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Abstract 

Background:  Identification of selection signatures between populations is often 
an important part of a population genetic study. Leveraging high-throughput DNA 
sequencing larger sample sizes of populations with similar ancestries has become 
increasingly common. This has led to the need of methods capable of identifying 
signals of selection in populations with a continuous cline of genetic differentiation. 
Individuals from continuous populations are inherently challenging to group into 
meaningful units which is why existing methods rely on principal components analysis 
for inference of the selection signals. These existing methods require called genotypes 
as input which is problematic for studies based on low-coverage sequencing data.

Materials and methods:  We have extended two principal component analysis based 
selection statistics to genotype likelihood data and applied them to low-coverage 
sequencing data from the 1000 Genomes Project for populations with European and 
East Asian ancestry to detect signals of selection in samples with continuous popula-
tion structure.

Results:  Here, we present two selections statistics which we have implemented in the 
PCAngsd framework. These methods account for genotype uncertainty, opening for 
the opportunity to conduct selection scans in continuous populations from low and/
or variable coverage sequencing data. To illustrate their use, we applied the methods 
to low-coverage sequencing data from human populations of East Asian and European 
ancestries and show that the implemented selection statistics can control the false 
positive rate and that they identify the same signatures of selection from low-coverage 
sequencing data as state-of-the-art software using high quality called genotypes.

Conclusion:  We show that selection scans of low-coverage sequencing data of 
populations with similar ancestry perform on par with that obtained from high quality 
genotype data. Moreover, we demonstrate that PCAngsd outperform selection statis-
tics obtained from called genotypes from low-coverage sequencing data without the 
need for ad-hoc filtering.
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Introduction
Natural selection is the main driver of local adaptation. Instead of tracing the adaptive 
phenotypic trait, a “reverse ecology” approach is commonly applied [13], where the 
genetic variant encoding for a beneficial trait is first identified followed by the underly-
ing mechanism of the adaptive phenotype. This enables mapping of the genetic archi-
tecture of phenotypic adaptability driven by natural selection ([6] for review on human 
populations). A common approach to identify candidates under selection is based on 
outliers in an empirical distribution of differentiation between two or more groups of 
predefined populations. In it simplest form, it finds the variants with the biggest differ-
ence in allele frequency between two predefined populations. One of many methods 
based on this notion is Population Branch Statistics [31], an estimator of genetic dif-
ferentiation based on allelic changes estimated with the fixation index (FST ) . It identifies 
candidate regions as strong deviations from an empirical distribution between a target 
population, a closely related sister population and an outgroup. However, homogeneous 
discrete groupings of the populations is required for many of these models, albeit excep-
tions exist [2].

The reduced expenses for whole genome DNA sequencing, thanks to advanced High-
throughput DNA sequencing technologies, has facilitated larger sample sizes in popula-
tion genetics studies in the recent years, including samples with similar genetic ancestry 
[4, 14, 20, 26, 29, 30]. Identifying signatures of selection in populations of similar genetic 
ancestry can results in arbitrary population assignments when using methodologies that 
require discrete groups of populations. This can lead to reduced power and increased 
false positive rates as allele frequencies are estimated from non-homogeneous popula-
tions. Instead of coercing samples into groups, an alternative approach is to account for 
the continuous cline of genetic differentiation in the selection analysis. Recent studies 
has shown that principal components analysis (PCA) of genetic data can detect signals 
of selection in continuous populations [7, 15]. Briefly, the idea is to use PCA to infer a 
weight for each variant which is scaled to reflect genetic drift. Variants with deviating 
statistics from the null distribution of what is expected under pure drift are candidates 
for selection. This approach has been applied to several dataset, including populations of 
humans [3, 7, 14], wheat [23], cod [27], turbots [19], and tiger mosquito [10].

Two commonly used software that accounts for continuous population differentiation 
when performing selection scans are FastPCA [7] and pcadapt [15, 24]. Both software 
use called genotypes as input to obtain the top K principal components (PCs) and vari-
ant weights through a truncated singular value decomposition (SVD) [11, 25]. However, 
they differ in their derived test statistics. pcadapt uses robust Mahalanobis distance 
[16] to evaluate all top K PCs for estimating z-scores, whereas FastPCA test normalized 
variant weights for each PC separately. Both test statistics follow χ2 distributions from 
which a p value for each polymorphic site is obtained.

