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a b s t r a c t 

Background: As blood testing is radiation-free, low-cost and simple to operate, some researchers use 

machine learning to detect COVID-19 from blood test data. However, few studies take into consideration 

the imbalanced data distribution, which can impair the performance of a classifier. 

Method: A novel combined dynamic ensemble selection (DES) method is proposed for imbalanced data 

to detect COVID-19 from complete blood count. This method combines data preprocessing and improved 

DES. Firstly, we use the hybrid synthetic minority over-sampling technique and edited nearest neighbor 

(SMOTE-ENN) to balance data and remove noise. Secondly, in order to improve the performance of DES, 

a novel hybrid multiple clustering and bagging classifier generation (HMCBCG) method is proposed to 

reinforce the diversity and local regional competence of candidate classifiers. 

Results: The experimental results based on three popular DES methods show that the performance of 

HMCBCG is better than only use bagging. HMCBCG + KNE obtains the best performance for COVID-19 

screening with 99.81% accuracy, 99.86% F1, 99.78% G-mean and 99.81% AUC. 

Conclusion: Compared to other advanced methods, our combined DES model can improve accuracy, G- 

mean, F1 and AUC of COVID-19 screening. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

COVID-19, an epidemic caused by severe acute respiratory syn- 

rome coronavirus-2 (SARS-CoV-2), has ravaged over 200 countries 

round the world. As of October 4, 2020, more than 34.5 million 

ases and more than 1 million deaths have been reported world- 

ide [1] . Countries around the world have adopted strict quaran- 

ine and isolation measures to curb the spread of COVID-19. To 

revent continued transmission, it is necessary to carry out ef- 

ective screening for suspected cases in order to detect and iso- 

ate infected persons in time [2] . Currently, COVID-19 screening 

till relies heavily on reverse transcription polymerase chain reac- 

ion (RT-PCR) [3] . However, the missed detection rate of RT-PCR 

s about 15%-20% [4] . Moreover, it often takes hours or even days 

rom collecting patient samples to obtaining test results [5] . There- 

ore, a more rapid and accurate COVID-19 detection method is 

eeded. 

Machine learning (ML) methods have been applied to detect 

OVID-19 due to their fast processing power and high reliability 
∗ Corresponding author. 
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6–9] , such as deep convolutional network [10] , ensemble learning 

11] and enhanced k-nearest neighbor (KNN) [12] . Most of these 

ethods are based on computerized tomography (CT) and X-ray 

mage data. However, the relatively high cost and radiation doses 

inder the large-scale application of CT. Although X-ray has lower 

ost and radiation compared to CT, its performance in COVID-19 

creening is inferior to CT. In view of the low-cost, radiation-free 

nd easy operation of blood testing, some researchers try to de- 

ect COVID-19 from blood test data through ML methods. Brinati, 

ampagner [4] studied the feasibility of several different ML mod- 

ls to predict COVID-19 infection from routine blood test data. 

owever, the author did not deal with the imbalanced distribu- 

ion of the dataset. Banerjee, Ray [5] used ML methods to predict 

OVID-19 infection through full blood count data. For community 

atients, the synthetic minority oversampling technique (SMOTE) 

s used to balance the positive (COVID-19 infection) and negative 

absence of COVID-19 infection) classes. Then, the artificial neural 

etwork (ANN) is used to predict COVID-19 infection and achieved 

7% accuracy. However, using SMOTE alone to deal with imbal- 

nced data may generate outlier samples and reduce the classifi- 

ation accuracy [13] . Therefore, it is necessary to propose a bet- 

er imbalanced data processing method to improve the accuracy of 

OVID-19 screening from blood test data. 

https://doi.org/10.1016/j.cmpb.2021.106444
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106444&domain=pdf
mailto:shaoml@tju.edu.cn
https://doi.org/10.1016/j.cmpb.2021.106444
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From the current research, the methods of dealing with im- 

alanced data can be roughly divided into two types: data-based 

ethods and algorithm-based methods [14] . Data-based methods 

ainly include over-sampling [13] , under-sampling [15] and hybrid 

ampling [16] . For algorithm-based methods, it can be divided into 

ost-sensitive learning [14] and ensemble learning [17] . The pur- 

ose of cost-sensitive learning is to minimize the cost of misclassi- 

cation on the premise that the cost of misclassification is known 

18] . However, for real-life problems, the prior knowledge of the 

ost of misclassification is often unknown, which makes the ap- 

lication of cost-sensitive learning difficult. Ensemble learning can 

mprove the generalization ability to existing algorithms and has 

een proven to be an effective method for imbalanced data pro- 

essing. Among the many ensemble learning approaches, dynamic 

nsemble selection (DES) as a very promising method has been 

roved by a large number of studies to be superior to static ensem- 

le learning [19–21] . For a DES technique, the neighbors of each 

est sample, called the competence region, are used to measure 

he competence of each candidate classifier. Then DES selects ap- 

ropriate classifiers for each test sample based on the competence 

easurement to form an ensemble, rather than using a unified en- 

emble for all test samples. 

Recently, more and more DES methods have been applied to 

eal with imbalanced data problem and have achieved outstand- 

ng performance [ 20 , 22 , 23 ]. Roy, Cruz [24] compared the per-

ormance of DES combined with a preprocessing technique and 

tatic ensemble for processing imbalanced data. The experimental 

esults show that DES have higher F-measure and G-mean rela- 

ive to static ensemble methods. Hou, Wang [20] combined SMOTE 

nd DES to assess credit risk, and tested the performance of the 

ybrid method on other 15 imbalanced datasets. However, these 

ES methods mainly use bagging [25] to train candidate classi- 

ers, and the training sets randomly generated by bagging may not 

e sufficient to represent the competence regions. Moreover, these 

tudies set fixed parameters for the base classifiers, which may re- 

uce the fitting performance of base classifiers to different training 

ets. 

