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A B S T R A C T   

In this review we bring together evidence that (i) RNA viruses are a cause of chromosomal instability and 
micronuclei (MN), (ii) those individuals with high levels of lymphocyte MN have a weakened immune response 
and are more susceptible to RNA virus infection and (iii) both RNA virus infection and MN formation can induce 
inflammatory cytokine production. Based on these observations we propose a hypothesis that those who harbor 
elevated frequencies of MN within their cells are more prone to RNA virus infection and are more likely, through 
combined effects of leakage of self-DNA from MN and RNA from viruses, to escalate pro-inflammatory cytokine 
production via the cyclic GMP–AMP synthase (cGAS), stimulator of interferon genes (STING) and the Senescence 
Associated Secretory Phenotype (SASP) mechanisms to an extent that is unresolvable and therefore confers high 
risk of causing tissue damage by an excessive and overtly toxic immune response. The corollaries from this 
hypothesis are (i) those with abnormally high MN frequency are more prone to infection by RNA viruses; (ii) the 
extent of cytokine production and pro-inflammatory response to infection by RNA viruses is enhanced and 
possibly exceeds threshold levels that may be unresolvable in those with elevated MN levels in affected organs; 
(iii) reduction of MN frequency by improving nutrition and life-style factors increases resistance to RNA virus 
infection and moderates inflammatory cytokine production to a level that is immunologically efficacious and 
survivable.   

1. Introduction 

The SARS-CoV-2 virus that emerged recently belongs to the coro
navirus family, a positive-sense single–stranded RNA virus [1]. 
COVID-19, caused by SARS-CoV-2, was first reported in China in 
December 2019. Angiotensin-converting enzyme 2 (ACE2) is the main 
receptor for SARS-CoV-2 and its entry into the cell is facilitated by the 
transmembrane protease serine 2 (TMPRSS2) [2,3]. Acute respiratory 
distress syndrome (ARDS) resulting from COVID-19 disease can rapidly 
lead to pro-inflammatory cytokine storms, multiple organ failure and 

death [4]. Age, male sex, inherited genetic background and 
co-morbidities (diabetes, cardio-vascular diseases, cancer, immune de
ficiencies) are important additional risk factors for COVID-19 and its 
severity [5–7]. 

Cytokine storms after viral infection result from the fight/competi
tion between immune defense systems and viral strategies to escape the 
immune defense. Two complementary mechanisms are used by the 
immune system to fight against infections: (i) the innate immune 
system is the first line of defense, which on detection of invading 
pathogens activates the retinoic acid-inducible gene I (RIG-I) and 
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GMP–AMP receptor stimulator of interferon genes; TMPRSS2, transmembrane protease serine 2. 
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mitochondrial antiviral signaling protein (MAVS), RIG-I-MAVS 
signaling axis and also the cyclic GMP-AMP synthase (cGAS) and stim
ulator of interferon genes (STING) cGAS-STING pathways which cause 
IRF3- and NFkB-mediated expression of interferons that, in turn, induce 
synthesis of pro-inflammatory cytokines and chemokines. The latter 
then attract inflammatory cells, such as neutrophils and macrophages 
that eliminate invading microbes, by phagocytosis and/or release of 
antimicrobial toxins. (ii) The second line of defense is the adaptive 
immune response system, which is mobilized to identify antigens 
specific to the pathogen, presenting them to specific lymphocyte subsets 
capable of making antibodies that can recognize these antigens and 
neutralize the pathogen. For more information on the details of the 
innate and adaptive immune response refer to recent expert reviews [8, 
9]. 

Viruses developed several strategies to escape or silence the immune 
system, leading to a chronic and rapidly growing infection, severe tissue 
damage and pro-inflammatory cytokine storms [4]. Moreover, it was 
suggested that free DNA in cytoplasm or blood from damaged cells may 
be a reason for a severe and escalating pro-inflammatory response to 
COVID-19 infection [10,11]. 

Genetic polymorphisms of the ACE2 genes crucial for SARS-CoV-2 
entry into host cells [12,13], genes involved in immune related 
response [3,14] and ABO blood group genes [15] are considered po
tential modulators of the individual response to viral infection by 
COVID-19. Also, the greater COVID-19 risk for males relative to females, 
and the declining innate immunity and attenuated responsiveness of 
adaptive immunity cells with increasing age, may disrupt the delicate 
balance between innate and adaptive immunity and are considered 
important factors that play a role in severe COVID-19 infections [14,16, 
17]. 

The aim of our paper is to discuss the evidence and plausibility that 
RNA viruses, aging, gender, and environmental and/or lifestyle geno
toxins may independently or interactively induce DNA damage and 
micronuclei (MN), and that entrapment of chromosomes in MN is an 
aggravating factor in a vicious pro-inflammatory cycle induced by RNA 
virus infection and self-DNA leaked from MN. 

The basis of our central hypothesis is that DNA damage and mitotic 
errors, which lead to aneuploidy and MN formation, contribute signifi
cantly to the age and sex dependent aggravation of RNA virus disease (e. 
g. COVID-19) and induce cytokine storms. The overloading effect of MN 
may also be contributed by other factors including RNA virus-induced 
DNA damage and chromosome instability [18], malnutrition [19], 
environmental and lifestyle genotoxins [20] and genetic defects in DNA 
replication, DNA damage sensing and DNA repair [21]. Fig. 1 

summarizes the central hypothesis and potential overloading effect of 
chromosome instability, in particular MN, on the interaction between 
RNA virus infection and the immune response. Fig. 2 is a schematic 
diagram explaining the origin of MN from chromosome fragments or 
whole chromosomes that are not segregated properly during mitosis due 
to various endogenous or exogenous genotoxic events or as a result of 
genetic defects affecting genome maintenance. 

In the following sections we will consider: (i) the cellular responses 
to viral infections, and to COVID-19 in particular, (ii) the vicious cycles 
of MN formation, RNA virus infection and inflammation, (iii) observa
tions supporting our hypothesis/es and (iv) the implications for 
improvement of healthier immune responses to viral infections in aging 
populations. 

2. The cellular responses to viral infections and COVID-19 in 
particular 

2.1. Inflammation is governed by the balance between the host immune 
response and the viral strategies to escape them 

The major steps from virus infection to inflammation are: attachment 
of the virus on the target cell, intracellularization of the viral nucleic 
acid (RNA or DNA), detection of the virus by membrane sensors and by 
cytosol RNA or DNA sensors, induction of the innate immune response 
through the RIG-I-MAVS signaling axis and/or the cGAS-STING DNA 
pathway, activation of IRF3- and NFkB-mediated expression of in
terferons, synthesis of inflammatory cytokines/chemokines and accu
mulation of immune cells at the infection site [4,11,22,23]. 
Cytopathologic viruses can induce mitotic disruption and a unique form 
of programmed cell death known as pyroptosis [22]. 

