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A B S T R A C T   

Background: An image sharing framework is important to support downstream data analysis especially for 
pandemics like Coronavirus Disease 2019 (COVID-19). Current centralized image sharing frameworks become 
dysfunctional if any part of the framework fails. Existing decentralized image sharing frameworks do not store 
the images on the blockchain, thus the data themselves are not highly available, immutable, and provable. 
Meanwhile, storing images on the blockchain provides availability/immutability/provenance to the images, yet 
produces challenges such as large-image handling, high viewing latency while viewing images, and software 
inconsistency while storing/loading images. 
Objective: This study aims to store chest x-ray images using a blockchain-based framework to handle large im
ages, improve viewing latency, and enhance software consistency. 
Basic Procedures: We developed a splitting and merging function to handle large images, a feature that allows 
previewing an image earlier to improve viewing latency, and a smart contract to enhance software consistency. 
We used 920 publicly available images to evaluate the storing and loading methods through time measurements. 
Main Findings: The blockchain network successfully shares large images up to 18 MB and supports smart contracts 
to provide code immutability, availability, and provenance. Applying the preview feature successfully shared 
images 93% faster than sharing images without the preview feature. 
Principal Conclusions: The findings of this study can guide future studies to generalize our framework to other 
forms of data to improve sharing and interoperability.   

1. Introduction 

As the COVID-19 pandemic persists among us, it is crucial for 
healthcare institutions to share COVID-19 related data representing 
symptoms and side-effects to aid downstream processes that find and 
maintain the best prevention methods and treatments [1–6]. An 
important type of COVID-19 related data to be shared are chest x-ray 
images [7,8], which can be investigated in pictorial reviews to deter
mine prognostic COVID-19 pneumonia features and characteristics with 
more sample data [1,2] or be used to build more generalizable machine 
learning or deep learning models such as Convolutional Neural Network 
(CNN) for COVID-19 detection [3,9–11]. Therefore, there is a need for 
image sharing between medical institutions which require a trustworthy 
data interoperability framework that can share large amounts of data, 
ideally independent of a singular controller [12,13]. 

Current public centralized image sharing mechanisms, such as hos
pital image databases or open-source image sharing websites, enable 

collaborative and shareable image repositories [14]. However, they 
present the possibility of having a single-point-of-failure as seen in 
Fig. 1A. That is, any corruption or maintenance of the central repository 
would block access from other institutions to the medical images stored 
in the centralized server. 

To address the single-point-of-failure issue above, prior studies 
[15–18] have proposed blockchain-based solutions, which rely on 
blockchain, a decentralized, distributed ledger based on peer-to-peer 
networks and various consensus algorithms [19]. Blockchain has been 
proposed for various applications such as for genomic data assess log
ging [20], pharmaceutical supply chain [21], and privacy-preserving 
predictive modeling on clinical research data [22–25] because of its 
three main benefits: availability, immutability, and provenance to the 
data stored on-chain [26] First, the decentralized architecture of 
blockchain contributes to the continuous availability of medical images 
without a single-point-of-failure. Second, the block creation process 
generates an immutable audit trail (i.e., an unalterable ledger), which is 
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crucial for storing medical images. Lastly, possessing traceable and 
verifiable records and transactions ensures legitimacy, which is impor
tant in medical image sharing so future procedures and findings using 
those images are valid [26]. However, existing proposals [15–18] only 
store hashed medical images or pointers to the images on the chain 
rather than the images themselves (Fig. 1B). Therefore, the images 
themselves are not highly available, immutable, and provable. 

Although storing the images directly on the blockchain can provide 
availability, immutability, and provenance to the images, several chal
lenges (Fig. 1C) still exist that could preclude existing proposals from 
adopting this solution: (1) Large image size. Blockchain platforms usu
ally have a limit on the transaction size (e.g., Ethereum [27] can only 
support up to around 20 to 30 KB per transaction [28]), which could be 
smaller than the size of the medical images. Hence, a mechanism to 
handle large-sized images is important. (2) Viewing latency. The block 
creation times of blockchain, when compared to traditional databases, 
may be slower and thus would hinder the ability to quickly access the 
images to be shared. Therefore, a way to quickly preview the images is 
desirable. (3) Code inconsistency. Although the data could be guarded 
from being altered by the blockchain, the software to store/load the 
images may be changed accidentally/maliciously and thus inconsistent 
across different healthcare institutions. Thus, it would be desirable if the 
computer programs are also immutable, provable, and highly available 
to improve the consistency. 

