Table 1.
Rank | Method | Language | Spearman correlation (%) | AUC extreme modulations (%) | Recovered gene knockdowns (%) | MSE | Mean inter-replicate correlation (%) | Time per plate (s) |
---|---|---|---|---|---|---|---|---|
1 | Random forest regressor | Java | 66.5 | 91.5 | 77.2 | 1 | 45.2 | 14.5 |
2 | Gaussian mixture model | C++ | 65.4 | 91.4 | 75.7 | 1.1 | 43.1 | 4 |
3 | Modified k-means | C++ | 64.6 | 91.2 | 77.8 | 2.2 | 41.9 | 10.5 |
4 | ConvNet | Python/C++ | 64.8 | 91 | 76.6 | 2.4 | 41.8 | 25 |
5 | Gaussian mixture model | Python/C++ | 64.6 | 90.9 | 75.7 | 1.3 | 41.9 | 36 |
6 | Modified k-means | Python/C++ | 64.3 | 90.2 | 70.8 | 1.1 | 40.6 | 11.5 |
7 | Boosted tree regressor | Python | 64.5 | 91.1 | 77.2 | 1.7 | 41.9 | 50.5 |
8 | Modified k-means | Python | 65.1 | 90 | 69 | 1.2 | 43.7 | 35.5 |
9 | Other | Java | 63.9 | 89.9 | 75.1 | 1.5 | 39.6 | 4.5 |
BM | k-means | Matlab | 63.2 | 89.2 | 73.9 | 3 | 38.9 | 247 |
Note: All the values are based on the holdout dataset; see the main text for the meaning. The maximum and minimum values in each column are in bold.