Two groups of pattern recognition receptors (PRR) detect and 
discriminate between molecules that are uniquely present in microbes. 
The first group consists of the membrane-bound Toll-like receptors 
(TLRs) that sense viral RNA or DNA in endosomes and phagosomes. 
[24]. The second group comprises sensors such as RIG-I and related 
helicases, melanoma differentiation association gene 5 (MDA5) and 
laboratory of genetics and physiology 2 (LGP2), that sense RNA in 
cytosol [25,26], and the cytosolic DNA sensor, cGAS [24,27]. Inflam
matory cytokines may also be induced directly by NFκB when it is 
triggered by immune receptors such as PRR [28] 

After sensing and binding of viral DNA or RNA, the helicase RIG-1 
releases caspase activation and recruitment domain (CARDS) which in 
association with MAVS undergoes cytosol-to-membrane relocalization 
at endoplasmatic derived membranes and aggregate into a 

Fig. 1. A visual summary of the central hy
pothesis that DNA damage and mitotic errors 
that lead to aneuploidy and MN formation 
contribute significantly to the age and sex 
dependent aggravation of RNA virus (e.g. 
COVID 19) infection and induced cytokine 
storms. The overloading effect of MN may also 
be contributed by other factors including RNA 
virus-induced DNA damage and chromosome 
instability, malnutrition, environmental and 
lifestyle genotoxins and genetic defects in DNA 
replication, DNA damage sensing and DNA 
repair.   
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“signalosome” [29]. The latter induces a signaling cascade leading to the 
expression of interferons, innate immune response genes, 
pro-inflammatory cytokines and chemokines that cooperate to limit 
virus infection [26]. 

cGAS plays a critical role in sensing/detecting self or foreign DNA in 
the cytoplasm. Upon binding DNA, cGAS catalyses the synthesis of 
cGAMP (cyclic GMP-AMP) which activates STING and then induces type 
1 IFN production which leads to the secretion of inflammatory cyto
kines, such as tumor necrosis factor (TNF) and interleukin-6 (IL-6) 
[27–30]. 

RNA viruses may also trigger STING signaling via RIG-I-dependent 
RNA sensing which induces STING expression, a process that is further 
facilitated by co-stimulation of TNF-α and type I interferons [31]. It is 
becoming increasingly evident that STING is required for host responses 
against both DNA and RNA viruses and for cross-talk between these 
mechanisms [32]. Furthermore, It is also plausible that RNA virus 
infection causes DNA damage in the host cells [33] resulting in leakage 
of self-DNA into the cytoplasm and activation of the cGAS-STING 
mechanism causing increased production of interferon (IFN) and in
flammatory cytokines. In this regard it is relevant to note that bats, the 
only flying mammals, have an increased capacity to tolerate self DNA 
and viruses in the cytoplasm, including coronaviruses, by dampening 
STING activation via mutation of the functionally important S358 serine 
residue, which results in lower IFN-induced inflammation [34,35]. 

Viruses are able to evade cellular innate immune function by atten
uating sensor responses [36]. The balance between the adequacy of 
immune defense mechanisms and the efficacy of the virus to escape 
them to ensure futher propagation ultimately affects the extent and 
duration of the inflammation. In the case of hyper-inflammation it might 
become locally destructive for the target tissue and, in worse cases, the 
damage may be systemic with lesions in several distal organs. In healthy 
young persons, the balance is in favor of the immune defense system and 
the inflammation resolving safely, leaving the host with “memory” cells 
that enable the host to react quickly in case of a new invasion. 

An important consequence of RNA virus infection and COVID-19 
disease is cell-free DNA (cfDNA) found in body fluids such as serum or 
plasma. cfDNA originates from nuclear or mitochondrial DNA released 
from dead/dying cells, DNA released from live cells, and foreign DNA 
from invading viruses or bacteria [37]. MN may also contribute to 
cfDNA when they are extruded from live cells as has been shown in live 
cell imaging studies in vitro but this has yet to be demonstrated in vivo 

[38,39]. Recent investigations showed that severity of COVID-19 disease 
and its progression is significantly associated with cfDNA in plasma, 
especially cfDNA identified as originating from lung, liver and eryth
roblasts identified using DNA methylation profiling [40,41]. Some of the 
cfDNA originates from neutrophil extracellular traps (NETs) that are 
released by neutrophils to destroy pathogens; it was reported that sera 
from patients with COVID-19 have elevated levels of 
myeloperoxidase-DNA complexes, and citrullinated histone H3 that are 
specific biomarkers of NETs [42]. Another important component of 
cfDNA is mitochondrial DNA (mtDNA). Recent studies suggest that 
SARS-CoV-2 infection may adversely alter mitochondrial function in 
host cells to favour viral replication, induce the release of 
pro-inflammatory mtDNA into the cytoplasm, which is ultimately ejec
ted as cfDNA into body fluids following cell death [43,44]. Circulating 
mtDNA levels were shown to be highly elevated in patients who required 
intensive care or eventually died due to COVID-19 disease [45]. 

2.2. Genetics, sex and inflammation 

Differences in immune response and inflammation among in
dividuals may be due to genetic variation [46]. When considering the 
role of genetics of sex differences of immune responses, it is clear that 
genes encoded on the sex chromomes are important. The X-chromosome 
contains the largest number of immune-related genes, including genes 
that are involved in innate (e.g. Toll-like pattern recognition receptors 
TLR7 and TLR8 highly expressed in monocytes) and adaptive immune 
responses (e.g. chemokine receptor CXCR3 higly expressed on effector 
T-cells) [5]. Furthermore, the Toll-like receptors, encoded on the 
X-chromosome, may escape X inactivation resulting in higher expression 
levels than in males [5]. It is therefore plausible that the X chromosome 
plays an important role in the hyper-responsiveness of the female im
mune system, which may also explain the higher susceptibility for 
auto-immune diseases in women [47]. Why the specific balance in gene 
expression of X-chromosomes in females, including random inactivation 
and loss, increases risk for auto-immune diseases but is protective 
against several viral infections remains unclear. Sex also influences 
multiple aspects of adaptive response in humans, including lymphocyte 
subsets [48]. Furthermore, both innate and adaptive immunity decline 
with age but this trend is apparently more pronounced in males [17] 
who have a more rapid age-dependent increase in CD8 + T-cell senes
cence relative to females [49]. 