In this study, we extended the FastPCA [7] and pcadapt [15] selection statistics to 
account for genotype uncertainty by leveraging the PCs and variant weights estimated 
iteratively in the PCAngsd framework [18] using genotype likelihoods. This allows us to 
analyze low-coverage data and naturally impute missing data based on individual allele 
frequencies estimated from the top K inferred PCs. We apply the novel methods to pop-
ulations of East Asian ancestry and European ancestry using the low-coverage data of 
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the 1000 Genome Project [4] and demonstrate that we can identify known signatures of 
selection within these two ancestries. The candidates under selection were verified using 
the corresponding high quality genotype data from the 1000 Genome Project. The test 
statistics are implemented in the PCAngsd framework [18] that is available at https://​
github.​com/​rosem​eis/​pcang​sd.

Materials and methods
We assume that variable sites are diallelic and the major and minor allele are known 
such that genotypes are expected to follow a Binomial model. In low-coverage sequenc-
ing data, genotypes are unobserved and genotype likelihoods are therefore used instead 
to account for the uncertainty in sequencing process. We use the iterative procedure in 
PCAngsd [18] to estimate individual allele frequencies that can be seen as the underly-
ing parameters in the Binomial sampling processes of the genotypes accounting for pop-
ulation structure. In the following, we will denote N as the number of individuals and M 
as the number of sites. We can then define the posterior genotype dosage as follows for 
individual i in site j

for i = 1, . . . ,N  and j = 1, . . . ,M , where P(Gij = g |Xij , π̂ij) is the posterior genotype 
probability of genotype g with X being the observed sequencing data, and π̂ being the 
individual allele frequency. Details of deriving the posterior genotype from geno-
type likelihoods can be found in the Additional file 1 (Equation S1-S2). Missing data is 
imputed based on population structure based on the posterior genotype dosages. We 
standardize the dosage under the assumption of a Binomial model,

Here f̂  is the estimated allele frequency at site j based on all of the samples. We then 
perform truncated SVD [11] on the full standardized data matrix ( N ×M ) to extract the 
top K principal components (PCs) that capture population structure in the dataset

where U[1:K ] represents the captured population structure of the individuals and V[1:K ] 
represents the scaled variant weights, while S[1:K ] is the diagonal matrix of singular val-
ues. This low-rank approximation along with the standardized matrix Y are all we need 
to estimate the two test statistics for low-coverage sequencing data.

FastPCA statistic

The selection statistic derived in Galinsky et al. [7], hereafter referred to as FastPCA, 
tries to detect selection by looking for variants that significantly differentiate from 
genetic drift along an axis of genetic variation. They define the selection statistics for 
the k-th principal component to be the properly normalized variant weights, using the 

(1)E[Gij |Xij , π̂ij] =
2

∑

g=0

g P(Gij = g |Xij , π̂ij),

(2)yij =
E[Gij |Xij , π̂ij] − 2f̂j

√

2f̂j(1− f̂j)

.

(3)Ŷ = U[1:K ]S[1:K ]V
T
[1:K ],

https://github.com/rosemeis/pcangsd
https://github.com/rosemeis/pcangsd
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properties of an eigenvector, such that they are standard normal distributed. The selec-
tion statistics are then defined as follows in our setting for genotype likelihood data

for j = 1, . . . ,M and k = 1, . . . ,K  . vjk is the variant weight for the kth component at site 
j. The squared statistic will then follow a χ2-distribution with 1 degree of freedom. This 
statistic is implemented in the PCAngsd framework and referred to as PCAngsd-S1.

pcadapt statistic

The test statistic implemented in pcadapt [15] is based on a robust Mahalanobis dis-
tance of the standardized estimates in a multiple linear regression for each site. The 
regression model is defined as follows in our setting for genotype likelihood data

for j = 1, . . . ,M , with β j being the regression coefficients, and ǫj , the residual vector for 
site j. The coefficients are easily derived using the normal equation and properties of 
the previously computed truncated SVD (Eq. 3), thus β j = S[1:K ]V[j,1:K ] . A z-score of the 
regression coefficients in site j are defined as

with ŷj being the vector of low-rank approximations in site j (Eq. 3). The test statistic is 
computed as a robust Mahalanobis distance of zj , where the squared distance will be 
χ2
K  distributed as described in Luu et al. [15]. We use standardized expected genotypes 
yij (Eq. 2) for genotype likelihood data, hereafter referred to as PCAngsd-S2, instead 
of using known genotypes as pcadapt. Note, that we correct for inflation using the 
genomic inflation factor [5], inline with the recommendations [15], in all analysis based 
on the pcadapt or PCAngsd-S2 statistics. See QQ-plot in Additional file 1: Figure S2 
and S3 for examples of the uncorrected PCAngsd-S2 test statistic.

