Skip to main content
. 2021 Mar 22;37(18):2889–2895. doi: 10.1093/bioinformatics/btab192

Table 1.

Overview of outcomes for the top nine competitors

Rank Method Language Spearman correlation (%) AUC extreme modulations (%) Recovered gene knockdowns (%) MSE Mean inter-replicate correlation (%) Time per plate (s)
1 Random forest regressor Java 66.5 91.5 77.2 1 45.2 14.5
2 Gaussian mixture model C++ 65.4 91.4 75.7 1.1 43.1 4
3 Modified k-means C++ 64.6 91.2 77.8 2.2 41.9 10.5
4 ConvNet Python/C++ 64.8 91 76.6 2.4 41.8 25
5 Gaussian mixture model Python/C++ 64.6 90.9 75.7 1.3 41.9 36
6 Modified k-means Python/C++ 64.3 90.2 70.8 1.1 40.6 11.5
7 Boosted tree regressor Python 64.5 91.1 77.2 1.7 41.9 50.5
8 Modified k-means Python 65.1 90 69 1.2 43.7 35.5
9 Other Java 63.9 89.9 75.1 1.5 39.6 4.5
BM k-means Matlab 63.2 89.2 73.9 3 38.9 247

Note: All the values are based on the holdout dataset; see the main text for the meaning. The maximum and minimum values in each column are in bold.