2. Objectives 

We aim to utilize the blockchain benefits of immutability, prove
nance, and availability while addressing the (1) large-sized image 
handling, (2) image viewing latency, and (3) code inconsistency issues 
that emerge from sharing images through the blockchain. Our image 

sharing framework will (1) handle large images, (2) reduce viewing 
latency, and (3) enhance code consistency. 

3. Materials and method 

3.1. Method Overview 

To achieve these three goals, we devised a framework with three 
corresponding components: (1) splitting and merging, (2) scaling and 
previewing, and (3) smart contract (Fig. 1C). (1) Splitting and merging. To 
handle large images, we split images into smaller “image pieces” that are 
within the blockchain transaction size limit when storing the images, 
and then merge the pieces back into images when loading the images. 
(2) Scaling and previewing. To reduce viewing latency, we created, stored, 
and loaded “preview” images, which are descaled images for their cor
responding image and thus allow users to quickly glance over preview 
images before the original image is stored and loaded (e.g., like the 
preview images on Internet websites). (3) Smart Contract. To improve 
code consistency across multiple sites, we developed a smart contract, 
which is a digital and immutable set of programs deployed on certain 
blockchain platforms such as Ethereum [29], to store and load image 
pieces and preview images on the blockchain. 

The design of our framework is displayed in Fig. 2. Images are split 
when stored (Fig. 2A) and images are merged when loaded (Fig. 2C). 
Storing and loading is supported through a smart contract (Fig. 2B). The 
details of the storing, smart contract, and loading parts are introduced in 
the following: 

• Storing previews/images (Fig. 2A). The input of this step are the im
ages uploaded, and the output are preview images and image pieces 
to be recorded on the blockchain. Each patient is stored in a patient 

Fig. 1. Overview of image sharing frameworks. (A) Centralized solution stores data in one location such that when this location gets attacked or is under main
tenance, all sites can’t access the medical images. Multiple researchers, labeled RX,Y, exist at each site X and are responsible for storing and loading the medical 
images. We omitted researcher icons in the rest of this figure to reduce redundancy. (B) Existing blockchain-based solutions mainly store hashed medical images or 
pointers to the images on-chain such that when any site becomes unavailable, other sites can still access one another. However, only the stored hashed images or 
pointer to the images, and not the images themselves, receive the blockchain benefits of availability, immutability, and provenance. (C) Our solution handles large 
images by splitting and merging images, high viewing latency by scaling images for a preview feature, and code inconsistency by using a smart contract to provide 
availability/immutability/provenance to the code. 

M.M. Li and T.-T. Kuo                                                                                                                                                                                                                        



International Journal of Medical Informatics 156 (2021) 104599

3

structure with its patient ID as its unique identifier. If a patient has 
multiple images, these images can be stored at different times by 
using the patient’s ID as an identifier to link the images to the pa
tient. First, each image will be initialized as an image structure 
mapped to a patient structure using its filename as a key. We scale 
each image to be less than or equal to C KB (C = 30 in our experi
ments). Then, we split each image into C KB image pieces, where the 
sum of all these pieces is the size of the image. The scaled preview 
image and the image pieces will be stored on the blockchain.  

• Smart contract (Fig. 2B). The input/output of this step are both the 
preview images and the image pieces recorded on the blockchain. We 
created a smart contract with the specifically designed data struc
tures, Image and Patient, along with functions to store and load 
pieces and getter functions to retrieve information (Fig. 3). This al
lows us to store/load the preview images and image pieces while 
maintaining patient/image relationships.  

• Loading previews/images (Fig. 2C). The input of this step includes the 
preview image and the image pieces retrieved from the blockchain, 
and the output are the preview images and the merged images. First, 

Fig. 2. Overview of chest x-ray image sharing framework. (A) Researcher 1 shares images belonging to n patients, where each image (e.g., X KB for Image11_1) is first 
scaled to a “preview” image less than C KB (C being the maximum KB size of each image piece) and then separately split into C KB “image pieces”. (B) The smart 
contract stores the preview image along with the image pieces on each block, maintaining patient/image relationships. (C) Researcher 2 loads the preview image 
first, and then loads the image pieces and merges them back to their original image. 

Fig. 3. Smart contract for storing and loading. (A) The Patient and Image data structures store the patient’s and image’s unique identifiers along with other in
formation required to store and load the images. (B) There are two primary functions to store and load pieces and six getter functions to retrieve current state 
information. 
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we load the preview image to allow fast glancing of the image on 
another site. Next, we load the original image by extracting its 
relevant image pieces. Finally, we merge these image pieces back 
together to form their original image. 

