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Abstract

Motivation: We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing
multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art
implementation of the group contribution methodology. Overall, the method greatly reduces the uncertainty of
thermodynamic variables.

Results: We present multiTFA, a Python implementation of our framework. We evaluated our application using the
core Escherichia coli model and achieved a median reduction of 6.8 kJ/mol in reaction Gibbs free energy ranges,
while three out of 12 reactions in glycolysis changed from reversible to irreversible.

Availability and implementation: Our framework along with documentation is available on https://github.com/bio
sustain/multitfa.

Contact: lars.nielsen@uq.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Constraint-based analysis of metabolic network models is used
widely to explore metabolic phenotypes and guide metabolic designs
(O’Brien et al., 2015). Thermodynamic-based flux analysis (TFA)
imposes thermodynamic constraints on constraint-based models, in
order to obtain thermodynamically valid metabolic fluxes and me-
tabolite concentration profiles (Henry et al., 2007). TFA provides an
ideal mechanism for incorporating metabolomics data into genome-
scale modelling. TFA is also a critical pre-processing step when
performing sampling based fitting and exploration of large kinetic
models (Saa and Nielsen, 2017).

Thermodynamic constraints rely on the calculation of Gibbs free
energies of compounds and reactions. The current best method for
estimating standard Gibbs free energy of reaction (DrG

�) uses the
component contribution method, which combines reactant and
group contribution methods while maintaining thermodynamic
consistency (Flamholz et al., 2012; Noor et al., 2013). This method
is capable of estimating the standard reaction Gibbs free energies as
multivariate normal distributions, i.e. a vector of mean values and a
full covariance matrix representing the confidence interval.

Accommodating the errors in the estimated DrG
� presents a chal-

lenge. We cannot introduce independent slack in each DrG
�, since

this would cause inconsistent thermodynamics with non-zero Gibbs

energy loops. The original TFA implementation was based solely on
the group contribution method (Henry et al., 2007). It avoided in-
consistency by computing DrG

� within the algorithm from ‘groups’
treated as independent variables allowed to vary within their indi-
vidual 95% confidence intervals, i.e. approximately two standard
deviations (SD) around the mean (l) (Henry et al., 2007). More re-
cently, the loop issue has been addressed by using metabolite forma-
tion energies rather than reaction energies in pyTFA (Salvy et al.,
2019). These formation energies can be user defined or calculated as
a linear combination of respective group Gibbs free energies (from a
suitable database). The pyTFA algorithm also treats formation ener-
gies as independent variables which are allowed to vary in the range
l62 � SD (Salvy et al., 2019).

It is not optimal to use the n-box formed from individual 95%-
confidence intervals to capture the range of feasible values in a
multivariate distribution, such as the full set of formation energies
generated by the component contribution method. Firstly, the n-box
does not define a 95%-confidence range for the mean vector of
formation energies. Secondly, and more importantly, it does not
capture the correlation in the distribution. This is particularly prob-
lematic using formation energies for substrates and products linked
through a reaction, since they will tend to be highly correlated. For
illustration consider the multivariate normal distribution estimates
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for ATP and ADP with the following mean vector and covariance
(R) matrix (see details later):

Df G
0o�N

�2814:24
�1945:90

� �
;

2:32 1:77
1:77 1:57

� �� �

Unsurprisingly, the estimates are highly correlated (0.928),
which is reflected in the cigar shaped 95% confidence ellipse
(Fig. 1a, blue line). While the n-box (orange box) almost captures
the range, it fails to capture the correlation. Since ATP and ADP are
commonly found on either side of a reaction, the most important
value is the difference in free energy. The range for the difference is
much smaller using the proper confidence region (2.9 kJ/mol) com-
pared to using the n-box (10.9 kJ/mol). Using multivariate confi-
dence regions effectively ensures that we cancel out common error
contributions on either side of a reaction (Haraldsdóttir et al.,
2012). We note that the original method from Henry et al. achieved
error cancellation for common groups but did not address correl-
ation between group estimates.

multiTFA is an internally consistent TFA framework with multi-
variate treatment of errors in formation energies. Constraining for-
mation energies within the 95% confidence ellipsoid rather than the
n-box more accurately captures the range of values, while narrowing
the likely range of free energies of reaction and concentration
values.

2 Materials and methods

The constraints in TFA are (Salvy et al., 2019)

S � v ¼ 0 (1)

0 � vi � yi � vmax (2)

DrG
0

i þ K � yi < K (3)

DrG
0 ¼ ST Df G

0 þ RTln xð Þ
� �

þ DrGtransport (4)

x 2 Xx (5)

Df G
0 2 XG (6)

where S and v are the stoichiometric matrix and flux vector, respect-
ively. Reactions only progress in the forward direction (i.e. revers-
ible reactions are split in two), and only if the binary coupling
variable, yi, is 1 (2), which can only happen when the Gibbs free en-
ergy of the reaction (DrG

0
) is negative (3) (K is a large positive

constant).
DrG

0
is calculated from the formation energies (Df G

0
) and con-

centrations (x) of the metabolites (4). For transporters, the Gibbs
free energy of transport was calculated as detailed in (Jol et al.,
2010). Our implementation automatically detects transporters and
predicts the species that is being transported based on the pKa value
and the compartment pH. Users are also able to explicitly define the
charged form of the transported metabolite and transportation
mechanism. For the calculation of Gibbs free energies of reaction at
non-standard conditions, users can input the range for each metab-
olite concentration, Xx (5). Where not specified, metabolites can as-
sume pre-defined compartment specific bounds or otherwise adopt
loose bounds (10�5–10�2 M).