1000 genomes project data

We used data from the 1000 Genomes Project (phase3) [4] to test the two selection 
statistics implemented in the PCAngsd framework. Specifically, we tested two sets of 
populations, one with East Asian ancestry with 400 unrelated individuals from four East 
Asian populations, Han Chinese in Beijing (CHB), Han Chinese South (CHS), Chinese 
Dai in Xishuanagbanna (CDX), Kinh in Ho Chi Minh City (KHV), and one with Euro-
pean ancestry with 404 unrelated individuals from four European populations, Utah 
residents with Northern and Western European Ancestry (CEU), British in England and 
Scotland (GBR), Iberian populations in Spain (IBS), Toscani in Italy (TSI).

(4)djk = vjk
√
M,

(5)djk ∼ N (0, 1),

(6)d2jk ∼ χ2
1 ,

(7)yj = U[1:K ]β j + ǫj ,

(8)zj = β j/

√

(yj − ŷj)T (yj − ŷj)

N − K
,
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For all the selected individuals, we have both high quality genotype (HQG) data and 
low-coverage sequencing data available from the 1000 Genomes Project (phase3) (see 
[4] for details on the HQG data). The low coverage data is whole genome sequencing 
data with a mean depth of coverage around 6X (Additional file 1: Figure S1).

Analyses on polymorphic sites from the high quality genotype data

To directly compare PCAngsd against pcadapt and FastPCA, where the latter two 
only takes called genotypes as input, we restricted the selection analyses to polymorphic 
sites with a minimum allele frequency of 5% in the HGQ data. In total 5.8 and 6 million 
polymorphic sites are retained in the Asian and European population sets, respectively.

Restricting to the polymorphic sites in HQG data, we calculated genotype likelihoods 
(GL) from the low-coverage data using ANGSD with minimum mapping quality of 20 and 
minimum base quality of 30 [9]. We used the GL data as input to PCAngsd to compute 
the two selection statistics (PCAngsd-S1, PCAngsd-S2) for the population sets. To 
verify the results obtained from the low-coverage data, we also analyzed the same indi-
viduals in the HQG data using PCAngsd, pcadapt (default settings), and FastPCA 
(fastmode:YES, following [7]).

We also tested the performance of pcadapt and FastPCA on low-coverage data by 
calling genotypes using bcftools [12] with minimum mapping quality of 30, mini-
mum base quality of 20, and disabling BAQ (–no-BAQ) to resemble the filters used 
with ANGSD. We restricted the analyses to the polymorphic sites in the HQG described 
above. From the called genotypes from low-coverage sequencing data, we generated two 
datasets: One excluding all genotype calls with genotype quality < 20 (hereafter referred 
to as CG standard) and one including all called genotypes (hereafter referred to as 
CG*).

Analyses on low coverage data

We also used the low-coverage sequencing data to test the performance of PCAngsd 
without prior knowledge on polymorphic sites. We used ANGSD with the same map-
ping (30) and base quality (20) filters described above to calculate GL. Variable sites were 
identified using a likelihood ratio test (-SNP_pval 10−6 ) and a minimum allele frequency 
filter on 0.05 (-minmaf 0.05). To remove false positive variable sites, we next applied a 
callability filter that excludes genomic regions of low quality and complexity. The filter 
is based on the sequencing depth and mapping quality across samples, thus, no external 
information is required. In total, we identified 4.1 million and 4.6 million polymorphic 
sites in the Asian and European population sets, respectively.