To solve the above-mentioned problems and challenges, a novel 

ombined DES method is proposed for imbalanced data to detect 

OVID-19 from complete blood count. At the data level, hybrid 

MOTE and edited nearest neighbor (SMOTE-ENN) [26] is used to 

alance data and clean up noise. At the algorithm level, in order to 

mprove the competence in local regions and diversity of candidate 

lassifiers, a novel hybrid multiple clustering and bagging classifier 

eneration (HMCBCG) method is developed to improve DES. HM- 

BCG adds multiple clustering to generate classifiers on the ba- 

is of bagging. Specifically, we use k-means [27] with different k 

alues to cluster the training set repeatedly with replacement. In 

his way, multiple clusters with different decision boundaries can 

e generated, which increases the diversity of candidate classifiers. 

esides, the training sets generated based on clustering are more 

ikely to represent the local regions around the test samples than 

agging. Then, all the clusters obtained by multiple clustering are 

sed to train support vector machines (SVM) [28] . At the same 

ime, for each cluster, we use genetic algorithm (GA) [29] to opti- 

ize the parameters of SVM to strengthen its regional competence 

nd diversity. Finally, the base classifiers generated by bagging and 

VMs based on clustering training are mixed together to form a 

andidate classifier pool. The contributions of this research can be 

ummarized as: 

I. A combined DES method is proposed for imbalanced data to 

detect COVID-19 from complete blood count. 

II. A novel HMCBCG candidate classifier generation method is de- 

veloped to improve the performance of DES. 
2 
II. The proposed combined DES method can significantly improve 

the accuracy, G-mean, F1 and area under the curve (AUC) of 

COVID-19 screening than other compared advanced algorithms. 

V. HMCBCG + k-nearests oracles eliminate (KNE) obtains the best 

performance for COVID-19 screening with 99.81% accuracy, 

99.86% F1, 99.78% G-mean and 99.81% AUC. 

The rest of this paper is organized as follows: Section 2 in- 

roduces previous related work. Section 3 describes the dataset 

nd methods used in this study. In Section 4 , we present the ex- 

erimental setting, performance metrics, and experimental results. 

ection 5 provides a discussion about the experimental results. Fi- 

ally, a brief summary is described in last section. 

. Related work 

.1. Intelligent computing methods in COVID-19 screening 

Currently, intelligent computing methods of COVID-19 screen- 

ng are mainly based on CT, X-ray and clinical blood test data. In 

erms of CT and X-ray, the convolutional neural network (CNN) is 

he most used method. Ezzat, Hassanien [30] proposed a gravity 

earch optimized CNN to detect COVID-19 from a dataset contain- 

ng CT and X-ray images, which accuracy is 98.38%. Apostolopou- 

os and Mpesiana [8] combined transfer learning technology with 

everal advanced CNNs to diagnose COVID-19. The MobileNet per- 

ormed best in experimental results with 96.78% accuracy. In ad- 

ition, there are also some studies using other ML techniques 

o detect COVID-19 from medical imaging data. Chandra, Verma 

11] proposed an ensemble learning method based on majority vot- 

ng to detect COVID-19 from X-ray and its accuracy is 98.062%. 

haban, Rabie [12] produced a new COVID-19 detection strategy 

hat combining feature selection and improved KNN. The recogni- 

ion accuracy of this method for COVID-19 CT images is 96%. Com- 

ared with CT and X-ray, blood testing has the advantages of low- 

ost, radiation-free and easy operation. Therefore, some studies try 

o using ML to detect COVID-19 from blood test data. For exam- 

le, Brinati, Campagner [4] studied several ML methods to detect 

OVID-19 from blood routine examination data. The results show 

hat random forest achieved the highest accuracy. However, this 

tudy did not notice the negative impact of imbalanced data distri- 

ution on classification performance. Especially for a dataset where 

he number of healthy people is much larger than the number of 

OVID-19 infections, classifier will tend to identify healthy people 

nd ignore infected people. Unfortunately, the cost of misdiagnos- 

ng an infected person as a healthy person is far greater than the 

ost of misdiagnosing a healthy person as an infected person. Al- 

hough Banerjee, Ray [5] applied SMOTE to balance the different 

lasses in the dataset for detecting COVID-19 from full blood count 

ata, there is still room for improvement. 

.2. DES to handle imbalanced data 

DES, one of the dynamic selection (DS) techniques, has been 

hown to outperform single-based classifiers for some classifica- 

ion problems [31] . DES techniques are recommended for handling 

mbalanced data problems since they perform local classification 

32] . In recent years, more and more studies have proved that 

ES are superior to static ML algorithms for imbalanced data pro- 

essing. We roughly classify the existing DES methods for dealing 

ith imbalanced data into two categories. One is to directly im- 

rove DES without combining resampling methods. For example, 

liveira, Cavalcanti [33] proposed FIRE-DES algorithm to preselect 

hose classifiers that have the ability to process decision boundary 

amples when the test sample is in an overlapping area. Experi- 

ents prove that FIRE-DES can improve the performance of exist- 

ng DES frameworks for small imbalanced data processing. Junior, 
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Table 1 

The filtered features and data types. 

Features Data Type 

Age quantile Numerical 

Hematocrit Numerical 

Hemoglobin Numerical 

Platelets Numerical 

Red blood cells (RBC) Numerical 

Lymphocytes Numerical 

Mean corpuscular hemoglobin concentration (MCHC) Numerical 

Leukocytes Numerical 

Basophils Numerical 

Mean corpuscular hemoglobin (MCH) Numerical 

Eosinophils Numerical 

Mean corpuscular volume (MCV) Numerical 

Monocytes Numerical 

Red blood cell distribution width (RDW) Numerical 

Serum glucose (SG) Numerical 

C-reactive protein (CRP) Numerical 

SARS-CoV-2 exam result Categorical 
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ardini [22] developed an improved KNN to balance the sample 

istribution in the local region of the test sample. The intuition 

f this algorithm is to reduce the distance between the minority 

amples and the predicted sample so that more minority samples 

re included in the neighbors of the predicted sample. Zhao, Wang 

34] introduced patch learning in DES to improve the diversity 

f base classifiers. Experimental results show that this patched- 

nsemble model performs well for multi-class imbalanced classifi- 

ation. Zyblewski, Wo ́zniak [35] designed two DES methods, which 

re based on Euclidean distance and imbalance rate to select base 

lassifiers. The effectiveness of these two DES methods was tested 

n 41 high imbalance ratio datasets. 

Another kind of method is to combine preprocessing with DES 

o deal with imbalanced data. Zyblewski, Sabourin [36] proposed a 

ramework that integrates data preprocessing and DES for imbal- 

nced data stream classification. This approach uses stratified bag- 

ing to train the base classifiers. Cruz, Oliveira [37] proposed FIRE- 

ES ++ algorithm, which improves FIRE-DES by removing noise 

nd using the same number of instances of each class to define the 

ompetence region. Gao, Ren [23] presented a method of combin- 

ng hybrid sampling based on data partition with dynamic model 

election for imbalanced data. In addition, García, Zhang [38] pro- 

osed a method that hybrid preprocessing and DES to handle 

ulti-class imbalanced data. The preprocessing part of the method 

btains a balanced training set through resampling. In the candi- 

ate classifier selection part, the classifiers with a strong ability to 

ecognize minority samples are preferentially selected through the 

echanism of weighting the competence region. 

