 that makes inference on Rt by 

first estimating Xt, the number of cases infected by those whose disease onset occurred at 

time t. Because the COVID-19 pandemic is still ongoing (and more importantly, was still 

ongoing at the time of data collection), the approach of Cauchemez et al. partitions Xt into 

cases that infected before (i.e., cases that were observable) and after data collection (i.e., 

cases that were unobservable). Their approach then imputes these unobserved infections 

by conditioning on the disease’s generation time – i.e., the time between horizontally 

transmitted infections – which was estimated using methods described in Ganyani et al.20 

and is assumed a priori to be gamma distributed with a mean of 3.64 days and a standard 

deviation of 3.08 days. Rt was calculated for report and onset dates based on the observed 

surveillance data and infection date using the 10,000 doubly adjusted epidemic curves.

R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) was used for 

statistical programming; computational code and data are available to download from https://

doi.org/10.5281/zenodo.5009050.

Results

Between 9-Mar-2020 and 30-Sep-2020, there were 71,737 laboratory confirmed cases of 

COVID-19 reported to the State of Colorado Department of Public Health and Environment. 

With a population of 5,758,736, this translated to a period prevalence of approximately 1.3% 

(95% confidence interval [CI]: 1.2%, 1.3%).

Figure 1 depicts the epidemic curves arising from both date of report and date of illness 

onset. There were several findings that were apparent based on these data. First, there was a 

left shift in the curves when accounting for delay from illness onset to testing and reporting. 

Second, there was a smoothing of the time series data when depicted by onset date. Because 

reporting may occur irregularly throughout the week in a manner unrelated to the onset 
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of illness, the onset date should lead to a more accurate depiction of the trajectory of the 

epidemic.

After accounting for bias in the surveillance process the median of the posterior distribution 

of reported cases indicated that the total number of actual cases in the population for this 

period of time was on average 96,142 (95% credible interval [CrI]: 81,523 – 102,494). True 

prevalence was estimated to be higher than observed (median: 1.7%, 95% CrI: 1.4%, 1.8%), 

owning to near-perfect specificity of surveillance (median=100%, uncertainty arising only 

in the 5th decimal place) exceeding that of sensitivity. There was evidence of sensitivity of 

surveillance system declining over the course of the epidemic from a median of 88.8% (95% 

CrI: 86.3%, 89.8%) to a median of 60.8% (95% CrI: 60.1%, 62.6%). Posterior traceplots and 

distributions of select parameters are available in the Supplemental Material.

Figure 2 depicts the doubly adjusted posterior distribution of the epidemic curve accounting 

for the incubation period of SARS-CoV-2 and any delays in testing and reporting, as well 

as misclassification in case ascertainment. Based on this adjustment, for cases reported on 

9-Mar-2020, the first date in our time-series data, infection likely occurred on or around 

28-Feb-2020. There was a trimodal distribution of the epidemic in Colorado, with an initial 

peak in late April, a second peak occurring towards the middle of July, and a rapid increase 

of cases in late September foreshadowing the forthcoming third wave in the Fall and Winter 

of 2020–21. As expected, the adjusted epidemic curve was left shifted and visibly smoother 

than the unadjusted curve.

Figure 3 plots Rt for the three time-series data, by observed report date, by observed illness 

onset date, and by the double adjustment. For each representation of the time-series data 

and taken across the entire date range, the mean (minimum, maximum) values were: 1.12 

(0.77, 4.13) by report date, 1.05 (0.78, 2.42) by onset date, and 1.05 (0.89, 1.73) after double 

adjustment. At the conclusion of the time-series on 30-Sep-2020, the respective values of 

Rt were: 1.26 (95% CI: 1.08, 1.45) by report date, 1.18 (95% CI: 1.02, 1.33) by onset date, 

and 0.96 (95% CI: 0.90, 1.01) after double adjustment. Compared to the adjusted epidemic 

curve, the epidemic curve by report date tended to overestimate Rt during the first few weeks 

of the outbreak and be more susceptible to fluctuations due to spikes in reporting, which 

may not correspond to spikes in infection. Overall, the report date Rt was more weakly 

related to the doubly adjusted Rt than to onset date Rt (Spearman’s ρ=0.63 [95% CI: 0.54, 

0.71] vs. 0.79 [95% CI: 0.74, 0.84], respectively).

Discussion

Using COVID-19 time series surveillance data from the Colorado Department of Public 

Health & Environment, we applied Bayesian methods to first adjust for misclassification in 

testing and surveillance, followed by deconvolution of date of infection, to more accurately 

depict the state’s epidemic curves between 9-Mar-2020 and 30-Sep-2020. From these 

doubly adjusted data, we were able to obtain a more precise and valid estimate of Rt 

compared to use of either report or onset dates, with estimates using the report dates being 

especially uncertain. Comparing these two designations of case occurrence time, onset date 

Rt aligned closer to the double-adjusted Rt compared to report date Rt, and if investigators 
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are presented with both options for calculating Rt, onset date is likely the better choice. This 

may be due to the fact that onset date is less vulnerable to fluctuations in the time-series 

(Figure 1), as it has already been somewhat adjusted for reporting delays. Indeed, the 

smoothing of the doubly adjusted epidemic curve demonstrated value for those interpreting 

such curves: public health has cautioned against overly interpreting sharp daily fluctuations 

in case counts, as these reflect artifacts of the reporting process, such as a decline in 

reporting over the weekend, and not necessarily a change in epidemiology.21,22

The observed trimodal distribution in Colorado (Figure 2) may be partially explained by 

behavioral factors related to policy responses: the shelter in place order enacted March 26, 