Fig. 2. Diagram of MN formation caused by either a lagging [A] whole chromosome or [B] acentric chromosome fragment. The yellow dots represent centromeres. 
MN containing whole chromosomes can be identified by the presence of a centromere. MN containing acentric chromosome fragments do not contain a centromere. 
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2.3. Genetics, sex and aging also influence the immune response and 
pathogenesis in COVID-19 patients 

COVID-19 infection triggers release of inflammatory cytokines such 
as IL-6 but can also inhibit interferon production [50,51]. From early 
observations in different countries, it was clear that there is increased 
risk for death from COVID-19 for both sexes with advancing age, but at 
all stages above 30 years males have a significantly higher risk of death 
than females [5,52–54]. The sex dependent factors which may impact 
several steps of the immune response against COVID-19 infection and 
the pathogenesis of the disease are nicely analyzed in a recent review by 
Bunders and Altfeld [55]. The authors describe the sex differences at the 
different stages of the COVID-19 infection and host cellular responses: 
entry, immune responses, antibody responses, and T-cell responses. At 
all stages, women show stronger immune responses than men, which is 
evident in more robust vaccine response and increased susceptibility to 
auto-immune diseases [47]. Several immune response genes are enco
ded on the X-chromosome: such as ACE2, the principal receptor 
enabling SARS-COV-2 to enter human cells; TLR7, a RNA virus sensor; 
CD40 L and BTK, which regulate antibody responses; and IL-13RA1, the 
receptor for interleukin-13 [55,56]. Moreover, it is known that sex 
hormones can modulate the expression of some of the viral infection and 
immune response related genes. In particular for COVID-19, it was 
shown that estrogens downregulate the expression of ACE2 [57], and 
the TMPRSS2 promotion of virus entry into human host cells has been 
suggested to be enhanced by androgens [58–60]. 

As far as genetic polymorphisms involved in genetic susceptibility to 
COVID-19 disease are concerned, the first studies concentrated on the 
ACE2 human receptor for cell invasion, and TMPRSS2 for S protein 
priming [13]. A study on ACE2 receptor polymorphism in an Italian 
cohort (183 females and 395 males) found no significant evidence that 
ACE2 is associated with disease severity/sex bias [12]. However, in the 
same study, the expression of TMPRSS2 levels and its genetic variants 
proved to be possible candidate disease modulators. Subsequent GWAS 
studies also identified a 3p21.31 gene cluster as a genetic susceptibility 
locus in patients with COVID-19 with respiratory failure and potential 
involvement of the ABO blood-group system [15]. These pioneering 
studies are now complemented by many others which were recently 
evaluated in an instructive review by Anastassopoulou et al. [61]. They 
reviewed the associations between specific human genetic variants and 
clinical disease severity or susceptibility to infection by COVID-19 that 
have been reported in the literature until mid-September 2020. They 
identified several human genes as associated with COVID-19 severity: 
ABO, ACE2, ApoE, HLA, IFITM3, SLC6A20, LZTFL1, CCR9, FYCO1, 
CXRR6, XRC1, TLR7, TMEM189-UBE2V1, TMPRSS2. The chromosome 
locations of these genes are well known and two of them, ACE2 and 
TLR7, are X-chromosome linked. 

3. Vicious cycles of RNA virus infection, micronucleus 
formation and inflammation 

3.1. Micronuclei (MN) can diminish immune function and induce 
inflammation 

The main mechanisms for MN formation (Fig. 2) are lack of a func
tional centromere in the chromosome fragments or whole chromosomes, 
and/or defects in one or more of the proteins of the mitotic apparatus 
resulting in chromosome segregation failure. The mal-segregated and 
isolated whole chromosomes or chromosome fragments are subse
quently surrounded by a micronuclear membrane which excludes them 
from the main nucleus. 

MN frequency in peripheral blood lymphocytes increases due to 
aging, micronutrient deficiency or genotoxic stress and is associated 
with a reduction in the proliferation rate of lymphocytes and a lower 
circulating lymphocyte count [62–67]. Furthermore, chromosome 
fragility syndromes, such as Immunodeficiency, Centromeric instability, 

Facial anomalies (ICF) syndrome, ataxia-telangiectasia, and Fanconi’s 
anemia exhibit increased chromosome aberrations and MN in lympho
cytes, lymphopenia and reduced antibody production [68–74]. More
over, lymphopenia is an important risk factor for increased infection and 
mortality [75,76]. Lymphocytes are the cells of the adaptive immune 
response that provides a targeted response to invading pathogens by 
antibody production from B lymphocytes and/or selective killing of 
virally infected cells by cytotoxic T cells; T cells also play an important 
role by producing cytokines that stimulate the proliferation of B cells 
and T cells [77]. Therefore, a potential consequence of increased MN in 
lymphocytes is a diminished number and function of B and T cells 
resulting in reduced capacity to sustain and increase the adaptive im
mune response to the level required to suppress and eliminate the viral 
infection. 

Therefore, on the one hand increased MN frequency in immune 
system cells can result in an inefficacious immune response allowing 
RNA viruses to establish themselves and proliferate causing organ fail
ure. On the other hand, the presence of disrupted MN and their DNA 
leakage into the cytoplasm of cells infected by RNA viruses may amplify 
the cytokine storm to a level that they induce an exaggerated response 
by the innate immune cells (e.g. macrophages, neutrophils and eosino
phils) causing excessive collateral damage to the infected organs 
resulting in their malfunction. Therefore, the combined effect of 
elevated MN in cells in the immune system and MN in the organs 
affected by RNA viral infection (e.g. lung in the case of COVID-19) is 
predicted to both weaken immune response to RNA virus infections and 
at the same time aggravate the proinflammatory effects of their infection 
in the affected organs. 

Moreover, there is growing evidence that MN frequency in lym
phocytes correlates with MN frequency in other tissues in the body [78] 
suggesting that increased MN may be induced systemically throughout 
the body. Furthermore, the induction of MN in cells of the immune 
system may cause the affected cells to become senescent and excrete 
pro-inflammatory chemokines [79,80] as they circulate throughout the 
body causing inflammation and DNA damage in cells of other tissues and 
organs. This possibility is supported by a recent study in mice showing 
that DNA damage induced selectively in the immune system caused 
immunosenescence, which in turn induced accelerated aging and 
senescence of solid organs throughout the body [81]. 