3.2. Implementation 

The architecture of our implementation is shown in Fig. 4. Based on 
prior review [30,31], we chose the platform, Ethereum [27], because it 
executes smart contracts, is open-source, and is supported by a com
munity [29,32]. Ethereum has been adopted for medical applications 
such as medical records management [33] and gene-drug interaction 
data sharing [32]. We configured Ethereum as a private/permissioned 
blockchain [34] (i.e., can be joined by only allowed blockchain nodes/ 
computers) to emulate the scenario of an early-stage image sharing 
platform where only few authorized institutions can participate in the 
blockchain network. Also, we adopted Clique [34], a Proof-Of-Authority 
(PoA) consensus protocol [35] that is specifically designed for a per
missioned blockchain. PoA is used instead of other consensus protocols 
like Proof-Of-Work (PoW) [32] because it can reduce extensive 
computational cost and energy (by assuming the nodes in the network 
are authorized participants already) when compared to the latter, thus 
can improve the sustainability of our proposed solution. 

We implemented our Smart Contract in Solidity 0.5.10 [36] in Remix 
IDE [37] and deployed it on Ethereum [27]. We coded off-chain pro
cesses in Java and used Web3j [38] to work on the Ethereum blockchain 
network. We set C to 30, where the size of each piece stored on-chain is 
at most 30 KB. We used two virtual machines to represent two medical 
imaging institutions, each with 2 vCPUs, 8 GB RAM, and 100 GB SSD 
hard disk, on the UCSD Campus Amazon Web Services (AWS) cloud 
platform, to conduct the experiments. 

3.3. Data 

We extracted n = 920 chest x-ray images of patients positive or 

suspected of COVID-19 or other viral and bacterial pneumonias such as 
Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory 
Syndrome (SARS), and Acute Respiratory Distress Syndrome (ARDS) 
from the University of Montreal’s publicly available image repository 
collected from public sources, hospitals, and physicians [39,40]. Within 
these images, 711 were JPGs and 209 were PNGs. There were m = 450 
patients, where each patient may have more than one associated image. 
The filenames of the images were unique in the dataset. The detailed 
statistics of the dataset are described in Table 1. 

3.4. Experiment setting 

To understand the performance of our proposed method (“patient- 
level with preview”), we compared it with a variant without the preview 
feature (“patient-level without preview”). Additionally, to further 
investigate the extreme situation of “one image per patient”, we 

Site1 Site2

App App 

Web3j Web3j 

Solidity Solidity Ethereum Ethereum 

Network 

AWS_Virtual_Machine1 AWS_Virtual_Machine2

Fig. 4. Implementation Architecture.  

Table 1 
Statistics of the chest x-ray image dataset used to evaluate our method.  

Category Statistic Value 

Images Total Number of Images 920 
JPG 711 
PNG 209 

Image Size (KB) Maximum 18,497 
Minimum 10 
Median 221 
Average 584 

Patients Total Number of Patients 450 
Number of Images per Patient Maximum 22 

Minimum 1 
Median 2 
Average 2 

Total Image Size for a Patient (KB) Maximum 57,043 
Minimum 10 
Median 401 
Average 1,195  
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removed the patient-image relationship to form another pair of methods 
(“image-level with preview” and “image-level without preview”). All the 
above comparing methods share the core functionalities of splitting, 
merging, and utilizing a smart contract. Also, we stored and loaded 
images sequentially by the patient IDs and then by the patient’s image 
filenames. 

For each method, we measured their storing (i.e., time required to 
publish the whole original image to the blockchain), loading (i.e., time 
required to retrieve the whole original image from the blockchain), first- 
viewable storing, first-viewable loading, and total first-viewable times. 
The first-viewable storing time indicates the time taken for a researcher 
from a site to store the first “viewable” image (i.e., the preview image for 
methods with the preview feature, and the original image for methods 
without the preview feature). Similarly, the first-viewable loading time 
indicates the time taken for a researcher from another site to load the 
first “viewable” image. Finally, the total first-viewable time is the sum of 
the first-viewable storing and first-viewable loading times; this time 
represents how long it would take for a researcher to preview an image 
being stored by another researcher, and therefore is our main metric to 
compare the methods with/without the preview feature. We further 
conducted a paired two-sample t-test and calculated the Pearson Cor
relation Coefficient (PCC) for the two pairs of methods (i.e., between the 
two patient-level methods and between the two image-level methods). 