However, from our knowledge, most of these DES methods are 

ased on bagging to generate candidate classifiers. The training 

ets generated by random sampling of bagging may not be suffi- 

iently representative of the competence regions. In addition, us- 

ng fixed parameters to generate candidate classifiers is a common 

ractice in existing DES methods, which may lead to insufficient 

tting to the training set. 

. Materials and Methods 

.1. Data collection 

The dataset for this study is obtained from the data science 

latform Kaggle 1 . This dataset has been used for COVID-19 diag- 

osis through intelligent computing methods in previous research 

5] [55-57]. The original dataset contains 5644 cases with 111 at- 

ributes. It was provided by Hospital Israelita Albert Einstein in 

ao Paulo, Brazil. Patients in the dataset were tested for COVID- 

9 by RT-PCR during their visit to the hospital, and other labora- 

ory tests were also performed. All patients have been anonymized. 

here are a lot of missing values in the original dataset. We pre- 

rocessed the dataset as follows: First, we remove the features that 

re mostly missing values, and 17 features including SARS-CoV-2 

est and standard complete blood count are remained. Then, sam- 

les with mostly null are also removed, and 603 cases are ob- 

ained. The distribution of negative samples and positive samples 

s imbalanced, being 520 and 83, respectively. Finally, multivariate 

mputation by chained equation (MICE) [39] is used to fill in miss- 

ng values in the selected samples. 

Table 1 shows the filtered features and data types. As shown 

n Table 1 , the “SARS-CoV-2 exam result” is a binary label, nega- 

ive means no COVID-19 infection, and positive means COVID-19 

nfection. All features except “SARS-CoV-2 exam result” are numer- 

cal features. Fig. 1 shows the sample distribution of the selected 

eatures. Fig. 2 reports the Pearson correlation coefficient of the 
1 https://www.kaggle.com/einsteindata4u/covid19 

p

n

m

3 
elected features. The darker the color, the stronger the positive 

orrelation between the two features. The lighter the color, the 

tronger the negative correlation. 

.2. SMOTE-ENN for preprocessing 

In this paper, SMOTE-ENN is used to preprocess the COVID- 

9 dataset. SMOTE-ENN is a hybrid sampling method proposed by 

atista, Prati [26] . SMOTE-ENN combines the advantages of both 

MOTE [40] and edited nearest neighbor [41] [42] , which can ef- 

ectively deal with imbalanced data and remove noise. In SMOTE, 

 new sample is synthesized according to Eq. (1) : 

 s = x + random (0 , 1)(x − x ) (1) 

here x s is a new synthesized sample; x represents a minority sam- 

le (positive sample); x ′ is a randomly selected sample from the k 

earest neighbors of x ; random(0,1) represents a random number 

etween 0 and 1. As a simple and effective oversampling method, 

MOTE is widely used to deal with imbalanced data. ENN can iden- 

ify and remove noise to make the decision boundary smoother 

37] . ENN uses KNN to predict each sample in the new dataset. If 

he predicted result is inconsistent with the real label, the sample 

s removed. 

.3. HMCBCG model to improve DES 

In order to strengthen the diversity of DES candidate classifiers 

nd their regional competence, we propose a novel HMCBCG algo- 

ithm to generate candidate classifiers. As shown in Algorithm 1 

nd Fig. 3 , candidate classifiers generated by HMCBCG consists of 

wo parts: one part is generated by multiple times k-means clus- 

ering with different k values, and the other part is established by 

agging. In this way, subsets generated by clustering tend to have 

etter local regional representation than the randomly generated 

ubsets by bagging. Moreover, subsets generated by multiple times 

lustering based on different cluster numbers can increase the di- 

ersity of the training set. Therefore, candidate classifiers gener- 

ted by combing multiple times clustering based on different clus- 

er numbers with bagging have better diversity and local capabili- 

ies than bagging alone. 

Firstly, in part of generating candidate classifiers based on clus- 

ering, we cluster the training set multiple times by k-means with 

ifferent k values. After each k-means clustering, we put the sam- 

les back in order to cluster the original training set again. The 

umber of clusters for each time is taken from 2 to the preset 

aximum number of clusters k max . For example, assuming that 

https://www.kaggle.com/einsteindata4u/covid19
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Fig. 1. Violin plots of selected features. Negative and positive are classified labels, negative means no COVID-19 infection, and positive means COVID-19 infection. 

Fig. 2. Pairwise Pearson correlation of selected features. The correlation value range is [-1,1]. 1 means completely positive correlation, -1 means completely negative corre- 

lation, and 0 means irrelevant. 

4 
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Fig. 3. Specific steps of our proposed combined DES method for COVID-19 screening. k represents the number of clusters set for each time. k max is the maximum number 

of clusters. B i is the n samples randomly selected from the training set for the i -th time. L i is the base classifier obtained by training with B i , and m is the number of base 

classifiers. 

Algorithm 1 

HMCBCG model 

Input: Train data D tr , maximum cluster numbers k max , m base learners L 1 , 

L 2 ,…,L m . Set the number of samples in each subset obtained by 

bagging to n. 

Output: Candidate classifier pool �

1: �←∅ 
2: for 2 to k max do : 

3: Use k-means to divide D tr into k clusters. 

4: for each cluster do : 

5: Apply GA to optimize SVM to get the SVM with optimal parameters. 

6: Add the trained SVM to � . 

7: end for 

8: Shuffle all the clusters to restore D tr . 

9: end for 

10: for 1 to m do : 

11: for 1 to n do : 

12: Randomly draw a sample from D tr . 

13: end for 

14: Use the n samples to train a base learner. 

15: Add the trained base learner to � . 

16: Put the n samples back to restore D tr . 

17: end for 

18: return �
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 max = 5, then the training set will be clustered 4 times, and the 

alue of the number of clusters k will be set to 2, 3, 4, and 5 for

ach time. 