MN often have anomalies in their membrane that adversely affect 
metabolite transport and their metabolic capacity regarding DNA 
replication, transcription and repair is consequently impaired [82–84]. 
These defects may lead to massive amounts of DNA damage. Terradas 
et al. [85] reported that MN had defective DNA damage response (DDR) 
signaling, triggering genomic rearrangements. Furthermore, entrap
ment of chromosomes in MN can also lead to their fragmentation 
(Fig. 3). Fragmentation (or pulverization) of chromosomes trapped in 
MN may be due to inefficient DNA replication or repair caused by 
defective importation of the required enzymes into the MN. Impaired 
transport of enzymes and cofactors into MN could be caused by defective 
nuclear envelope which may also allow access of cytoplasmic DNAases 
[86]. The pulverization of chromosomes trapped in MN could also be 
due to their premature condensation before DNA synthesis is completed 
and the newly synthesized patches of DNA are ligated [87]. This cata
strophic event, known as chromothripsis [88], has the added conse
quence that the fragments from the pulverized chromosome may be 
integrated within a nucleus and randomly ligated to form a hyper
mutated chromosome, a process known as chromoanasynthesis [89,90]. 

Another important consequence of pulverization of chromosomes in 
MN, especially in MN with defective membranes due to lack of proteins 
Rb and Lamin B1 [82], is leakage of DNA from the MN into the cyto
plasm. The self-DNA is sensed by cGAS in the cytoplasm, cGAS is then 
activated to synthesize cGAMP which triggers STING and causes IRF3- 
and NFκB-mediated expression of type-1 interferons and proin
flammatory cytokines [91–96] (Fig. 4). 
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3.2. MN induction by RNA viruses 

RNA viruses with single-stranded RNA as their genetic material use 
RNA polymerases of infected cells to replicate their genome; retrovi
ruses, which have double-stranded RNA as their genetic code, use 
reverse transcriptase to make DNA copies of their genome and to inte
grate it into the host’s genome [97]. 

Furthermore, some RNA viruses such as HPV-E7 and hepatitis C virus 
(HCV) code for proteins that disable the function of proteins that control 
or are integral to the mitotic machinery (e.g. CDK2, tubulin, SAC, 
AURKB) of the host cell resulting in chromosome mal-segregation, 
aneuploidy and MN formation [98]. Furthermore, in 2006, it was 
shown that mammalian cells infected with avian RNA coronavirus in
fectious bronchitis virus (IBV) are inhibited from performing cytoki
nesis, which consequently facilitates IBV reproduction [99]. Cytokinesis 
inhibition leading to multinucleate polyploid cell formation is 
commonly observed in cancers and could be another mechanism by 
which RNA viruses could cause aneuploidy and MN formation. It was 
later shown that IBV also induces DNA strand breaks (measured using 
γH2AX assay) by causing DNA replication stress [100]. It is becoming 
increasingly apparent that RNA viruses may cause DNA damage or 

mitotic stress to activate DDR which may enhance viral reproduction 
[101]. 

The Zika virus, a single stranded RNA virus, has been shown to 
induce teratogenic effects in humans and it was hypothesized that this is 
possibly due to induction of mitotic errors leading to numerical chro
mosome aberrations [102]. Depending on the strain of the virus it was 
shown that Zika could also increase nuclear γH2AX and apoptosis or 
promote the p53-p21 signaling axis, driving cells toward cell cycle arrest 
[103,104]. Further in vitro molecular cytogenetic studies revealed that 
the Zika virus caused an increase in mitotic abnormalities, including 
multipolar spindle, lagging chromosomes, MN, aneuploidy and poly
ploidy [105]. Furthermore, similarly to the corona virus IBV, Zika in
duces cell cycle arrest via DDR to facilitate its replication [106]. 

Moreover, increased generation of reactive oxygen and nitrogen 
species (RONS) is a common feature of RNA virus infection [101]. This is 
because neutrophils and macrophages, recruited to the site of infection, 
release RONS to destroy the viruses and infected host cells and damage 
bystander normal cells. RONS generated by activated neutrophils and 
macrophages induce high levels of DNA damage, including MN, in 
healthy tissues [107–110]. The RNA virus-induced MN in healthy tis
sues, in turn, may leak DNA in the cytoplasm and trigger the 

Fig. 3. Consequences of MN formation. Micro
nuclei are formed at the binucleated cell stage 
as a result of (A) mis-repair of DNA breaks 
leading to nucleoplasmic bridge and acentric 
chromosome fragment, (B) mal-segregation of a 
whole chromosome, (C) lagging acentric chro
mosome fragment as a result of unrepaired DNA 
breaks. (D) Mononuclear cell with a micronu
cleus after completion of cytokinesis. (E) Shat
tering of chromosome trapped in micronucleus 
and disruption of nuclear envelope of micro
nucleus. (F) leakage of DNA from micronucleus 
leading to activation of cGAS-STING and in
duction of inflammatory cytokines. (G) Inte
gration of pulverised chromosome within main 
nucleus and error-prone repair by non- 
homologous end joining resulting in a greatly 
rearranged mutant chromosome. Figure was 
reproduced from Genes (Basel). 2020;11 
(10):1203. doi: 10.3390/genes11101203, 
which was published by one of the authors (M. 
Fenech) who retains copyright under an open 
access Creative Commons CC BY 4.0 license 
with permission from MDPI.   

Fig. 4. A diagrammatic outline of the process 
by which chromosome fragmentation in MN 
and disruption of the MN membrane leads to 
unravelling and leakage of DNA that is sensed 
by cGAS and triggers the cGAS-STING pathway 
of interferon-mediated innate immunity and 
inflammation. cGAS, Cyclic GMP-AMP Syn
thase; cGAMP, Cyclic guanosine mono
phosphate–adenosine monophosphate; STING, 
Stimulator of interferon genes; IFN-1, Type 1 
interferon; ISGs, interferon stimulated genes. 
Figure was reproduced from Mutat Res. 
2020;786:108342. doi: 10.1016/j. 
mrrev.2020.108342, with permission from 
Elsevier.   
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pro-inflammatory cGAS-STING that triggers INF-induced cytokines 
creating a vicious cycle of persistent RNA virus infection, MN formation 
and escalating cytokine storms that may exceed a threshold beyond 
which resolution becomes unachievable, resulting in tissue/organ 
damage and possibly organ failure as is the case with ARDS in severe 
COVID-19 cases. 