Read length bias in low coverage sequencing data

The low coverage sequencing data from the 1000 Genomes Project consists of multiple 
difference sequencing sources with highly variable sequencing length. Variable sequenc-
ing length can introduce a bias in population genetics analyses, particularly for low 
structure analyses. In the PCA of the East Asian samples based on polymorphic sites 
identified from the low coverage sequencing data, PC2 correlates with the sequencing 
length of the samples (Additional file 1: Figure S7). To identify genomic sites where the 
GLs correlate with the sequencing length, we conducted a logistic regression analyses 
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tailored for low coverage sequencing data using ANGSD (-doAsso 5, [8]), where the 
trait/phenotype is the samples stratified the into two groups based on their read length 
( < 99 bp and ≥ 99bp) and their sample population of origin was used as covariates to 
ensure we did not identify genomic sites driven by population differentiation. We 
removed sites with a p-value < 10−3.

Results and discussion
To test the performance of the two selection statistics (PCAngsd-S1 and PCAngsd-
S2), implemented in PCAngsd, on continuous genetic differentiation in low-coverage 
data sets, we used data from the 1000 Genomes Project [4]. We tested four populations 
with East Asian ancestry and four populations with European ancestry and identified 
known signatures of selection in both ancestries. We compared the results to FastPCA 
and pcadapt applied to HQG data and two data sets based on called genotypes from 
the low-coverage data, CG standard where all genotype calls with a genotype quality 
lower than 20 were excluded and CG* containing all called genotypes.

We applied the selection statistics to 400 individuals from four populations (CHB, 
CHS, KHV, CDX) with East Asian ancestry. First, we performed PCA on the GL data 
using PCAngsd where we observed a continuous separation between the northern 
(CHB, CHS) and southern (KHV, CDX) populations on the first principal component 
(PC) (Fig.  1). FastPCA and pcadapt obtained a similar pattern using the HQG data 
(Fig.  1). PC2 obtained from PCAngsd and pcadapt separate the Vietnamese Kinh 
population (KHV) and Chinese Dai population (CDX) (Fig. 1). When applied to the CG 
standard data, FastPCA and pcadapt could not recover the continuous separation 
on PC1. Instead we observe within population variance driven by the bias from genotype 
calling on low depth data when genotype quality filters are applied [21]. Therefore, CG 
standard data was not used for downstream selection scan comparisons. The PCA 
obtained from genotype data without quality filter CG* did not show the same problems 

Fig. 1  PCA plots of the samples from the four East Asian populations using PCAngsd, FastPCA and 
pcadapt HQG: High quality genotype data, Low: Low-coverage data, CG standard: Called genotypes 
from low-coverage data with genotype quality threshold on 20, CG*: Called genotypes from low-coverage 
data
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and recovered the continuous separation on PC1 and was included in the following 
selection scan analyses Figure 1.

We applied the test statistics on the variant weights inferred along the two PCs and 
scan for genomic regions with significant differentiation on the continuous north-
to-south cline on PC1 and separation of KHV and CDX on PC2. We identify several 
candidates under selection along PC1 (Fig.  2). After multiple testing correction using 
Bonferroni (p-value < 9× 10−9, α = 0.05 ), we find significant signals of differentia-
tion in variants overlapping FADS2 (chr11), IGH cluster (chr14), ABCC11 (chr16), and 
LILRA3 (chr19) (see S13A for an example of the effect of selection across the PC1 gradi-
ent). These signatures of selection have been described in previous studies of selection on 

Fig. 2  Selection scan of East Asian populations. QQ and Manhattan plots of the selection statistics from 
PCAngsd, FastPCA and pcadapt applied to the four East Asian populations obtained. Red horizontal 
line is the Bonferroni adjusted significance level. PCAngsd-S2 and pcadapt has been corrected for 
genomic inflation. HQG: High quality genotype data, Low: Low-coverage data, CG*: Called genotypes from 
low-coverage data
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continuous differentiation in Han Chinese populations [3, 14]. Interestingly, PCAngsd 
also identifies a genomic region overlapping CR1 on the low coverage data, previously 
described by Chiang and colleagues [3] and the NIPT data [14]. We find a similar signal 
using the other software on the HQG although not significant. FastPCA and pcadapt 
find the same candidates with significant differentiation when applied to the HQG data.