Then, each cluster is used to train SVM. SVM is one of the most 

ccurate and robust algorithms in the field of pattern recognition. 

ver the years, SVM has been widely used in classification and re- 

ression problems. The purpose of SVM is to find an optimal hy- 
5 
erplane to maximize the classification interval from training sam- 

les. For a dataset S = {( x 1 , y 1 ),( x 2 , y 2 )…( x n , y n )}, the optimal hyper-

lane can be shown as 

 

T x + b = 0 (2) 

here w 

T represents the weight vector, x means input vector and b 

s the bias. Eq. (2) can be transformed into an optimization prob- 

em as 

min 

w 

1 
2 

w 

T w 

s.t. y i ( w 

T · x i + b) ≥ 1 i = 1 , 2 , ...n 

(3) 

By introducing Lagrangian multipliers with λi > 0( i = 1,2,…, n ), 

he optimization problem can be transformed into a dual problem 

s follows: 

in 

1 
2 

n ∑ 

i =1 

n ∑ 

j=1 

y i y j λi λ j ( x i · x j ) −
n ∑ 

j=1 

λ j 

s.t. 
n ∑ 

i =1 

λi y i = 0 , 0 ≤ λi ≤ C, i = 1 , 2 , ..., n 

(4) 

here C is the penalty coefficient. If C is too large, the risk of SVM

alling into over-fitting will increase; otherwise, under-fitting will 

asily occur. For nonlinear problems, SVM needs to map the origi- 

al data to a high-dimensional space through a kernel function to 

ake it linearly separable. The classification function can be ex- 

ressed as 

f (x ) = sgn 

( 

n ∑ 

i =1 

λ∗
i y i K < x i · x j > + b ∗

) 

(5) 
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Table 2 

Confusion matrix. 

Actual Positive Actual Negative 

Predicted Positive TP FP 

Predicted Negative FN TN 
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here λ∗
i 

indicates the optimal Langrangian coefficient, b ∗denotes 

he optimal bias. Sgn() is a symbolic function. K < x i • x j > rep-

esents the kernel function. In this study, we chose the most com- 

only used radial basis function (RBF) as the kernel function of 

VM. The RBF kernel function is expressed as: 

 < x i · x j > = e −η‖ 

x i −x j ‖ 

2 

(6) 

The performance of SVM is greatly affected by the penalty coef- 

cient C and the kernel function parameter η. In previous studies, 

VM as the base classifier of DES often uses fixed parameters. In 

rder to improve the regional competence and diversity of SVM, 

his paper uses GA to optimize the penalty coefficient C and the 

ernel function parameter η of SVM. GA is a method that searching 

or the optimal solution by imitating the selection, crossover and 

utation in the natural evolution process. Due to the outstanding 

lobal optimization ability of GA, it has been well applied to opti- 

ization problems in many fields. In view of the above advantages, 

A is used to optimize the penalty factor and the kernel function 

arameter of SVM. The classification accuracy of SVM is used as 

he fitness of GA. In this way, for each cluster, SVM with the opti-

al parameters is obtained. 

Another part of candidate classifiers is generated by bagging. 

agging is a typical ensemble learning method, which improves 

rediction accuracy and robustness by combining multiple base 

lassifiers, and can reduce variance and avoid overfitting. The spe- 

ific steps of bagging are: (1) Randomly select n samples from the 

riginal dataset. (2) Use the obtained n training samples to train a 

ase classifier. (3) Repeat steps (1) and (2) m times. The prediction 

esult is decided by the m base classifiers collectively (usually by 

oting). 

Finally, the candidate classifiers generated by bagging and SVMs 

ased on clustering training are mixed to construct a DES candi- 

ate classifier pool. 

.4. Specific steps of proposed combined DES model for COVID-19 

creening 

Based on SMOTE-ENN preprocessing and HMCBCG optimized 

ES, we propose a combined DES model for imbalanced data to 

etect COVID-19 from complete blood count. Fig. 3 shows the flow 

hart of our proposed combined DES model. The specific imple- 

entation steps are as follows: 

(1) Perform data cleaning on the original dataset D, including 

feature selection and filling in missing values. Then apply 

SMOTE-ENN to balance the different classes in the dataset 

and remove noise samples. Finally, receive the cleaned 

dataset D c . 

(2) Divide D c into training set D train and testing set D test . A part 

of samples is randomly selected from D train as the validation 

set, which is also called dynamic selection dataset (DSEL) 

[37] . The remaining samples are denoted as D tr . 

(3) The candidate classifier pool � is generated based on the D tr 

and HMCBCG method. 

(4) For a query sample X i in the testing set, select its k neigh- 

bors from DSEL. 

(5) Each classifier in � is used to classify the k nearest neigh- 

bors selected from DSEL. 

(6) Select suitable classifiers from � according to the selection 

criteria (usually by accuracy). 

(7) Combine the selected classifiers according to majority vot- 

ing. 
(8) Determine and output the class of the query sample X i . D  

6 
. Experiments and results 

.1. Experiment setting 

In this research, we chose three DES methods, including KNE 

43] , KNU [43] and DESKNN [44] to test the proposed HMCBCG 

odel. We considered several configurations k max = 2,3,4,5 and the 

lassifier generation that only uses bagging, which is recorded as 

ON in the experimental results. The experiment considered three 

ata division methods of 70-30, 60-40 training-test divisions and 

-fold cross-validation. Naive bayesian [45] , decision tree (DT) [46] , 

NN [47] and RF [48] are selected as base classifiers to train with 

agging. We set the number of each type of base classifier to 10, 

hat is, a total of 40 base classifiers are trained by bagging. In addi- 

ion, the GA operators use tournament selection, uniform crossover 

nd flipbit mutation. Set the crossover probability to 0.8 and the 

utation probability to 0.1. The population size is 50 and the num- 

er of iterations is 30. 

We also compared our combined DES method with several ad- 

anced algorithms, including GBDT [49] , SVM, RF, LR [50] and XG- 

oost [51] . In this study, all the computations are performed on a 

ython 3.6 platform on a Windows 10 system with Intel Core i5 

1.6 GHz, 8 CPUs) with 8 GB of RAM. The results of this study are

he average performance after repeating the experiment 10 times. 