3.3. Air pollution and malnutrition as risk factors for MN and COVID 

It is well-recognized that ARDS is the major symptom of COVID-19 
infection that may cause mortality [111]. Respiratory distress can also 
be caused by smoking and air pollution, both of which are associated 
with increased DNA damage in lung cells and/or peripheral blood leu
kocytes [112–114]. Evidence is emerging that exposure to air pollution 
increases the risk of COVID-19 infection, suggesting a 2-hit hypothesis 
that the combination of exposure to airborne genotoxins and COVID-19 
virus further aggravates susceptibility to virus replication and lung 
inflammation [111,115–117]. The amplified inflammation is most likely 
triggered by (i) the persistent DNA damage response caused by chronic 
exposure to airborne genotoxicants leading to the activation of the 
Senescence Associated Secretory Phenotype (SASP) cytokines 
[118–121] and/or (ii) the cGAS-STING inflammatory mechanism which 
senses self or foreign RNA and/or DNA in the cytoplasm originating 
either from viruses or from whole or shattered chromosomes that are 
trapped in disrupted MN following chromosome malsegregation due to 
mitotic catastrophe [91,122]. 

Apart from the double hit to genome integrity caused by RNA viruses 
such as COVID-19 and endogenous or exogenous genotoxins, there is a 
likely third deleterious hit to the genome caused by dietary deficiency or 
excesses. Evidence is mounting that obesity is a risk factor for COVID-19 
disease risk and mortality and that micronutrient deficiencies that affect 
immune function such as deficiencies in vitamins A, B-6, B-9 i.e. folate, 
B-12, C, D, E, and inadequate intake of minerals such as zinc, selenium, 
iron and copper may also diminish resistance to viral infection 
[123–127]. Importantly, deficiencies in one or more of these micro
nutrients also increase DNA damage, MN and telomere attrition, with 
the latter being recently identified as a risk factor for COVID-19 
[128–132]. Furthermore, deficiencies in micronutrients required for 
DNA replication and repair also increase sensitivity to endogenous or 
exogenous genotoxins [133,134]. Moreover, overweight and obesity has 
often been reported to be associated with increased DNA damage and 

elevated MN frequency [135–139]. Furthermore, a recent meta-analysis 
showed that patients with diabetes have significantly increased MN in 
lymphocytes and buccal cells, suggesting again the possibility that MN 
may contribute to or be a consequence of the susceptibility of diabetic 
cases to COVID-19 disease [140]. Moreover, those susceptible to RNA 
virus infections may already have underlying co-morbidities in several 
organs, such as the lung, heart, liver and kidney disease, all of which are 
associated with increased MN that may contribute to their 
pro-inflammatory status [141–144]. Altogether it is plausible that the 
triple hit of COVID-19 infection, exposure to airborne genotoxicants and 
malnutrition may combine and interact to produce a perfect storm of 
inflammatory cytokines induced by the innate immune system’s 
response to foreign RNA from COVID-19 virus and self-DNA from 
damaged chromosomes in the cytoplasm of the target organ. Further
more, it is plausible that susceptibility is further aggravated by inherited 
genetic defects in DNA repair and in nutrient absorption and meta
bolism. Fig. 5 summarises the common pathways by which RNA viruses, 
genomic instability, genetic factors, environmental stressors and the 
immune system may interact together to fuel escalating inflammatory 
cytokine storms. Figs. 6 and 7 illustrate the multi-hit scenarios that our 
hypothesis proposes as the driving forces that accelerate the inflam
matory processes beyond thresholds that become unresolvable and 
therefore detrimental to cellular and organ function. 

4. Our hypothesis/es 

Considering that the severity of COVID-19 disease is influenced by 
aging and sex, it is important to search for factors that may interact with 
the SARS-CoV-2 virus to aggravate or reduce the pathogenesis. It is well 
known that hormonal status is a major contributer to sex differences. 
However, more recently, based on the pro-inflammatory consequences 
of MN formation, it was shown that MN are co-players in inflammation 
and immune–related abnormalities, such as auto-immune diseases [47, 
92–95]. The following paragraphs summarize the associations between 
MN frequencies, aging, sex, lifestyle and exposure to environmental 
gentoxins, as support for our hypothesis/es that cytokine storm severity 
is fueled by interaction of MN and RNA viruses. 

Fig. 5. A detailed map of the mechanistic interactions between RNA virus infection and self-DNA from disrupted micronuclei (MN), caused by ageing and genetic/ 
gender effects, and their impacts on immune response and inflammation via the cGAS STING pathway. 
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4.1. Constitutive, spontaneous and induced aneuploidy, inflammation 
and aging 

In humans, genomic imbalance can be constitutive, such as trisomy 
21, where all cells of the individual have the same abnormal genomic 
constitution, or the genomic aberration may be restricted to a small or 
large proportion of germ or somatic cells resulting from spontaneous or 
induced chromosome instability. The main mechanisms leading to 
aneuploidy are chromosome non-disjunction or chromosome gain or 
loss during meiotic or mitotic cell division [145,146]. 

The link between constitutive aneuploidy and inflammation is clear 
in Down syndrome caused by trisomy 21. People with Down syndrome 
have significantly elevated MN frequencies in both lymphocytes and 
buccal epithelial cells [147–150], and show signs of chronic immune 
dysregulation, including a higher prevalence of auto-immune disorders, 
increased rates of hospitalization during respiratory viral infections and 
higher mortality rates from pneumonia and sepsis [151]. Several genes 
involved in immune control are encoded on chromosome 21, including 4 
of the 6 interferons receptor units, and trisomy 21 was shown to 

dysregulate T cell lineages toward an autoimmunity-prone state asso
ciated with interferon hyperactivity [152]. Espinosa suggested that the 
immune system dysregulation caused by trisomy 21 may make Down 
syndrome cases more prone to an excessive pro-inflammatory response 
to RNA virus infections, therefore, causing them to be more susceptible 
to severe COVID-19 disease [153]. In fact a recent study, in a cohort of 8 
million adults, reported a 4-fold and 10-fold higher risk for COVID-19 
hospitalisation and death, respectively, in Down syndrome cases [154]. 