4. Results 

All times for the two patient-level methods are summarized in 
Table 2, and all times for the image-level methods are listed in Table 3. 
Preview feature increased patient-level average storing time by around 
12 s, image-level average storing time by around 6 s, patient-level 
average loading time by around 0.6 s, and image-level average 
loading time by around 0.1 s, as the cost of including the “preview 
image”. Meanwhile, the preview feature decreased patient-level average 
total first-viewable time by around 167 s, and image-level average total 
first-viewable time by around 77 s, demonstrating the reduced viewing 
latency. 

The detailed comparison of the average total first-viewable times as 
well as the p-value and PCC of the two pairs of methods are shown in 
Fig. 5. The time improvement of “patient-level with preview” method 
over the “patient-level without preview” method has a p-value < 10-9 and 
a PCC = 0.887, while the time enhancement of “image-level with pre
view” method over the “image-level without preview” method has a p- 
value < 10-44 and a PCC = 0. 626. To understand the impact of the 
number of images per patient, we further analyzed our proposed “pa
tient-level with preview” method (Fig. 6). In general, larger total image 
size of a patient, especially larger number of images per patient, 
lengthen the total first-viewable time. 

5. Discussion 

5.1. Findings 

We have the following major findings:  

(1) Large image handling from splitting and merging. As the sizes of 
images increase, so does the length of time needed to store and 
load the images (Fig. 6). We were able to store all images in the 
COVID-19 image dataset, where the largest image in our 

experiment was 18.5 MB (Table 1). Furthermore, after stratifying 
first-viewable times by number of images per patient, the first- 
viewable times for patients with more images were lengthened 
despite having the same total image size (KB) as other patients.  

(2) Reducing viewing latency from preview feature. The preview feature 
increases storing and loading time; however, there is a significant 
reduction in the user viewing time, which is crucial in real-world 
applications. There is a 93.2% reduction in first-viewable time for 
patient-level methods (Table 2E) and 92.7% reduction in first- 
viewable time for image-level methods (Table 3E). Both 
patient-level and image-level pairs of methods have low p-values, 
showing statistical significance, displaying the effectiveness of 
using the preview feature to reduce viewing latency. Both 
patient-level and image-level pairs of methods have mid to high 
PCC values showing correlation between patient size and first- 
viewable time. We further analyzed the number of blockchain 
transactions (each is within the 30 KB size limit of Ethereum) of 
the “with-preview” methods. There were 19,316 transactions, 
where 18,396 were for image pieces and 920 were for preview 
images. It should be noted that the number of blockchain trans
actions were the same for both the patient-level and the image- 
level approaches. Therefore, the preview feature accounts for 
920 / 19,316 ≈ 4.8% of the transaction traffic. This increased 
traffic is relatively insignificant when compared to the ≈ 93% 
reduction in first-viewable time, which could represent the 
perceived daily usage experience by the researchers and the super 
users.  

(3) Enhancing code consistency from the smart contract. We were able to 
deploy a smart contract that ensures code immutability, prove
nance, and availability, as well as the images, stored on-chain. 

6. Limitations 

The limitations of our study include:  

(a) Blockchain Configuration. We have successfully applied this 
framework on a 2-node permissioned blockchain network as a 
proof-of-concept prototype. In a real-world clinical data research 
network such as pSCANNER [41], there could be more in
stitutions willing to participate in image data sharing. Also, other 
permissioned blockchain platforms such as Hyperledger Fabric 
[42] could be adopted in place of Ethereum. Hence, simulation 
with more nodes and with different blockchain may warrant 
investigation.  

(b) Image Scope. We were able to store/load images up to 18 MB each. 
However, different types of images such as Magnetic Resonance 
Imaging (MRI), Computed Tomography (CT), and ultrasounds 
can be larger than 100 MB [43]. In addition, a dataset with a 
larger number of images may lead to image filename duplicates 
for each patient, and thus require additional steps to resolve the 
duplications. Moreover, not all images in our dataset contained 
date/time information. In all, experiments handling larger im
ages, filename duplications, and date/time information have yet 
to be investigated.  

(c) Patient Scope. The largest number of images for a patient was 22 
images and the average number of images for a patient was 2 
only. While our dataset only contained chest x-ray images, other 
institutions may publish images for different body parts such as 

Table 2 
Results for patient-level methods. All times are measured in seconds.  