Both PCAngsd and pcadapt identify population structure on PC2 separating CDX 
and KHV. FastPCA can obtain higher accuracy by increasing the number of power 
iterations but by default it assigns the number of power iterations to k, the number of 
eigenvectors considered. PCAngsd and pcadapt identify the same two significant can-
didate regions: HLA-cluster (chr6) (also observed in [3]) and Olfactory cluster (chr11) 
(Fig. 2). The variants overlapping the Olfactory cluster show strong LD pattern on both 
sides of the centromere, a challenging region to assemble potentially resulting in sys-
tematic biases, however, we do note that the pattern is present both on the HQG and 
low-coverage data (Fig. 2 and Additional file 1: Figure S2 ). PCAngsd-S2 and pcadapt 
identify a single significant variant on chr3 and chr9 in the HQG data. Following a test for 
Hardy-Weinberg equilibrium (HWE) accounting for population structure [17], we find 
that these two variants are the only top hits among selection candidates that significantly 
deviate from HWE (Additional file 1: Table S1). This indicates genotype calling related 
biases as the variants are not candidates under selection in the low-coverage sequencing 
data.

When FastPCA and pcadapt are applied to the low depth data, CG*, not all of these 
signals are identified despite PC1 separating the four populations. We observed highly 
inflated statistics with significant false positive signals present genome-wide blurring the 
signals observed on the HQG data (Fig. 2).

Similarly to the populations with East Asian ancestry, we also performed selection 
scans of 404 individuals from four populations (CEU, GBR, IBS, TSI) with European 
ancestry. We know from previous research that lactase persistence and skin and hair 
pigmentation distributions show a north-south cline within European populations [1, 
22, 28], where the Northern European populations have higher lactase persistence and 
lighter pigmentation than the Southern European populations. We first performed PCA 
on the GL data using PCAngsd [18] (Fig. 3) where we observed a continuous separation 
between the northern (CEU, GBR) and southern (TSI, IBS) populations on the first PC. 
FastPCA and pcadapt obtained a similar pattern on the HQG data (Fig. 3). As for the 
East Asian scenario, FastPCA and pcadapt could not recover the continuous separa-
tion on PC1 on the CG standard data which was excluded from further analysis. The 
PCA obtained from CG* data set recovered the continuous separation on PC1 and was 
used in the following selection scan analyses Figure 3

Next, we calculated the selection statistics along PC1 that display a north-south cline 
in the European populations. We find that both PCAngsd-S1 and PCAngsd-S2 sta-
tistics behaves as expected under the null hypothesis for most sites(Fig. 4). Similarly the 
statistics obtained from FastPCA and pcadapt follows the expectation, although, the 
latter required genomic inflation correction [5], on both HQG and CG*. After multiple 
testing correction, all software identify two genomic regions with significant genetic dif-
ferentiation overlapping two gene clusters: LCT/MCM6 (chr2) (see S13B for an example 
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Fig. 3  PCA plots of the samples from the four European populations obtained from PCAngsd, FastPCA 
and pcadapt. HQG: High quality genotype data, Low: Low-coverage data, CG*: Called genotypes from 
low-coverage data

Fig. 4  Selection scan of European populations. QQ and manhattan plots of the selection statistics from 
PCAngsd, FastPCA and pcadapt applied to the four European populations obtained. Red horizontal 
line is the Bonferroni adjusted significance level. PCAngsd-S2 and pcadapt has been corrected for 
genomic inflation. HQG: High quality genotype data, LOW: Low-coverage data, CG*: Called genotypes from 
low-coverage data
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of the effect of selection across the PC1 gradient) and OCA2/HERC2 (chr15) (Fig.  4). 
These results are inline with previous research on these populations [1, 22, 28].

For genotype calling from low-coverage data uncertain genotype calls are often 
excluded by applying a genotype quality threshold. After applying a genotype quality 
threshold of 20 both FastPCA and pcadapt identify within population biases on the 
first PC (see Figs. 1, 3). However, as the second PC to some extent recover the popula-
tion structure, we applied FastPCA and pcadapt to the standard genotype calls. In 
the selection scan of the East Asian populations pcadapt recovered the same candi-
dates regions as the HQG data, whereas FastPCA identified many false positive regions 
both on PC1 and PC2 (Additional file 1: Figure S4). For the European populations, we 
observe highly inflated statistics on both PCs and many false positive selection signa-
tures were identified genome-wide by both software (Additional file 1: Figure S5). From 
these observations, it is evident that genotype calling of low-coverage data requires ad-
hoc filters for each test scenario. Similarly, in a recent low-coverage study Chiang and 
colleagues also used extensive filters, including machine learning algorithms, to exclude 
outlier samples and variants prior to computing the selection statistics for the Han Chi-
nese population [3]. In contrast, we show that the PCAngsd framework consistently 
obtain well-behaving selection statistics in both scenarios from low-coverage data with-
out the need for ad-hoc quality filters on either variant calls or sample selection.