Spontaneous, age-dependent or chemically–induced aneuploidy can 
trigger inflammation depending on the mechanism reponsible of aneu
ploidisation. If the causal aneugenic event is chromosome non- 
disjunction giving rise to one monosomic and one trisomic daughter 
cell, the potential to induce inflammaton will depend on the genes 
present on the lost or gained chromosome(s) and on the cell type, in 
particular if immune cells are concerned; and if the aneugenic event 
leads to chromosome(s) lagging during mitosis and formation of a MN in 
the next interphase, it will also affect the fate of the chromosomes 
trapped in the MN [155]. Since DNA and chromatin may leak from 
disrupted MN, whole chromosomes trapped in MN can also directly 

Fig. 6. The six acquired or inherited pathological hits that contribute to the vicious cycle of DNA damage and escalating inflammatory cytokine storms that ulti
mately lead to the ARDS in COVID-19. 

Fig. 7. A schematic diagram illustrating how increasing genotoxic stress caused by ageing, environmental, lifestyle and genetic factors interact with viral infection to 
go beyond the cellular sensing threshold that triggers a chronic non-resolving hyper-inflammatory response that may lead to severe tissue and organ damage. 
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trigger the innate immune cGAS-STING pathway and become 
pro-inflammatory [91–96]. 

Increase of mitotic misregulation with aging was described by Ly 
et al. [156]. They found that, in contrast to fibroblasts from normal 
young or normal middle aged individuals, the normal old and 
Hutchinson-Gilford progeria groups had a greater proportion of cells 
with abnormally shaped nuclei, tetraploidy, and multiple nuclei which 
are events consistent with age-related increase in MN formation and 
down-regulation of genes involved in cell cycle G2/M transition, spindle 
assembly and chromosome segregation. More recently, confirmation of 
these findings was described by Macedo et al. [157] and Barroso-Vilares 
et al. [158]. Moreover, they observed that senescent fibroblasts isolated 
from elderly donor’s cultures are often aneuploid and exhibit increased 
secretion of pro-inflammatory cytokines [157]. In their second paper 
[158], they reported the increased presence of cGAS positive MN in 
cultures from the elderly and that these MN were often Rb-negative, 
suggesting the MN membrane was dysfunctional, which may facilitate 
cGAS sensing of self-DNA within MN. 

4.2. MN/chromosome loss induced inflammation is age- and sex- 
dependent 

Several studies have consistently reported that frequency of MN in 
lymphocytes in humans increases with age, and also with sex, being 
1.2− 1.6-fold higher in adult females relative to adult males [159–163]. 
A multitude of factors contribute to the increase in MN frequency in 
humans including malnutrition and exposure to occupational and 
environmental genotoxins [128,137,164]. Many studies reported a sig
nificant increase in MN frequencies in people diagnosed with degener
ative diseases relative to healthy controls matched for age and sex 
[165–167]. The most robust evidence that MN are causal for a wide 
range of diseases comes from prospective cohort studies showing that 
above average MN frequency in lymphocytes predicts higher risk of (i) 
pre-eclampsia and intrauterine growth restriction in pregnancy [168], 
(ii) cardiovascular disease [169,170] and (iii) cancer risk [171,172] all 
of which are also linked with increased DNA damage and inflammation. 

4.2.1. X-chromosome loss and/or X-chromosome entrapment in MN 
increases with aging in women and induces inflammation 

Mal-segregation of the X chromosome during mitosis is a relatively 
common event in females that leads to its entrapment in MN and 
consequently to its loss from one of the daughter nuclei. Current evi
dence suggests that it is the inactivated X chromosome that tends to be 
malsegregated because of its high level of heterochromatization induced 
by the XIST RNA transcript [173]. Using FISH techniques, Bukvic et al. 
[174] and Russel et al. [175] observed that X chromosome loss in 
lymphocytes increases rapidly with age in women. Two other studies 
reported on the entrapment of mal-segregated X chromosomes into MN 
in women. Hando et al. [176] reported that up to 72 % of MN in pe
ripheral blood lymphocytes of females contain an X chromosome. In a 
subsequent investigation the same group showed that 83 % of X chro
mosomes trapped in an MN were inactivated [177]. 

It is important to consider whether X-chromosome loss from the 
main nucleus and/or its entrapment in a MN is an initiating cause of 
inflammation in women because auto-immune diseases and other 
inflammation related disorders are elevated in females and increase with 
age [178,179]. Supporting this hypothesis is the increased susceptibility 
of Turner syndrome (X monosomy) cases to develop autoimmune dis
orders and the possibility that expression of immune system related 
genes on the solitary X chromosome may be abnormal due to lack of its 
counterpart [180–183]. Furthermore, entrapment of the X chromosome 
in an MN may lead to (i) its shattering and massive rearrangement 
transforming it into a hypermutated abnormal X chromosome if 
re-integrated into the main nucleus or (ii) leakage of X-chromosome 
DNA into the cytoplasm and its sensing by cGAS if the micronuclear 
membrane is disrupted due to lack of Rb and lamin proteins. 

4.2.2. Y-chromosome loss and/or its entrapment in MN increases with 
aging in men and induces inflammation 

Loss of Y chromosome (LOY) in men has been reported in hemato
poietic tissues and peripheral blood lymphocytes [184]. Similar to X 
chromosome loss in females, LOY in men was shown to be caused by its 
mal-segregation during mitosis leading to its entrapment in a MN and as 
a consequence its absence from one of the main nuclei [185,186]. In 
both of these molecular cytogenetic studies the frequency of Y-chro
mosome positive MN increased with age. A high-throughput technique 
to measure aneuploidy or loss of specific chromosomes is the SNP array 
method [186]. Using this method, it was possible to measure LOY in 
blood samples from thousands of men from three cohorts and show that 
LOY increases with age and smoking [186–188]. Furthermore, LOY is 
associated with increased risk of all-cause mortality, cancer, Alzheimer’s 
disease, and autoimmune diseases [189–191]. 

The mechanism linking LOY and immune dysfunction is not yet 
clear. Similar to the situation with loss of X chromosome, LOY and 
entrapment of the Y chromosome in a MN may lead to its hypermutation 
or activation of the cGAS-STING pro-inflammatory pathway. Using se
lective inactivation of the Y chromosome centromere, Ly et al. [192] 
showed that micronucleation of the Y chromosome does indeed lead to 
its shattering and rearrangement. LOY effectively generates X mono
somy (Turner syndrome) genotype in males and, therefore, it seems 
plausible that similar immune dysfunction consequences might ensue 
that are akin to those in Turner syndrome females, if sufficient cells in a 
relevant organ are affected. In this regard it is intriguing that LOY in 
males and loss of X in females are both associated with increased risk of 
auto-immune thyroiditis [193]. 

