Table 5.
Performance metrics for the best performing fingerprint-based regression models
| Endpoint | FP | Calibration | Validation | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE | MAE | R2 | RMSE | MAE | ||
| PUBCHEM | 0.77 | 1.15 | 0.81 | 0.78 | 1.12 | 0.78 | |
| Intrinsic clearance () | RAD2D | 0.48 | 0.83 | 0.65 | 0.29 | 1.02 | 0.82 |
| Skin penetration () | PUBCHEM | 0.73 | 0.60 | 0.48 | 0.75 | 0.56 | 0.43 |
| Human serum albumin | AP2D | 0.71 | 0.33 | 0.23 | 0.69 | 0.39 | 0.26 |
| Human placenta barrier | KR | 0.41 | 0.24 | 0.20 | 0.24 | 0.32 | 0.22 |
| Cancer potency in mouse () | AT2D | 0.33 | 0.98 | 0.75 | 0.27 | 0.96 | 0.72 |
| Cancer potency in rat () | AT2D | 0.41 | 1.08 | 0.83 | 0.35 | 1.14 | 0.87 |
| Steady state volume distribution () | ASP | 0.58 | 0.44 | 0.29 | 0.45 | 0.51 | 0.32 |
| Distribution coefficient () | PUBCHEM | 0.76 | 0.73 | 0.53 | 0.77 | 0.71 | 0.50 |
| Fraction unbound in human plasma | PUBCHEM | 0.60 | 0.46 | 0.35 | 0.63 | 0.44 | 0.34 |
| Fraction unbound in the brain | PUBCHEM | 0.48 | 0.58 | 0.46 | 0.56 | 0.56 | 0.45 |
| Human liver microsomal clearance | KR | 0.51 | 1.08 | 0.80 | 0.56 | 1.05 | 0.79 |
| Mouse liver microsomal clearance | AT2D | 0.52 | 1.21 | 0.92 | 0.53 | 1.16 | 0.88 |
| Rat liver microsomal clearance | KR | 0.64 | 1.08 | 0.83 | 0.67 | 1.01 | 0.76 |
| CACO-2 permeability | FCFP4 | 0.44 | 0.68 | 0.46 | 0.42 | 0.69 | 0.46 |
| ECFP2 | 0.71 | 1.85 | 1.15 | 0.74 | 1.78 | 1.11 | |
| MDCK cell line permeability | ECFP4 | 0.62 | 0.61 | 0.44 | 0.68 | 0.56 | 0.39 |
| Human renal clearance | MACCS | 0.25 | 0.54 | 0.43 | 0.27 | 0.53 | 0.42 |
| Hemolytic toxicity () | ASP | 0.68 | 0.47 | 0.35 | 0.68 | 0.44 | 0.34 |
The values reported are the squared correlation (), RMSE and MAE (average of 3 independent runs) for the calibration/validation sets