To test the accuracy of PCAngsd on low coverage sequencing without restricting to 
polymorphic sites from the HQG data, we used ANGSD for variant detection. After qual-
ity filtering (see “Analyses on low coverage data” section), we obtain similar PCA and 
selection statistics in both ancestries (Additional file 1: Figure S9, S10) to those obtained 
from the HQG variant set, although PCAngsd-S2 identify slightly more false positive 
signals of selection in the data set with European ancestry. These results are robust to 
downsampling to only half of the sequencing data (mean depth ∼ 3 X) (Additional file 1: 
Figure S11, S12). We applied a simpler version of the method implemented in PCAngsd 
to ultra low-coverage sequencing ( < 0.1 X) [14].

A limitation of the PC-based selection scans is their capability of detecting selection 
in scenarios of non-continuous population structure. We show an example of this in 
Additional file 1: Figure S6, where we have applied the three software to three popula-
tions with distinct ancestry (European (CEU), East Asian (CHB), African (YRI)). As also 
shown in the original study of FastPCA [7], it has low power in data sets with higher 
FST between the populations, where we see deflated test statistics due to being inversely 
scaled with the inferred large eigenvalues of the corresponding tested PC for PCAngsd-
S1 and FastPCA. We see the opposite pattern for PCAngsd-S2 and pcadapt, where 
the test statistics are very inflated, even after correction with genomic control, leading to 
many false positives. In scenarios with discrete structure other methods are more appro-
priate such as FST or population branch statistic based selection scans are more appro-
priate. However, even if you have discrete population clusters then you can try to use the 
PC-based method using the individuals within a cluster as illustrated in this paper where 
we can detect selection within the Europeans or East Asian clusters. The appropriate-
ness of the PC-based selection scan can easily be evaluated from the QQ-plot.

For PC-based selection scan methods it is also important to ensure that the PC’s 
reflect structure in the data and not e.g. relatedness or technical artifacts. An example 
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of the latter can be found in Additional file 1: Figure S7, where PC2 separates samples 
from East Asia based on their read length and not population structure. The PCA of 
European ancestries did not show such bias S8. In method “Read length bias in low cov-
erage sequencing data” section, we show how to exclude sites that drive this particular 
signal. We would like to emphasize that present day studies on whole genome sequenc-
ing data rarely consists of heterogeneous sequencing data such as the 1000 Genomes 
Project. As a general quality step, we recommend to apply genomic sites filters when 
analyzing sequencing data to reduce false positive variant detection. A common filter is 
based on abnormal site depth across the samples, this filter excludes low quality and low 
complexity regions for the reference (see “Analyses on low coverage data” section). For 
sequencing data mapped to a reference of lesser quality, excluding repetitive genomic 
regions can further reduce the false positive SNP detection.