.2. Performance metrics 

In this research, we choose accuracy, G-mean, F1 and AUC as 

he evaluation indicators, which are widely used in the perfor- 

ance evaluation of algorithms on imbalanced data. They can be 

efined according to the confusion matrix in Table 2 . Accuracy, G- 

ean and F1 are shown as follows: 

ccuracy = 

T P + T N 

T P + T N + F P + F N 

(7) 

 − mean = 

√ 

sensit i v it y × speci f icity = 

√ 

T P 

T P + F N 

× T N 

T N + F P 

(8) 

 1 = 

2 ∗ precision ∗ recall 

r ecall + pr ecision 

(9) 

where pr ecision = 

T P 
T P+ F P , r ecall = sensit i v it y = 

T P 
T P+ F N . 

AUC is the area under the receiver operating characteris- 

ic curve (ROC). The closer the AUC is to 1, the better the 

erformance of the classifier. AUC is very suitable for evaluat- 

ng imbalanced data classifiers because it is insensitive to the 

roportion of positive and negative examples in the dataset 

52] . 

.3. The performance of HMCBCG for different DES algorithms 

The experimental results of KNE, KNU and DES-KNN under 

0-30, 60-40 divisions and 5-fold cross-validation are shown in 

able 3 - 5 , respectively. For the four indicators of accuracy, F1, G- 

ean and AUC, we have marked the best results of KNE, KNU and 

ES-KNN in bold. As shown in Fig. 4 - 6 , in order to better compare
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Table 3 

Mean performance and standard deviations of KNE, KNU and DESKNN under different k max values with 70-30 division. 

Metrics Methods NON k max = 2 k max = 3 k max = 4 k max = 5 

Accuracy KNE 0.9640 ±0.0123 0.9880 ±0.0060 0.9926 ±0.0067 0.9976 ±0.0042 0.9981 ±0.0023 

KNU 0.9551 ±0.0105 0.9728 ±0.0079 0.9896 ±0.0093 0.9952 ±0.0050 0.9904 ±0.0050 

DESKNN 0.9664 ±0.0122 0.9791 ±0.0076 0.9896 ±0.0073 0.9936 ±0.0051 0.9960 ±0.0033 

F1 KNE 0.9710 ±0.0093 0.9897 ±0.0055 0.9934 ±0.0059 0.9981 ±0.0033 0.9986 ±0.0018 

KNU 0.9639 ±0.0082 0.9769 ±0.0070 0.9911 ±0.0075 0.9961 ±0.0045 0.9920 ±0.0051 

DESKNN 0.9723 ±0.0098 0.9814 ±0.0070 0.9915 ±0.0059 0.9948 ±0.0041 0.9968 ±0.0031 

G-mean KNE 0.9551 ±0.0165 0.9864 ±0.0061 0.9905 ±0.0080 0.9968 ±0.0035 0.9978 ±0.0027 

KNU 0.9442 ±0.0116 0.9693 ±0.0078 0.9892 ±0.0085 0.9957 ±0.0054 0.9921 ±0.0050 

DESKNN 0.9625 ±0.0147 0.9793 ±0.0071 0.9865 ±0.0087 0.9924 ±0.0050 0.9951 ±0.0035 

AUC KNE 0.9560 ±0.0159 0.9865 ±0.0061 0.9905 ±0.0080 0.9968 ±0.0035 0.9981 ±0.0022 

KNU 0.9551 ±0.0114 0.9728 ±0.0078 0.9896 ±0.0085 0.9952 ±0.0049 0.9904 ±0.0063 

DESKNN 0.9664 ±0.0145 0.9791 ±0.0070 0.9896 ±0.0081 0.9936 ±0.0046 0.9960 ±0.0032 

Fig. 4. Average performance and standard deviations comparison of KNE, KNU and DESKNN under different indicators with 70-30 division. (a) Accuracy, (b) AUC, (c) F1, (d) 

G-mean. 
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he performance of KNE, KNU and DESKNN for different k max val- 

es, we have drawn bar charts of different indicators for the three 

ivision methods of 70-30, 60-40 training-test and 5-fold cross- 

alidation. 

It can be seen from Fig. 4 - 6 that for different training-test di-

isions and k max values, the performance of HMCBCG is improved 

n accuracy, F1, G-mean and AUC for KNE, KNU and DES-KNN com- 

ared with bagging directly. This shows that for different k max val- 

es, HMCBCG can not only effectively im prove the overall accuracy 

f COVID-19 detection, but also improve the sensitivity and speci- 

city. From Fig. 4 - 6 , we can see that HMCBCG + KNE obtains the
7 
est performance with 99.81% accuracy, 99.86% F1, 99.78% G-mean 

nd 99.81% AUC when k max = 5 with 70-30 division. 

As can be seen from Table 3 –5 and Fig. 4 - 6 , on the whole, with

he increase of k max , the values of accuracy, F1, G-mean and AUC 

f KNE, KNU and DESKNN also increase. This is because as the 

alue of k max increases, the more different clusters are generated, 

he more diverse SVMs after training. In addition, GA enhances the 

daptability of SVMs to different clusters. In this way, the larger 

he value of k max , the more likely the optimized SVMs are to fit 

ifferent com petence regions of different query samples, and the 

igher the accuracy of DES. 
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Fig. 5. Average performance and standard deviations comparison of KNE, KNU and DESKNN under different indicators with 60-40 division. (a) Accuracy, (b) AUC, (c) F1, (d) 

G-mean. 
Table 4 

Mean performance and standard deviations of KNE, KNU and DESKNN under different k max values with 60-40 division. 

Metrics Methods NON k max = 2 k max = 3 k max = 4 k max = 5 

Accuracy KNE 0.9628 ±0.0096 0.9825 ±0.0097 0.9964 ±0.0030 0.9946 ±0.0056 0.9976 ±0.0021 

KNU 0.9484 ±0.0080 0.9663 ±0.0093 0.9850 ±0.0085 0.9880 ±0.0049 0.9904 ±0.0057 

DES-KNN 0.9658 ±0.0127 0.9669 ±0.0065 0.9916 ±0.0058 0.9922 ±0.0050 0.9964 ±0.0037 

F1 KNE 0.9707 ±0.0084 0.9858 ±0.0079 0.9971 ±0.0025 0.9956 ±0.0045 0.9981 ±0.0019 

KNU 0.9593 ±0.0072 0.9724 ±0.0077 0.9880 ±0.0068 0.9902 ±0.0040 0.9923 ±0.0059 

DES-KNN 0.9723 ±0.0105 0.9726 ±0.0055 0.9933 ±0.0046 0.9937 ±0.0041 0.9971 ±0.0034 

G-mean KNE 0.9522 ±0.0092 0.9792 ±0.0112 0.9951 ±0.0038 0.9938 ±0.0063 0.9966 ±0.0025 