4.3. Explaining apparent paradoxes 

4.3.1. Higher frequencies of MN in females than males but lower risk of 
severe COVID-19 outcome in females than males 

The fact that females have a higher MN frequency than males [194] 
does not appear to fit the proposed hypothesis that MN and COVID-19 
interact to determine severity of inflammatory cytokine response 
because epidemiological data suggest women have less severe COVID-19 
infection outcomes than men [195]. However, some possible explana
tions for this paradox are explained below: 

1 Relative to females, men are more likely to have poor health be
haviours such as smoking and alcohol consumption and higher 
number of co-morbidities associated with poor COVID-19 prognosis, 
including hypertension, cardiovascular disease and chronic 
obstructive pulmonary disease [195].  

2 The excess MN in females relative to males can be explained by 
increased mitotic mal-segregation of the X chromosome. In fact, 72 
% of MN in cytokinesis-blocked lymphocytes in females were re
ported to contain an X chromosome and 83 % of them contained the 
inactive X chromosome [176,177]. The inactive X chromosome is 
maintained in a condensed state in interphase in a nuclear bud to 
form a Barr body [196]. It is plausible that DNA of an inactive X 
chromosome in a MN may not be sensed by cGAS because of its 
unique condensed heterochromatic state, analogous to condensed 
chromosomes in metaphase that are not sensed by cGAS because of 
its phosphorylation and tethering to chromatin, which inhibits cGAS 
activation by chromatin-bound DNA [196,197]. If these mechanisms 
are also applicable to the inactive X chromosome, this means that the 
great majority of MN in females, i.e. those which contain the inactive 
X (iX) chromosome, may not be pro-inflammatory. Based on the 
figures above, we estimate that only 40 % of all MN in females do not 
contain the iX chromosome. Therefore, it is conceivable that females 
may have less MN that are potentially pro-inflammatory than males 
(see Table 1. below). 
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4.3.2. How can MN, which are rare events, contribute substantially to the 
inflammation process? 

The mean frequency of lymphocytes containing MN in healthy adults 
ranges between a minimum of 2 per 1000 (binucleated) cells to 79 per 
1000 (binucleated) cells [198] which may, arguably, be considered not 
large enough to contribute substantially to the inflammation process. 
However, cells with MN may just be the tip of the iceberg, in terms of 
representing several other genomic instability events that are mecha
nistically linked with MN formation, such as unrepaired telomere DNA 
breaks, telomere oxidation, telomere shortening, nucleoplasmic (chro
matin bridges) and aneuploidy, that also induce senescence and the 
SASP [199–204]. Furthermore, these additional pro-inflammatory DNA 
damage events may be present both in cells with or without a MN and 
their occurrence multiplied in subsequent mitotic divisions of their 
chromosomally unstable progeny. 

Moreover, there is growing evidence that MN frequency in lym
phocytes correlates with MN frequency in other tissues in the body 
[205], suggesting that increased MN may be induced systemically 
throughout the body. Furthermore, the induction of MN in cells of the 
immune system may cause the affected cells to become senescent and 
excrete pro-inflammatory chemokines as they circulate throughout the 
body causing a cascade of inflammation, DNA damage and senescence in 
cells of other tissues and organs via paracrine mechanisms [206–210]. 
This possibility is supported by a recent study in mice showing that DNA 
damage induced selectively in the immune system caused 
immune-senescence, which in turn induced accelerated aging and 
senescence of solid organs throughout the body [211]. 

5. Implications from our hypothesis/es 

5.1. MN as biomarkers for increased risk of cytokine storms 

The primary organ affected by the COVID-19 virus is the respiratory 
tract. Several studies have shown that MN are expressed in multiple sites 
in the respiratory tract including buccal mucosa, nasal epithelium and 
bronchial epithelial cells [212–214]. In humans, it is practical to collect 
buccal and nasal cells, which are also the cells most likely to come in 
contact with and be infected by the COVID-19 virus [215]. MN in nasal 
and buccal cells have been shown to be increased by exposure to 
airborne genotoxins, malnutrition, infectious diseases and, also, as a 
result of aging and genetic defects that predispose to chromosomal 
instability [216–222]. Furthermore, cells harboring MN have previously 
been shown to have increased expression of cGAS and STING in the 
cytoplasm making it plausible that MN, inflammatory cytokine pro
duction and COVID-19 virus progeny may co-exist within nasal and 
buccal cells [91,92]. If our hypothesis is correct, we would expect that 
the presence of COVID-19 virus and cytokine storms should be increased 
in those subjects with increased MN. The MN may either be pre-existing 
or elevated because of increased endogenous genotoxic RONS induced 
by the escalating cytokine storm inflammation caused by self-DNA and 

viral RNA in the cytoplasm. Measurement of MN and Nuclear Division 
Index (a biomarker of mitogen responsiveness) in lymphocytes using the 
cytokinesis-block micronucleus cytome assay [223] may also be infor
mative because these biomarkers are associated with telomere loss (i.e. 
telomeres lost in MN originating from deleted terminal chromosome 
fragments or whole chromosome loss), lymphopenia and depressed 
immune response [224–226], all of which are risk factors for COVID-19. 

5.2. Prevention of MN and cytokine storms 

The causes of MN formation are well known and some of which may 
be preventable, such as malnutrition and exposure to environmental 
genotoxins. However, others, such as genetic predisposition to impaired 
uptake and metabolism of micronutrients required for genome integrity 
maintenance, particularly in those cases with rarer mutations that cause 
complete loss of function, may be insurmountable. Moderate genetic 
susceptibilities, however, may be rendered less hazardous if genotoxin 
exposure is minimized and nutrient deficiencies or excesses are curtailed 
by appropriate personalized dietary and life-style strategies [227,228]. 
Lowering the rate of DNA damage by these means could reduce the 
degree of inflammation triggered by the SASP and cGAS-STING mech
anisms that sense the DNA damage insults incurred by cells in the body. 
In fact, several human nutritional intervention studies have demon
strated the feasibility of reducing the frequency of MN [229] which is 
one of the best validated DNA damage biomarkers known to induce the 
cGAS-STING pro-inflammatory pathway. Furthermore, improved 
genome integrity maintenance and metabolic function, facilitated by 
optimal nutrition, should also improve immune function to either (i) 
enable the efficient elimination of cells that have been rendered senes
cent due to their excessive DNA damage and/or viral RNA burden 
and/or (ii) dampen down the inflammatory response by pro-resolving 
mechanisms. Recent studies suggest that (a) certain phytonutrients, 
such as apigenin and methyl caffeate, can dampen down the extent of 
pro-inflammatory SASP cytokines induced by cGAS-STING response to 
self or foreign RNA/DNA [230,231], (b) neutrophil mediated cytotox
icity is moderated by increased synthesis of resolvins from ω-3 fatty acid 
precursors [232] and (c) senolytic phytonutrients, such as quercetin, can 
selectively induce death of senescent cells [233]. Therefore, it is 
conceivable that appropriate mixtures of anti-inflammatory and seno
lytic phytonutrients may also help prevent the deadly effects of acute of 
respiratory distress syndrome caused by cytokine storms. 

