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Abstract

Summary: Post-sequencing quality control is a crucial component of RNA sequencing (RNA-seq) data generation
and analysis, as sample quality can be affected by sample storage, extraction and sequencing protocols. RNA-seq is
increasingly applied to cohorts ranging from hundreds to tens of thousands of samples in size, but existing tools do
not readily scale to these sizes, and were not designed for a wide range of sample types and qualities. Here, we de-
scribe RNA-SeQC 2, an efficient reimplementation of RNA-SeQC (DeLuca et al., 2012) that adds multiple metrics
designed to characterize sample quality across a wide range of RNA-seq protocols.

Availability and implementation: The command-line tool, documentation and Cþþ source code are available at the
GitHub repository https://github.com/getzlab/rnaseqc. Code and data for reproducing the figures in this paper are
available at https://github.com/getzlab/rnaseqc2-paper.

Contact: gadgetz@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of high-quality samples is a crucial step in generating
and analyzing RNA sequencing (RNA-seq) data and in optimizing
RNA-seq protocols. To gain statistical power to detect genetic and
environmental effects on the transcriptome, RNA-seq data is being
generated for increasingly large cohorts of samples. For example, the
Genotype-Tissue Expression (GTEx) project and the Trans-Omics for
Precision Medicine (TOPMed) program have generated tens of thou-
sands of RNA-seq measurements across diverse tissue and cell types
(GTEx Consortium, 2020; Taliun et al., 2021). Such large-scale stud-
ies frequently contain samples of variable RNA quality, including
lower-quality archival samples from biobanks. Likewise, research and
clinical sequencing efforts in cancer often generate RNA-seq data
from formalin-fixed and paraffin-embedded (FFPE) tumor samples,
typically using capture-based protocols (e.g. Van Allen et al., 2015),
with a wide range of RNA degradation and data quality. Discarding
and resequencing samples on the basis of quality filters may not be
feasible, and a diverse set of quality metrics is needed to guide the
interpretation of the data and analysis results.

Here, we present RNA-SeQC 2, an efficient new version of
RNA-SeQC (DeLuca et al., 2012) that computes a comprehensive
set of metrics for characterizing samples processed by a wide

range of protocols. It also quantifies gene- and exon-level expres-
sion, enabling effective quality control of large-scale RNA-seq
datasets.

2 Quality control metrics

RNA-SeQC 2 generates over 70 metrics that characterize the
quality of the RNA, sequencing data, alignments and expression
profile of the sample. The output metrics are described in detail
in Supplementary Tables S1–S3. RNA-SeQC 2 calculates metrics
at the gene level and does not take into account transcript iso-
forms (Supplementary Methods). Cohort-level analyses are sup-
ported by aggregating individual sample outputs into metrics and
gene expression tables, and generating a graphical report that dis-
plays the distribution of key metrics across samples. The metrics
are compatible with MultiQC (Ewels et al., 2016), which can ag-
gregate results from multiple quality control tools. Details of the
read filtering steps, insert size distribution estimation, and depth
and coverage bias calculations are provided in Supplementary
Methods.
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3 Implementation and performance

RNA-SeQC 2 is implemented in Cþþ and requires a coordinate-
sorted BAM or CRAM file (Li et al., 2009); it leverages the sort
order to minimize memory overhead, achieving approximately con-
stant memory usage over time and across samples (�1 GiB, varying
with read density). RNA-SeQC 2 uses the SeqLib library (Wala and
Beroukhim, 2017) to process over 150 000 reads/second, approxi-
mately twice the rate of version 1.1.9.

4 Results

To demonstrate the utility of the new coverage metrics, we ran
RNA-SeQC 2 on �18,500 RNA-seq samples from GTEx, which
were sequenced using an unstranded polyAþ selection protocol
(GTEx Consortium, 2020) and represent a diverse range of sample
qualities, on colon cancer (Vasaikar et al., 2019) and lung adenocar-
cinoma (Gillette et al., 2020) samples from CPTAC, sequenced using
stranded polyAþ and total RNA protocols, respectively, and on
FFPE samples sequenced with a capture-based protocol from Van
Allen et al. (2015). Comparisons of metrics across samples reveal
significant variability across cohorts and sequencing protocols and
identify low-quality samples as outliers (Fig. 1a, Supplementary Figs
S1 and S2). While some metrics are correlated by design (e.g. exonic
and intronic alignment rates), the full set captures diverse sample

characteristics, ranging from quality of RNA and sequencing data to
expression profiling (Supplementary Figs S3–S5). The new median
30 bias metric captures RNA degradation for a wide range of sample
qualities (Fig. 1b, c) and is balanced (i.e. close to 0.5) for samples
with high RNA quality (e.g. cell lines; Fig. 1c).

While cell type composition is a major component of expression
variability in bulk tissue samples (Kim-Hellmuth et al., 2020), the
diverse set of metrics from RNA-SeQC 2 enables identification of
technical sources of variation (Fig. 1d) and can be used in down-
stream analyses as explicit covariates or to inform the selection of la-
tent variables that capture overall sources of variation [e.g. PEER
factors (Stegle et al., 2010; GTEx Consortium, 2020)]. The new
coverage metrics were designed to represent the potentially wide
variation present in the transcriptome-capture protocols typically
used to sequence FFPE samples. Indeed, RNA degradation during
sample preparation, followed by the selective sampling inherent to
target capture, may result in increased levels of uneven amplification
and decreased library complexity. These simultaneous effects are
well captured by the new ’Median Exon CV’ metric, which measures
evenness of coverage across exonic regions (Fig. 1e and
Supplementary Fig. S6).

In summary, RNA-SeQC 2 expands the scope of version 1 to a
wide range of sample types and qualities, and the improved perform-
ance enables rapid and cost-effective quality control of cohorts of
thousands of samples.
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Fig. 1. RNA-SeQC 2 metrics capture a diverse range of sample qualities. (a)

Proportion of reads aligning to exons and introns, and of duplicate reads, across five

cohorts sequenced using polyAþ, total RNA and capture-based protocols, illustrat-

ing how metrics and outliers vary across cohorts (see also Supplementary Fig. S1).

(b,c) RNA quality metrics capture sources of RNA degradation. (b) 30 coverage bias

resulting from polyAþ capture correlates with ischemic time and RNA fragmenta-

tion (measured by RNA integrity number, RIN), shown for 272 GTEx adrenal gland

samples. (c) Tissue-specific quality differences, with minimal 30 bias in samples from

cell lines (cultured fibroblasts, FIBRBLS) where average RNA quality is high (RIN

at top). 30 bias values are normalized to [0,1], with 0.5 corresponding to balanced

coverage. Tissue abbreviations and colors from (GTEx Consortium, 2020), with

sample numbers in parentheses. (d) Top two expression principal components (PCs)

for 389 GTEx sigmoid colon samples, illustrating that metrics provide insights into

technical sources of expression variation (R2 ¼ 0:64 for PC2 and 30 bias). (e) FFPE

samples from Van Allen et al. (2015), where the coefficient of variation (CV) of

exon coverage facilitates identification of lower-quality samples with higher vari-

ability in coverage, higher duplication rates and fewer genes detected
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