The formation energies are estimated using the component con-
tribution method (Noor et al., 2013) and adjusted for compartment
specific pH and ionic strength (Alberty, 2005; Haraldsdóttir et al.,
2012). It is assumed that the estimate follows a multivariate normal

distribution, Df G
0
�N l;Rð Þ. TFA allows for noise in the Df G

0
esti-

mate by defining a region, XG (6). A common approach is to use as
XG the n-box defined by the individual 95%-confidence intervals

for each formation Gibbs energy, i.e. l6u97:5% diag R�ð Þ
� �1=2

. This is
not a true 95% confidence region for the multivariate estimate: it
greatly underestimates the range of individual variables and ignores
the correlation between related compounds such as ADP and ATP.
A more appropriate region, XG; would be the 95%-confidence
ellipsoid defined by:

l � l� �T
R�1 l � l� �

� v2
n;95% (7)

Introducing this constraint converts the problem from a Mixed
Integer Linear Problem (MILP) to a Mixed Integer Quadratic
Constraint Problem (MIQCP).

2.1 Mathematical formulation of quadratic constraint
In general, R does not have full rank and (7) cannot be used directly.
Df G

0
is calculated using the component contribution method as

Df G
0 ¼ VccDccG

00 þ DDG (8)

where VCCis the metabolite component composition vector, DccG
00

is a vector of component and group Gibbs energies and DDG is a
(deterministic) adjustment for compartment pH, pI and Mg concen-
tration. This estimate is the fit of the component contribution model
to the thermodynamic reference data and is assumed to follow a
multivariate normal distribution, DccG

00�N lcc;Rccð Þ. We can ex-
press this distribution as

DccG
00 ¼ lcc þ Cu (9)

where CC
0 ¼ Rcc and u�N 0; Ið Þ. Allowing for Rcc not having full

rank, we use LDL decomposition to achieve pivoted Cholesky de-
composition finding Cfull ¼ L

ffiffiffiffi
D
p

. Cfull has n ¼ rank Rccð Þ non-zero

Fig. 1. (A) Comparing the 95% confidence ellipse (blue) to the n-box (orange) for

the eQuilibrator estimates of ATP and ADP formation energies. (B) Comparison of

the Gibbs free energy of reaction ranges across the glycolytic pathway estimated

using the n-box (univariate) and the multiTFA (multivariate) methods. Three reac-

tions change from reversible to irreversible when using a multivariate treatment

(ENO, GAPD and PGM)
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columns and we obtain C by removing the remaining columns.
Finally, we define a 95%-confidence circle for the n-dimensional
standard normal distribution

u0u � v2
n;95% (10)

Using (10), we still need to solve an MIQCP, but this is numeric-
ally more robust.

2.2 Comparison against the n-box approach
We compared multiTFA with the n-box approach using an E. coli
core model (e_coli_core) (Orth et al., 2010). We determined the

Gibbs free energy ranges using either (a) the ‘conventional’ l61:96 �
SD n-box or (b) a multivariate treatment of the errors in the forma-
tion energy estimate used in multiTFA. Despite the n-box covering
far less than the 95%-confidence range for individual formation
energies, the estimated ranges for the Gibbs free energy of reaction
were broader than using the confidence ellipsoid. The median
reduction in Gibbs free energy ranges was 6.8 kJ/mol (Fig. 1B;
Supplementary Data), highlighting the significant potential for error
cancellation between compounds captured in the correlation matrix.
The reduction in Gibbs free energy ranges is reflected in a reduction
in the reaction flux ranges (Supplementary Data).

In order to explore how well the algorithm scales, we performed a
comparison study between different sized E. coli models (core, reduced
and genome-scale). For each model, we performed a flux variability
analysis for both DrG

0
and fluxes, and the average time per optimiza-

tion calculated (Supplementary Data). As expected, the time per
optimization increased (�15-fold) when using quadratic constraints.
Critically, the increase was the same for the genome scale model and
the core model, thus multiTFA scales well with size of the model.

2.3 Usage and implementation
The Python package comes with example scripts to demonstrate the
usage of different functionalities. The software takes a typical
COBRA model as input and generates a MILP Optlang object
(Jensen et al., 2017) for the n-box approach that can be directly
solved with COBRApy (Ebrahim et al., 2013). If the user has
Gurobi or CPLEX solver installed, the software will generate solver
specific MIQCP objects to solve the multiTFA problem. For users
without Gurobi or CPLEX, an alternative implementation of
multiTFA is provided that uses random sampling of the surface of
the confidence ellipsoid and a MILP solver to determine the max-
imum range. The exit criterion of the sampler can be chosen as ei-
ther (i) the number of samples since last improvement or (ii) a fixed
number of samples followed by use of a generalized extreme value
distribution to infer the maximum value.

The implementation is available at https://github.com/biosus
tain/multitfa.

The framework is currently compatible with models that use
different identifiers (SEED, KEGG, BIGG among others) for match-
ing metabolite information against the thermodynamic database.

We use the eQuilibrator API to retrieve data matrices for calculating
the formation energies and covariance matrix (Noor et al., 2013).

3 Conclusion

Using a multivariate confidence ellipsoid to describe the feasible
range in the Gibbs free energy of formation estimate, multiTFA is
able to account for a more realistic (and broader) range in individual

estimates of formation energy, while simultaneously using correl-
ation to reduce the ranges for the derived Gibbs free energies of
reactions.
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