2020 notably lowered Rt below 1 during the “first wave,” and led to a decline in cases 

throughout May of 2020.23,24 The lifting of this order on 26 April 2020 combined with 

the warmer weather and relaxation of laws surrounding business re-openings may have 

fueled the “second wave;” however, capacity for testing also increased during this time.25 

Rt was consistently above 1 and the case counts increased peaking in July. According to the 

governor, subsequent business restrictions for restaurants and bars, as well as a statewide 

indoor masking mandate may have then somewhat attenuated Rt and the corresponding case 

counts seen in August.26 Yet it should also be noted that, on the whole, Rt had been rather 

consistent since April 2020, implying that that mitigation efforts taken since that time have 

been less influential than the observed fluctuation of cases may suggest. This was especially 

critical at the time of writing in November 2020 due to the third wave of COVID-19 in the 

state, which has been attributed to an increase in indoor gatherings, decreased diligence in 

following public health recommendations, and viral fitness in cooler and dryer climates.27

Dates reported via surveillance are often ambiguous and states continually wrestle with 

missing data. Dates may also take on different meaning for each reported case, yet a health 

department may only release a single date variable. For example, the State of Washington 

Department of Health defines a hierarchy of five possible dates in their epidemic curve data: 

“1) symptom onset date, 2) diagnosis date, 3) positive defining lab date, 4) local health 

notification date, 5) record creation date”.28 We suspect this is not a unique occurrence. 

Ultimately, date of infection provides the greatest insight into the source of transmission, 

and any surrogate date requiring deconvolution to arrive at infection date would need to be 

fine-tuned on a case-by-case basis. For example, reporting lag period likely differs among 

jurisdictions and further motivated our modeling separately from the incubation period.

The U.S. Centers for Disease Control and Prevention has used a variety of parameters 

in modeling efforts intended to inform COVID-19 preparedness and response plans, of 

which the effective reproductive number is but one indicator.29 As far as we know, these 

models unrealistically assume perfect data. We demonstrate a method to account for known 

and suspected imperfections in such data via quantitative bias analysis. Such bias analyses 

can leverage existing health department data, with requiring de novo data collection when 

resources are limited, to produce the adjusted time-series and an even greater effort to 

perfectly capture all infected cases.

Although comparison of our work against others is impeded by lack of consistent and 

complete data, we note that there have been other efforts at deconvolution and a related 
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approach known as “nowcasting” specific to COVID-19. Leung and Wu examined whether 

an election held in April 2020 in Wisconsin resulted in a surge in COVID-19 cases by 

deconvoluting infection date from report date (no association was observed).5 Nowcasting 

has been proposed as a technique to monitor real-time outbreaks when relying only on 

lagged reported data.30,31 Researchers have noted the importance of accounting for reporting 

delays and incomplete case ascertainment when calculating Rt while cautioning against 

simplistic subtraction-based approaches.32–34 Wu et al. proposed but, to our knowledge, had 

not implemented adjustment for misclassification in testing, when sensitivity and specificity 

are known, together with deconvolution of infection time using a model nearly identical to 

Burstyn et al.9,35 Allowing for uncertainty in misclassification parameters is an important 

feature of our model, however it is not fully enmeshed with deconvolution. As such, one 

key weakness of our work lies in the assumption that errors in surveillance systems are 

independent of delays in reporting. This allowed us to develop a two-step procedure that 

leveraged existing statistical methods. However, we are aware that dependence of two 

sources of error can make our procedure both inefficient and may lead to bias. For example, 

one may posit that an overwhelmed public health system may have suboptimal surveillance 

with greater delays in reporting, and this may change over the course of the pandemic. This 

is an area of method-development that is worth exploring while there seems to be an equally 

compelling motivation to promote our approach, which cannot be worse than ignoring errors 

in the data. A second weakness is the lack of validation data to compare the double adjusted 

Rt against the true Rt: we did not have access to such data, nor are we aware if they in 

fact exist. Without validation data, one may consider employing a simulation study where 

the truth is known. In fact, we have previously vetted our misclassification approach in this 

fashion.11 As a next step, one could consider conditioning these data on Rt to arrive at a 

validation time series, although this was outside the scope of our work.

We conclude by observing that adjusting for bias in epidemic curves is now accessible 

to epidemiologists and can lead to better use of painstakingly collected data. As was 

demonstrated using the State of Colorado surveillance data, the doubly adjusted curve 

provided a more realistic picture of the progression of Rt over time, without being 

susceptible to artifacts in the surveillance process. This potentially allows for improved 

management of the COVID-19 pandemic, if indeed estimates of missed cases and effective 

reproduction number play a role.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
COVID-19 epidemic curves for the State of Colorado (9-Mar-2020 through 30-Sep-2020) 

depicting observed cases by report date and illness onset date.
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Figure 2. 
Doubly adjusted COVID-19 epidemic curve for the State of Colorado based on observed 

surveillance data captured between 9-Mar-2020 through 30-Sep-2020. Adjusted cases 

account for the incubation period and delay in testing and reporting, as well as surveillance 

misclassification. Shaded region indicates 95% credible interval. Observed cases by report 

date plotted for comparison.
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Figure 3. 
Real-time reproductive number (Rt) for the State of Colorado (9-Mar-2020 through 30­

Sep-2020) as estimated from three time-series data: by observed report date, by observed 

illness onset date, and by the double adjustment. Adjusted cases account for the incubation 

period and delay in testing and reporting, as well as misclassification due to imperfect case 

ascertainment. Shaded regions indicate 95% confidence & credible intervals. Horizontal line 

denotes Rt=1. Panel A) depicts the entire time period and Panel B) focuses on post-March.
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