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Abstract

Motivation: Hi-C is the most widely used assay for investigating genome-wide 3D organization of chromatin. When
working with Hi-C data, it is often useful to calculate the similarity between contact matrices in order to assess
experimental reproducibility or to quantify relationships among Hi-C data from related samples. The HiCRep
algorithm has been widely adopted for this task, but the existing R implementation suffers from run time limitations
on high-resolution Hi-C data or on large single-cell Hi-C datasets.

Results: We introduce a Python implementation of HiCRep and demonstrate that it is much faster and consumes
much less memory than the existing R implementation. Furthermore, we give examples of HiCRep’s ability to accur-
ately distinguish replicates from non-replicates and to reveal cell type structure among collections of Hi-C data.
Availability and implementation: HiCRep.py and its documentation are available with a GPL license at https://

github.com/Noble-Lab/hicrep. The software may be installed automatically using the pip package installer.

Contact: william-noble@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Hi-C is a powerful genomic assay for quantifying chromatin interac-
tions across the whole genome (Lieberman-Aiden ez al., 2009). It
has been used extensively to study genome architecture and function
in many different species and to understand how genome structure
affects genetic diseases. The result of a Hi-C experiment is typically
processed into a matrix, whose entries are contact counts between
pairs of genomic loci. As Hi-C experiments become more popular,
tools that are able to efficiently perform analysis on the resulting
contact matrices are in increasing demand (Ay and Noble, 2015).

A common task in Hi-C data analysis is measuring the similarity
between pairs of datasets. One application of Hi-C similarity is to
assess experimental reproducibility. Low reproducibility may
indicate low experiment quality or low sequencing depth. Low
reproducibility may also warn against merging multiple Hi-C repli-
cates, which is a common practice to boost the signal-to-noise
ratio (Yardimei et al., 2019). HiCRep is a tool for quantifying the
similarity between pairs of Hi-C contact matrices based on their
stratum-adjusted correlation coefficients (SCCs) (Yang et al., 2017).
The SCC is a correlation score ranging from —1 and 1, where a
higher score suggests higher similarity between the two input Hi-C
matrices. Using high SCC scores as a proxy for high reproducibility,
a number of published works have used HiCRep to assess the
quality of replicate experiments and to make sure that merging them
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is sound (Li et al., 2020; Pal et al., 2019) or to validate that data
from a novel assay closely resembles traditional Hi-C data (Lee
et al., 2019; Li et al., 2019). Beyond comparing replicates, HICRep
has also proved useful as a tool for measuring quantitative differen-
ces among samples. For example, Ray ez al. (2019) used HiCRep to
compare Hi-C contact maps of samples before and after undergoing
heat shock in order to determine whether the shock had an effect on
chromatin structure. HiCRep can also be used to help interpret
single-cell Hi-C (scHi-C) data. For example, Liu ez al. (2018) dem-
onstrated that the SCC values calculated by HiCRep can be used as
the basis for a multidimensional scaling (MDS) visualization that
accurately captures cell cycle structure in scHi-C data.

The original implementation of HiCRep was released as an R
package (Yang et al., 2017). One of its the biggest drawbacks is its
inefficiency, mainly because of the dependence on dense contact ma-
trix operations. In a head-to-head comparison against three other
tools for measuring reproducibility, HiCRep was found to be the
slowest by a significant margin (Yardimci et al., 2019). This means
that applying the R implementation to Hi-C data at high resolution
or to large scHi-C datasets is prohibitively slow.

Here we present a Python implementation of the HiCRep algo-
rithm that is much faster than its predecessor. Our Python version
implements all operations using sparse matrices, which greatly re-
duce the memory consumption and computation time. Additionally,
we have made the software more accessible by providing a
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Fig. 1. (A) The figure plots the HiCRep score for various pairs of Hi-C experiments, including biological replicates (red), non-replicate experiments of the same cell type (green)
and non-replicate experiments of different cell types (blue). Horizontal lines with error bars correspond to the mean and SD of each group. (B) MDS plot based on HiCRep
scores from 90 Hi-C experiments carried out on a variety of cell types. (C) Timing comparison of the R and Python implementations of HiCRep for Hi-C matrices with varying
bin sizes. Error bars are standard deviation over five runs. Run times for the R implementation beyond 10 kb resolution are not shown, as the program required more memory

for these calculations than was available (see Supplementary Fig. S1)

command line interface as well as a Python application program-
ming interface.

2 Implementation

HiCRep takes as input two Hi-C contact matrices in either .cool or
.mcool format (Abdennur and Mirny, 2019). First, matrices are nor-
malized by the total contact counts and smoothed with a 2D mean
filter of size set by the user. Then, corresponding diagonals of the
two contact matrices are compared and used to calculate SCC
scores, as described in the original HiCRep paper (Yang et al.,
2017). The software produces as output a list of SCC scores per
chromosome. This output faithfully matches that produced by the
existing R implementation (see Supplementary Material for details).
We provide thorough unit tests of the implementation covering most
of its functionality.

3 Results

We used HiCRep to calculate SCC scores between 95 pairs of pub-
licly available Hi-C matrices—19 pairs of biological replicates, 38
pairs of non-replicates of the same cell type and 38 pairs of non-
replicates of different cell types. As shown in Figure 1A, pairs of rep-
licates consistently exhibit very high SCC scores (mean: 0.98, SD:
0.02), which are markedly higher than the scores of both non-
replicates of the same cell type (mean: 0.86, SD: 0.10) and non-
replicates of different cell types (mean: 0.61, SD: 0.16). These results
suggest that HiCRep does a good job of capturing the reproducibil-
ity of Hi-C datasets and is able to accurately separate replicates
from non-replicates.

We also used HiCRep to evaluate the pairwise SCC scores of 90
Hi-C experiments conducted by the 4D Nucleome Consortium on a
number of different cell types (Supplementary Table S1). Using these
SCC scores as the distance metric for an MDS model, we show that
HiCRep reveals structure among the experiments, with different cell
types clustering separately (Fig. 1C).

Finally, we compared the run times of our implementation of
HiCRep to the R implementation. We selected five pairs of high-
resolution Hi-C experiments and ran both implementations of

HiCRep on each of them at a number of different resolutions
(Fig. 1B). Comparing the runtimes, we see that at higher resolutions
the Python implementation of HiCRep is more than 20 times faster
than the R version. This speed increase allows our version of
HiCRep to be practically applied to data with much smaller bin sizes
or to larger collections of scHi-C data than was previously possible.
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