Skip to main content
. 2021 Jan 6;58(12):4486–4494. doi: 10.1007/s13197-020-04930-4

Table 3.

List of mathematical models, references, coefficients and statistical parameters

Sr. no. Models name, mathematical expression and refence Coefficients R2 χ2 RMSE
1

Lewis model

(Bruce 1985)

MR = exp(− kt)

k = 0.0016 0.9900 6.50×10−4 0.0254
2

Page model

(Page 1949)

MR = exp(− ktn)

k = 0.0013, n = 1.0296 0.9903 6.31×10−4 0.0249
3

Henderson and Pabis model

(Henderson and Pabis 1961)

MR = a exp(− kt)

k = 0.0016, a = 0.9997 0.9899 6.54×10−4 0.0254
4

Logarithmic Model

(Togrul and Pehlivan 2002)

MR = a exp(− kt) + c

k = 0.0012, a = 1.1214, c = −0.1584 0.9949 3.34×10−4 0.0181
5

Two term model

(Henderson 1974)

MR = a exp(− k0t) + b exp(− k1t)

k0 = 0.0464, k1 = 0.0016, a = 0.0058, b = 0.9987 0.9898 6.64×10−4 0.0254
6

Wang and Singh Model

(Wang and Singh 1978)

MR = 1 + at + bt2

a = −0.0013, b = 4.3485×10−7 0.9841 1.03×10−3 0.0319
7

Approximation of diffusion Model

(Yaldiz et al. 2001)

MR = a exp(− kt) + (1 − a) exp (−kat)

k = 0.0018, a = 1.4276 0.9908 5.98×10−4 0.0243
8

Verma Model

(Verma et al. 1985)

MR = a exp(− kt) + (1 − a) exp(− gt)

a = 1, g = 1.1217, k = 0.0016 0.9899 6.54×10−4 0.0254
9

Hii, Law & Cloke Model

(Hii et al. 2009)

MR = a exp(− ktn) + c exp(− gtn)

n = 1.0773, k = 9.1985×10−4, a = 0.4298, g = 9.2010×10−4, c = 0.5409 0.9908 5.97×10−4 0.0240