In conclusion, we have implemented two PC-based test statistics to perform selection 
scans in the PCAngsd framework that performs iterative inference of population struc-
ture based on either GL or genotype data. This makes it possible to scan for selection 
genome-wide in data sets of low and/or variable coverage data sampled from genetically 
continuous populations. We show that the signatures of selection obtained from the low 
coverage in both the East Asian and European populations were on par with those from 
the high quality genotype data obtained from existing state-of-the-art software using 
called genotypes. The PCAngsd framework also reduces the need to rely on ad-hoc fil-
ters on SNP sites and/or samples. All obtained candidates for selection identified from 
the low-coverage data have been described in other studies targeting signatures of selec-
tion in European and East Asian ancestries. The PCAngsd framework is freely available 
at https://​github.​com/​rosem​eis/​pcang​sd.
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Additional file 1. Figure S1: Mean depth of coverage of the low coverage data from the 1000 Genomes Project 
with East Asian and European ancestries used for selection scans. Figure S2: PCAngsd results on the high quality 
genotype dataset of the Asian populations in the 1000 Genomes Project. PCA plot of the four Asian populations 
showing the separation of Northern and Southern Asia on PC1 and PC2 separating KHV and CDX (A). QQ-plot of 
the test statistics, including PCAngsd-S2 statistics before and after genomic inflation correction (B). Manhattan plot 
of the selection scan of PC1 (C) and PC2 (D) based on the PCAngsd-S1 statistic and PCAngsd-S2 (E) of both PCs. 
Manhattan plots from PCAngsd-S2 has been corrected for genomic inflation. Red horizontal line is the Bonferroni 
adjusted significance level. Figure S3: PCAngsd results on the high quality genotype dataset of the European popu-
lations in the 1000 Genomes Project. PCA plot of the four European populations showing the separation of Northern 
and Southern Europe on PC1 (A). QQ-plot of the test statistics, including PCAngsd-S2 statistics before and after 
genomic inflation correction (B). Manhattan plot of the selection scan based on the PCAngsd-S1 (C) and PCAngsd-S2 
(D) test statistics along PC1. Manhattan plots from PCAngsd-S2 has been corrected for genomic inflation. Red hori-
zontal line is the Bonferroni adjusted significance level. Figure S4: QQ-plots and Manhattan plots of the selection 
statistics from FastPCA [1] and pcadapt [3] applied to the four East Asian populations obtained. Red horizontal line 
is the Bonferroni adjusted significance level. pcadapt has been corrected for genomic inflation. CG standard: Called 
genotypes from low-coverage data with a genotype quality threshold on 20. Figure S5: QQ-plots and Manhattan 
plots of the selection statistics from FastPCA and pcadapt applied to the four European populations obtained. Red 
horizontal line is the Bonferroni adjusted significance level. pcadapt has been corrected for genomic inflation. CG 
standard: Called genotypes from low-coverage data with a genotype quality threshold on 20. Figure S6: PCA plot, 
QQ-plots and Manhattan plots of the selection statistics obtained from PCAngsd, FastPCA and pcadapt applied to a 
European (CEU), Asian (CHB), and African (AFR) population. Red horizontal line is the Bonferroni adjusted significance 
level. Only one PCA plot is shown as they were all identical. pcadapt has been corrected for genomic inflation. HQG: 
High quality genotype data. Figure S7: Read length bias in the low-coverage sequencing data of the East Asian 
populations. (AB) PCA plots of the data only filtered using a callability filter, where in (A) individuals are colored 
by population, and (B) displays the individuals colored by sequencing read length. (C-D) PCA plots of the data 
filtered by a callability filter and corrected for read length bias. Figure S8: No read length bias in the low-coverage 
sequencing data of the European populations. (A-B) PCA plots of the data filtered using a callability filter, where in 
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(A) individuals are colored by population, and (B) displays the individuals colored by sequencing read length. Figure 
S9: PCA plot, QQ plots and Manhattan plots of the selection statistics obtained from PCAngsd applied to the four 
East Asian populations for SNPs called from the low-coverage sequencing data using ANGSD [2]. The called SNPs 
have additionally been filtered using a callability filter and corrected for readlength bias. Red horizontal line is the 
Bonferroni adjusted significance level. Figure S10: PCA plot, QQ plots and Manhattan plots of the selection statistics 
obtained from PCAngsd applied to the four European populations for SNPs called from the low-coverage sequenc-
ing data using ANGSD [2]. The called SNPs have additionally been filtered using a callability filter. Red horizontal line 
is the Bonferroni adjusted significance level. Figure S11: Downsampling to 0.5 fraction of the reads of the low-cov-
erage sequencing data. PCA plot, QQ plots and Manhattan plots of the selection statistics obtained from PCAngsd 
applied to the four East Asian populations for SNPs called from the downsampled low-coverage sequencing data 
using ANGSD [2]. Red horizontal line is the Bonferroni adjusted significance level. Figure S12: Downsampling to 0.5 
fraction of the reads of the low-coverage sequencing data. PCA plot, QQ plots and Manhattan plots of the selection 
statistics obtained from PCAngsd applied to the four European populations for SNPs called from the downsampled 
low-coverage sequencing data using ANGSD [2]. Red horizontal line is the Bonferroni adjusted significance level. 
Figure S13: PCA plots from PCAngsd based on the low-coverage sequencing datasets with individuals colored by 
their estimated individual allele frequencies in the top hits for the East Asian and European populations, respectively. 
The individual allele frequencies reveal the direction of the PC-based selection signals in regards to the reference 
allele. (A) shows the top significant hit on PC1 for the East Asian populations for the LILRA3 region (rs434124), and (B) 
shows the top significant hit on PC1 for the European for the LCT/MCM6 region (rs6754311).
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