6. Conclusions 

Our central hypothesis is that chromosomal instability, which leads 
to aneuploidy and entrapment of chromosomes in MN, contributes 
significantly to the age and sex dependent aggravation of COVID-19 
induced infection and cytokine storms. The interconnectedness of the 
key elements relating to this hypothesis indicates the complexity of the 
mechanisms involved that may tip the balance towards a vicious cycle of 
inflammation or towards resolution (Figs. 5 and 6). 

In the previous sections we discussed the key mechanisms and events 
underlying the proposed hypothesis: i) MN can induce inflammation, ii) 
constitutive, spontaneous and induced aneuploidy triggers inflammation and 
is age-dependent, iii) MN/chromosome loss induced inflammation is age- and 
sex-dependent, iv) MN caused by X-chromosome loss increases with aging in 
women and induces inflammation, v) MN caused by Y-chromosome loss 
increases with aging in men and induces inflammation. All these events have 
a common link: the triggering of pro-inflammatory pathways (cGAS- 
STING, SASP) by cytosolic DNA from disrupted MN in the target cells. 

In the case of viral infection, having a large “spectrum “of DNA and/ 
or RNA sensors (e.g. TLR3,TLR7,TLR9,hnRNP-A2B1,cGAS,AIM2,RIG-1) 
provides an important advantage to counteract the many strategies 
developed by viruses to escape immune response [234,235]. Further
more, Emming and Schroder [234] hypothesized that having multiple 
DNA or RNA sensors also provides an organism with a more sensitive 

Table 1 
Example of frequency of MN in males and females showing the estimated fre
quency of MN not containing the inactive X chromosome in two hypothetical 
cases.  

MALES FEMALES 

ALL MN 
FR 

ALL 
MN FR 

X MN 
FR* 

iX MN 
FR** 

ALL MN FR 
minus iX MN FR 

% MN not 
containing iX 

10 12 8.6 7.2 4.8 40 % 
10 16 11.5 9.6 6.4 40 % 

FR = frequency per 1000 BN cells. Note the “ALL MN FR” values shown reflect 
male:female ratios of either 1.0:1.2 or 1.0:1.6 as has been reported in several 
studies previously. *Assumes 72 % of baseline female MN are X chromosome; 
**assumes 83 % of female MN with an X chromosome contain an inactive X (iX) 
chromosome. 
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system to assess the level of pathogenic hazard and properly calibrate 
the intensity of the immune response in a manner that is efficacious in 
killing the pathogens and at the same time minimises collateral damage 
to normal tissue. If we accept this hypothesis, it is probable that 
increased levels of aneuploidy and MN frequencies add an extra path
ogenic load in cells that are already fighting against viral infection that is 
further aggravated by the DNA damage and mitotic disruption caused by 
RNA viruses. Whether these effects are additive or synergistic 
(non-linear cummulative) requires further experimental evidence. 

In conclusion, RNA viruses generally, and specifically SARS-Cov-2 
(COVID-19) disease, can generate cytokine storms that may be further 
accelerated by higher levels of disrupted MN in aged persons. If this 
hypothesis is confirmed, it may be beneficial to (i) conduct a MN assay to 
stratify patients for their risk of death by excessive cytokine storms and 
(ii) adjust their treatment to reduce their MN and inflammation load 
nutritionally and/or pharmacologically. Highly automated methods, 
such as image analysis, or imaging flow cytometry, are available to 
assess quickly and accurately MN frequencies in human lymphocytes 
[236–238]. If performed on T-lymphocytes, those frequencies will 
reflect chromosome loss accumulated during the last 6 months [239]. 
Genome sequencing might also be applied to identify relevant genetic 
polymorphisms (e.g. polymorphisms of cGAS-STING pathway) and 
specific chromosome imbalances, in particular loss of X and Y chromo
somes. The combination of these tools in a systematic approach with 
other intersecting factors, such as inflammation biomarkers, sex hor
mone status, co-morbidities and previous exposure to environmental 
and/or genome stressors, might be critical to evaluate the biological 
factors contributing to heterogeneous COVID-19 outcomes, to assess the 
risk at the individual level, and to understand the genomic and cellular 
predictors of responsiveness to potential therapy. 

Our central hypothesis can be verified by testing its predictions:  

1 Those with high levels of lymphocyte MN have a weakened immune 
response and are more likely to be susceptible to RNA virus infection  

2 The extent of inflammatory cytokine production in response to RNA 
virus infection is enhanced in those with higher MN frequency in the 
target tissue (e.g. respiratory tract and lungs in the case of COVID- 
19)  

3 Reduction of MN frequency to its possible minimum (by improving 
nutrition, lifestyle factors and avoidance of environmental geno
toxins) increases resistance to RNA virus infection and moderates 
inflammatory cytokine production to a level that is efficacious but 
not fatal. 

Finally, it is important to note that the proposed hypotheses are also 
applicable to (i) DNA virus infections and (ii) the possibility of adverse 
inflammatory reactions resulting from the use of RNA vaccines, infec
tious DNA vaccines and attenuated adenovirus vaccines [240–242] but 
in the interest of brevity we have maintained the focus on RNA virus 
infections as this is more pertinent to the COVID-19 pandemic. 
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L. Amantéa, Micronucleus count in nasal epithelial cells from patients with 
chronic rhinosinusitis and polyps, Braz. J. Otorhinolaryngol. 86 (6 November- 
December) (2020) 743–747, https://doi.org/10.1016/j.bjorl.2019.05.004. Epub 
2019 Jun 18. PMID: 31285184. 

[219] M.J. Ramírez, J. Minguillón, S. Loveless, K. Lake, E. Carrasco, N. Stjepanovic, 
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