KNU 0.9369 ±0.0074 0.9622 ±0.0097 0.9861 ±0.0080 0.9890 ±0.0045 0.9923 ±0.0058 

DES-KNN 0.9653 ±0.0123 0.9667 ±0.0078 0.9889 ±0.0080 0.9914 ±0.0051 0.9961 ±0.0038 

AUC KNE 0.9531 ±0.0090 0.9794 ±0.0111 0.9951 ±0.0038 0.9938 ±0.0063 0.9966 ±0.0025 

KNU 0.9379 ±0.0071 0.9625 ±0.0096 0.9861 ±0.0080 0.9890 ±0.0045 0.9924 ±0.0057 

DES-KNN 0.9654 ±0.0123 0.9668 ±0.0077 0.9889 ±0.0079 0.9914 ±0.0051 0.9961 ±0.0037 
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For Table 3 , when k max = 5, we observe that the values of

9.04% accuracy, 99.20% F1, 99.21% G-mean and 99.04% AUC of 

NU have a slight decrease relative to k max = 4 which are 99.52% 

ccuracy, 99.61% F1, 99.57% G-mean and 99.52% AUC. Similar situa- 

ions can also be observed when the k max = 3, 4 of KNE and k max = 2,

 of DES-KNN from Table 4 and Table 5 . This shows that for differ-

nt data partitioning methods, the performance of KNE, KNU and 

ESKNN may fluctuate slightly with the increase of k max , but over- 

ll it will improve with the increase of k max . Another interesting 

bservation is that whether it is 70-30, 60-40 divisions or 5-fold 

ross-validation, for different k max values, HMCBCG + KNE outper- 

orms HMCBCG + KNU and HMCBCG + DESKNN in terms of accuracy, 

1, G-mean and AUC. 
8 
In terms of standard deviation, we can see from Table 3 and 

ig. 4 that for different values of k max , the standard deviations 

f KNE, KNU and DES-KNN for all four evaluation metrics are 

ess than bagging under the data division of 70-30. As seen in 

ables 4 and Table 5 , the standard deviations of KNE, KNU and 

ES-KNN for accuracy, F1, G-mean and AUC are comparable to bag- 

ing for both k max = 2 and k max = 3 for the 60-40 and 5-fold cross-

alidation data partitioning methods, while the standard deviations 

f these three DES methods are better than bagging when k max = 4 

nd k max = 5. Therefore, in most cases, the standard deviations of 

he improved DES based on HMCBCG are lower than that of the 

ES with only bagging to generate candidate classifiers, which in- 

icates that our method has better stability and consistency. 
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Fig. 6. Average performance and standard deviations comparison of KNE, KNU and DESKNN under different indicators with 5-fold cross-validation. (a) Accuracy, (b) AUC, (c) 

F1, (d) G-mean. 

Table 5 

Mean performance and standard deviations of KNE, KNU and DESKNN under different k max values with 5-fold cross- 

validation. 

Metrics Methods NON k max = 2 k max = 3 k max = 4 k max = 5 

Accuracy KNE 0.9299 ±0.0040 0.9784 ±0.0070 0.9843 ±0.0040 0.9928 ±0.0028 0.9976 ±0.0016 

KNU 0.9130 ±0.0054 0.9628 ±0.0058 0.9735 ±0.0040 0.9904 ±0.0022 0.9906 ±0.0027 

DES-KNN 0.9360 ±0.0064 0.9664 ±0.0088 0.9699 ±0.0065 0.9892 ±0.0054 0.9964 ±0.0028 

F1 KNE 0.9457 ±0.0030 0.9827 ±0.0055 0.9875 ±0.0032 0.9942 ±0.0022 0.9980 ±0.0013 

KNU 0.9330 ±0.0037 0.9703 ±0.0043 0.9789 ±0.0032 0.9921 ±0.0018 0.9922 ±0.0023 

DES-KNN 0.9491 ±0.0050 0.9729 ±0.0066 0.9766 ±0.0049 0.9913 ±0.0042 0.9971 ±0.0022 

G-mean KNE 0.9097 ±0.0053 0.9729 ±0.0084 0.9794 ±0.0053 0.9905 ±0.0033 0.9969 ±0.0021 

KNU 0.8889 ±0.0080 0.9539 ±0.0078 0.9662 ±0.0049 0.9903 ±0.0025 0.9915 ±0.0030 

DES-KNN 0.9252 ±0.0082 0.9611 ±0.0125 0.9592 ±0.0088 0.9857 ±0.0069 0.9953 ±0.0035 

AUC KNE 0.9134 ±0.0048 0.9733 ±0.0081 0.9797 ±0.0052 0.9906 ±0.0033 0.9969 ±0.0020 

KNU 0.8943 ±0.0069 0.9549 ±0.0071 0.9669 ±0.0048 0.9904 ±0.0024 0.9916 ±0.0029 

DES-KNN 0.9266 ±0.0079 0.9617 ±0.0115 0.9610 ±0.0082 0.9859 ±0.0067 0.9953 ±0.0034 
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To further verify the superiority of HMCBCG over bagging, the 

xperimental results of KNE, KNU and DESKNN under different 

 max values are subjected to paired t-tests with bagging, respec- 

ively. The paired t-test is recommended for the comparison of 

wo classifiers on one dataset [ 53 , 54 ]. A p-value less than 0.05

s considered statistically significant in this study. Tables 6 –8 show 

he results of paired t-tests under 70-30,60-40 divisions and 5-fold 

ross-validation, respectively. As can be seen in Tables 6 –8 , except 

or DESKNN at k max = 2 under 60-40 partitioning, for different data 

ivisions and DES methods, the accuracy, F1, G-mean and AUC of 

MCBCG under different k max values are significantly better than 

agging. 
9 
.4. Comparison of other advanced classifiers 

Table 9 shows the performance and standard deviations com- 

arison of HMCBCG + KNE, HMCBCG + KNU and HMCBCG + DESKNN 

ith other advanced classifiers in term of 5-fold cross-validation 

hen k max = 5. It can be seen from Table 9 that accuracy, 

1, G-mean and AUC of HMCBCG + KNE, HMCBCG + KNU and 

MCBCG + DESKNN are higher than other advanced algorithms. 