PreviewFeature (A) Average 
Storing Time 

(B) Average First-Viewable 
Storing Time 

(C) Average 
Loading Time 

(D) Average First-Viewable 
Loading Time 

(E) Average Total First-Viewable 
Time ¼ (B) þ (D) 

No  172.804  172.804  6.995  6.995  179.799 
Yes  185.071  12.167  7.593  0.145  12.312  
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the brain [44], where over 1000 images may result from each 
medical exam [45]. This would greatly increase the total number 
of images per patient. Future experiments can investigate po
tential upper bounds of the number of images per patient.  

(d) Image Format. We only evaluated our system on JPG/PNG types of 
images. More formats such as Digital Imaging and Communica
tions in Medicine (DICOM), the standard format for medical im
ages, [46] may be included in future experiments. Meanwhile, 
our proposed method to store, load, and preview images using 
smart contracts should still be applicable across different image 
types, because they are agnostic to the format of clinical images 
to be stored on the blockchain.  

(e) Sensitive Information. While our experiments assumed all images 
contained no sensitive information, institutions may attach a 
patient’s personal information (e.g., Medical Record Number 
(MRN) or patient name) as text to their corresponding images. On 
the other hand, involving medical authority at each participating 
institution is critical in real world scenarios when sharing medi
cal images, especially ones with sensitive information. Privacy- 

protecting techniques and policies such as removing or encrypt
ing the sensitive contents [47–49] and including medical experts 
as “data champions” [50] to supervise the proper sharing of the 
images are yet to be included in our framework. 

6. Conclusion 
Our results support the use of permissioned blockchain as a solution 

to share images through on-chain image storage to provide immuta
bility, availability, and provenance to the images themselves while 
addressing the challenges of on-chain storage. All images, including 
large images up to 18 MB, were handled by our splitting and merging 
method. The preview feature effectively resolved the issue of high 
viewing latency. Specifically, because the patient-level experiments suit 
real world applications to conserve patient-level data, finding that 
patient-level with preview was successful reinforces using blockchain 
along with the preview feature. In addition to image immutability, 
availability and provenance, the smart contract ensured code 
consistency. 

Although we only worked with the clinical data consisting of chest x- 
ray images related to COVID-19, MERS, SARS, and ARDS, our frame
work can be generalizable to other forms of images such as epidemio
logical and biological ones. A variety of medical images can prove to be 
useful in combating and analyzing their corresponding disease. Other 
COVID-19 related medical images such as CT scans have been used in 
convolutional neural networks to diagnose COVID-19 pneumonia [51]. 
Other non-COVID-19 related medical images such as brain MR images 
from Alzheimer’s Disease have been used to detect disease progression 
[52] and used in machine learning algorithms to detect brain tumors 
[53]. Breast ultrasounds have been used to detect breast cancer [54]. 

Overall, this study supports the functionalities in blockchain-based 
methods that store data on-chain, which can suit various healthcare 
needs such as mass image sharing between multiple institutions. Our 
contributions can be summarized as: (a) designing an image sharing 
blockchain that provides immutability, availability, and provenance to 
the images; (b) handling large images through a split/merge method, 
improving viewing latency through a preview feature, and enhancing 
software consistency through use of a smart contract; and (c) creating a 
framework generalizable to other image types to improve sharing/ 
interoperability. 

Table 3 
Results for image-level methods. All times are measured in seconds.  

PreviewFeature (A) Average 
Storing Time 

(B) Average First-Viewable 
Storing Time 

(C) Average 
Loading Time 

(D) Average First-Viewable 
Loading Time 

(E) Average Total First-Viewable 
Time ¼ (B) þ (D) 

No  83.542  83.542  0.516  0.516  84.058 
Yes  89.817  6.102  0.697  0.013  6.115  

Fig. 5. The comparison of the average total first-viewable times of (A) patient-level and (B) image-level methods, including the p-value of the paired two-sample t- 
test and the Pearson Correlation Coefficient (PCC). 
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Summary Table  

What was already known?  • Centralized repositories can share images but 
possess a single-point-of-failure.  

• Decentralized blockchain-based frameworks can 
share images but may not provide immutability, 
provenance, and availability to the images 
themselves. 

What did this study add to 
our knowledge?  

• Storing images on the blockchain allows 
blockchain to directly provide immutability, 
availability, and provenance to the images.  

• Splitting and merging images addresses the large 
image issue.  

• A preview feature in the blockchain based image 
sharing framework reduces viewing latency.  

• Using a smart contract allows blockchain to 
directly provide immutability, availability, and 
provenance to the code to improve its consistency.  
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