MCBCG + KNE obtains the best performance with 99.76% ac- 

uracy, 99.80% F1, 99.69% G-mean, 99.69% AUC. Furthermore, 

s can be seen in Table 9 , HMCBCG + KNE, HMCBCG + KNU and

MCBCG + DESKNN all produced smaller standard deviations than 
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Table 6 

Paired t-test results of KNE, KNU and DESKNN under different k max values with bagging (70-30 

division). 

Metrics Methods 

t -value (significance) 

k max = 2 k max = 3 k max = 4 k max = 5 

Accuracy KNE 5.807(0.001) 10.398(0.000) 8.728(0.000) 9.660(0.000) 

KNU 5.189(0.001) 9.245(0.000) 11.309(0.000) 9.803(0.000) 

DESKNN 3.390(0.008) 5.955(0.000) 7.052(0.000) 6.696(0.000) 

F1 KNE 4.924(0.001) 10.898(0.000) 9.341(0.000) 10.400(0.000) 

KNU 4.780(0.001) 8.577(0.000) 12.005(0.000) 9.664(0.000) 

DESKNN 3.158(0.012) 6.008(0.000) 7.505(0.000) 6.635(0.000) 

G-mean KNE 5.260(0.001) 8.432(0.000) 8.048(0.000) 8.829(0.000) 

KNU 5.749(0.000) 10.784(0.000) 12.098(0.000) 11.999(0.000) 

DESKNN 3.396(0.008) 5.198(0.001) 6.162(0.000) 6.287(0.000) 

AUC KNE 5.262(0.001) 8.607(0.000) 8.152(0.000) 8.980(0.000) 

KNU 4.172(0.001) 8.512(0.000) 10.055(0.000) 8.491(0.000) 

DESKNN 2.613(0.028) 5.201(0.001) 5.775(0.000) 5.831(0.000) 

Table 7 

Paired t-test results of KNE, KNU and DESKNN under different k max values with bagging (60-40 

division). 

Metrics Methods 

t -value (significance) 

k max = 2 k max = 3 k max = 4 k max = 5 

Accuracy KNE 4.605(0.001) 10.759(0.000) 8.547(0.000) 11.967(0.000) 

KNU 4.577(0.001) 8.750(0.000) 14.642(0.000) 11.023(0.000) 

DESKNN 0.243(0.814) 8.360(0.000) 6.644(0.000) 7.741(0.000) 

F1 KNE 4.352(0.002) 9.730(0.000) 8.127(0.000) 10.685(0.000) 

KNU 3.866(0.004) 8.075(0.000) 13.154(0.000) 9.511(0.000) 

DESKNN 0.096(0.926) 8.252(0.000) 6.625(0.000) 7.407(0.000) 

G-mean KNE 5.053(0.001) 13.742(0.000) 10.096(0.000) 15.583(0.000) 

KNU 6.027(0.000) 11.946(0.000) 19.326(0.000) 15.077(0.000) 

DESKNN 0.309(0.765) 8.461(0.000) 6.712(0.000) 8.336(0.000) 

AUC KNE 5.042(0.001) 13.759(0.000) 10.071(0.000) 15.662(0.000) 

KNU 6.034(0.000) 12.035(0.000) 19.465(0.000) 15.097(0.000) 

DESKNN 0.293(0.777) 8.373(0.000) 6.680(0.000) 8.304(0.000) 

Table 8 

Paired t-test results of KNE, KNU and DESKNN under different k max values with bagging (5-fold cross- 

validation). 

Metrics Methods 

t -value (significance) 

k max = 2 k max = 3 k max = 4 k max = 5 

Accuracy KNE 26.103(0.000) 30.045(0.000) 35.859(0.000) 47.587(0.000) 

KNU 36.432(0.000) 30.539(0.000) 38.037(0.000) 39.005(0.000) 

DESKNN 8.942(0.000) 12.172(0.000) 19.771(0.000) 32.469(0.000) 

F1 KNE 25.217(0.000) 30.800(0.000) 35.880(0.000) 47.868(0.000) 

KNU 38.880(0.000) 31.404(0.000) 40.176(0.000) 41.316(0.000) 

DESKNN 9.012(0.000) 12.814(0.000) 19.779(0.000) 33.203(0.000) 

G-mean KNE 27.029(0.000) 26.660(0.000) 36.196(0.000) 50.905(0.000) 

KNU 29.446(0.000) 28.058(0.000) 35.476(0.000) 36.921(0.000) 

DESKNN 8.359(0.000) 9.563(0.000) 18.263(0.000) 28.624(0.000) 

AUC KNE 26.979(0.000) 27.547(0.000) 36.719(0.000) 50.266(0.000) 

KNU 30.379(0.000) 29.133(0.000) 37.931(0.000) 39.266(0.000) 

DESKNN 8.645(0.000) 10.061(0.000) 18.317(0.000) 29.270(0.000) 

t

a

t

t

s

v

o

a

(

H

g

H

he other compared classifiers in terms of accuracy, F1, G-mean 

nd AUC. This indicates that our proposed DES methods have bet- 

er stability than the other five competitors. 

In addition, as shown in Table 11 , paired t-tests are performed 

o compare the proposed combined DES approach with other clas- 

ification algorithms. As can be seen in Table 11 , with 5-fold cross- 

alidation, HMCBCG + KNE, HMCBCG + KNU and HMCBCG + DESKNN 
10 
utperformed the other five advanced classifiers in terms of 

ccuracy, F1, G-mean and AUC at the 5% significance level 

k max = 5). 

Fig. 7 further compares the ROC curves of HMCBCG + KNE, 

MCBCG + KNU and HMCBCG + DESKNN with other advanced al- 

orithms. It can be seen from Fig. 7 that AUC values of 

MCBCG + KNE, HMCBCG + KNU and HMCBCG + DESKNN are signif- 
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Table 9 

Average performance and standard deviations comparison of the proposed combined DES methods 

with other advanced algorithms with 5-fold cross-validation (k max = 5). 

Algorithm Accuracy F1 G-mean AUC 

HMCBCG + KNE 0.9976 ±0.0016 0.9980 ±0.0013 0.9969 ±0.0021 0.9969 ±0.0020 

HMCBCG + KNU 0.9904 ±0.0027 0.9920 ±0.0023 0.9915 ±0.0030 0.9916 ±0.0029 

HMCBCG + DESKNN 0.9964 ±0.0028 0.9971 ±0.0022 0.9953 ±0.0035 0.9953 ±0.0034 

GBDT 0.8992 ±0.0133 0.9225 ±0.0093 0.8711 ±0.0160 0.8779 ±0.0182 

SVM 0.8943 ±0.0074 0.9192 ±0.0050 0.8617 ±0.0121 0.8698 ±0.0097 

RF 0.9232 ±0.0105 0.9400 ±0.0070 0.9040 ±0.0178 0.9077 ±0.0136 

LR 0.9111 ±0.0077 0.9297 ±0.0057 0.8952 ±0.0098 0.8978 ±0.0089 

XGBoost 0.9076 ±0.0096 0.9282 ±0.0062 0.8836 ±0.0177 0.8882 ±0.0120 

Fig. 7. Comparison of the ROC curves of HMCBCG + KNE, HMCBCG + KNU and 

HMCBCG + DESKNN with other advanced algorithms. 
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Table 10 

Comparison with previous works. 

Study Method Accuracy 

[5] RF/glmnet 0.91 

[55] ANN 0.94 

[56] CNNLSTM 0.923 

[57] LR 0.9406 

Our method HMCBCG + KNE 0.9976 

Table 11 

Paired t-test results of different DES methods with other advanced classifiers 

under 5-fold cross-validation (k max = 5). 

Metrics Methods 

t -value (significance) 

KNE KNU DESKNN 

Accuracy GBDT 22.586(0.000) 20.404(0.000) 23.629(0.000) 

SVM 51.234(0.000) 48.616(0.000) 49.649(0.000) 

RF 23.782(0.000) 21.216(0.000) 20.880(0.000) 

LR 33.226(0.000) 27.036(0.000) 30.564(0.000) 

XGBoost 31.493(0.000) 29.715(0.000) 30.851(0.000) 

F1 GBDT 24.652(0.000) 21.902(0.000) 26.383(0.000) 

SVM 60.845(0.000) 53.136(0.000) 56.309(0.000) 

RF 26.930(0.000) 24.392(0.000) 24.129(0.000) 

LR 34.884(0.000) 28.173(0.000) 32.615(0.000) 

XGBoost 38.216(0.000) 37.150(0.000) 36.589(0.000) 

G-mean GBDT 21.292(0.000) 19.913(0.000) 21.923(0.000) 

SVM 38.987(0.000) 40.319(0.000) 39.413(0.000) 

RF 16.859(0.000) 16.249(0.000) 15.745(0.000) 

LR 30.414(0.000) 27.152(0.000) 27.980(0.000) 

XGBoost 20.690(0.000) 19.987(0.000) 20.921(0.000) 

AUC GBDT 19.915(0.000) 18.782(0.000) 20.749(0.000) 

SVM 47.505(0.000) 48.962(0.000) 46.921(0.000) 

RF 21.547(0.000) 20.422(0.000) 19.363(0.000) 

LR 32.692(0.000) 28.353(0.000) 29.382(0.000) 

XGBoost 30.037(0.000) 29.317(0.000) 29.804(0.000) 
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cantly greater than other comparative algorithms. This shows that 

ur combined DES method can simultaneously improve the detec- 

ion accuracy of COVID-19 negative and positive. For a COVID-19 

ataset, if the number of healthy cases is much larger than the 

umber of virus carriers, this will cause the classifier to pay too 

uch attention to the majority samples and a decline in the clas- 

ification accuracy of the minority samples. Obviously, the cost of 

isclassifying a COVID-19 carrier as healthy is much greater than 

isdiagnosing a healthy person as COVID-19 infected. Therefore, 

ur proposed combined DES method is more suitable for COVID-19 

creening from imbalanced complete blood count data than other 

dvanced algorithms. 

. Discussion 

In this study, a hybrid DES imbalanced data processing method 

s proposed to detect COVID-19 from complete cell count data. We 

se SMOTE-ENN to balance data distribution and clean up noise. 

oreover, the HMCBCG model is proposed to improve the diversity 

nd local capabilities of DES candidate classifiers. 

We use three popular DES algorithms including KNE, KNU 

nd DESKNN to test the performance of the proposed HMCBCG 

ethod. Then we compared the performance of the proposed com- 

ined DES model with other advanced classifiers for COVID-19 

creening. As shown in Table 10 , we also compared the proposed 

ethod with previous studies. It can be seen from Table 10 that 

MCBCG + KNE has better accuracy than other methods in the lit- 

rature. 

The key findings of the experimental results are summarized as 

ollows: (1) For the three DES algorithms KNE, KNU and DESKNN, 

he performance of our HMCBCG is better than generating classi- 

ers only by bagging. (2) HMCBCG + KNE obtains the best perfor- 
11 
ance for COVID-19 screening with 99.81% accuracy, 99.86% F1, 

9.78% G-mean and 99.81% AUC when k max = 5 with 70-30 di- 

ision. (3) Our proposed combined DES model is significantly bet- 

er than several other advanced algorithms for COVID-19 screening, 

ncluding GBDT, SVM, RF, LR and XGBoost in terms of accuracy, F1, 

-mean and AUC. 

These findings indicate that whether for traditional DES meth- 

ds or others advanced single classifiers and static ensemble algo- 

ithms, our combined DES model has certain advantages for pre- 

icting COVID-19 infection from imbalanced complete blood count 

ata. This method can be explored as a decision support tool for 

linical practice to isolate and provide medical services for patients 

ith COVID-19 as soon as possible, thereby optimizing the allo- 

ation of medical resources. The main limitation of this article is 

he sample size of the dataset. The performance of the proposed 

ethod can be enhanced by larger datasets containing patients 

rom different regions and different hospitals. 
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. Conclusion 

In this paper, we propose a novel combined DES method for im- 

alanced data to detect COVID-19 from complete blood count data. 

his model combines data preprocessing and improved DES. Firstly, 

MOTE-ENN is used for data preprocessing to balance the num- 

er of samples of different classes and clean up noise. Secondly, 

he HMCBCG method is proposed to generate candidate classifiers 

o improve the performance of DES. Experimental results show 

hat our combined DES algorithm is superior to other compara- 

ive state-of-the-art methods in detecting COVID-19 from complete 

lood count data. In the future, we plan to use the proposed ap- 

roach to detect COVID-19 from a larger complete blood count 

ataset. Moreover, we consider applying our model to other dis- 

ases based on imbalanced data to further test the effectiveness of 

he proposed method. 
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