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Abstract

The COVID-19 disease has forced countries to make a considerable collaborative effort between scientists and governments
o provide indicators to suitable follow-up the pandemic’s consequences. Mathematical modeling plays a crucial role in
uantifying indicators describing diverse aspects of the pandemic. Consequently, this work aims to develop a clear, efficient, and
eproducible methodology for parameter optimization, whose implementation is illustrated using data from three representative
egions from Chile and a suitable generalized SIR model together with a fitted positivity rate. Our results reproduce the general
rend of the infected’s curve, distinguishing the reported and real cases. Finally, our methodology is robust, and it allows us to
orecast a second outbreak of COVID-19 and the infection fatality rate of COVID-19 qualitatively according to the reported
ead cases.
c 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Mathematical modeling; Parameter estimation method; Predictive modeling; Computational model; Epidemiological modeling

1. Introduction

From the early stage of the pandemic, the Chilean government has strengthened the health system by increasing
he number of intensive care unit beds and mechanical ventilation devices for critically ill patients. Currently,
he government is enhancing tools for tracing capture on cases and contacts of confirmed COVID-19 patients. A
ollaborative effort among the main universities, the ministries of health and science, technology, knowledge, and
nnovation produced a web platform for data analysis. The site provides key indicators to represent the state and
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evolution of the pandemic. These indicators are meant to provide timely and clear information to the authorities,
communication media, citizenship, and the scientific community to understand the pandemic evolution and improve
decision-making.

Mathematical modeling plays a crucial role in quantifying indicators describing diverse aspects of the pandemic.
Many research groups in Chile have developed mathematical models, and providing a comprehensive review would
ask for much unnecessary effort. Therefore, we selected some that have produced periodic reports on COVID-19,
which we comment on next and partly use ideas. It is worth noting that, in general, these works do not provide
details on the methodology, which would be desirable to reproduce results scientifically.

The Center for Mathematical Modeling (CMM) group provided mainly simulations, not predictions. Their results
aimed to estimate the maximum capacity required for intensive care unit beds and simulate different opening
scenarios (for teaching and economic activities). They developed complex modeling based on a generalization of
the SEIR compartmental model, including variables for hospitalized, separating those requiring critical services, and
even age structures, and containing several parameters making it difficult to deal with in the sense of forecasting;
see the website. [7].

The COVID-19 University of Concepción (UdeC) group provided simulations and predictions. Their results
aim to predict the curve of real infected for different datasets encompassing the Ñuble, Bı́o-Bı́o regions, and the
ntire country and simulate different scenarios with or without confinements. They developed a variant of the SEIR
ompartmental model, adding a fraction to account for the proportion of real infected observed by the RT-PCR
ests and carrying out parameter estimation to calibrate each dataset. In our work, we used some of their ideas and
ompared some of our results of calibration for the Ñuble Region; see the website [6].

We want to note that the research group of the previous paragraph and other manuscripts [8] support their ideas
n the fact that there are unreported cases or that only a fraction of the real infected is observed. Indeed, data is

easured with great uncertainty, as we explain in Section 2, and consequently has been reviewed and changed
etrospectively. In this sense, we aim to obtain a suitable model that fits the data and forecast the general trend
f the real infected’ curve, despite the uncertainty in data. We believe that the way is not constructing a complex
odel. In that case, the parameter estimation required to make the model calibration becomes very difficult or even

mpossible to do in real-time or does not necessarily provide suitable results. Concerning this, we cite the work [14]
hat used a complex generalization of the SEIR model proposed in [21], and applied it Chilean data until April 14,
020, obtained that the peak of infected would occur between April and May, an unsuitable prediction that may be
xplained because data were near to its zero equilibrium, as we will discuss in Section 4.

Parameter estimation involves solving an inverse problem: given a model and measurements of some state
r output variables, the parameters that characterize the system, i.e., those producing a good fit of the model
ith the data, need to be identified [1,11]. This problem is difficult since no unique analytical or numerical

olution is usually available [1,11]. Even if a unique solution was available, suitable initial guesses are required by
ptimization solvers to compute suitable parameter estimates [1,11]. From the previous discussion, the main goal of
he present study was to describe a hybrid approach [10], i.e., a methodology that holistically mixes mathematical

odeling and experimental design, which is required, as shown in the literature, for better understanding the studied
ystem by fitting parameters of a given model with a specific scenario and for obtaining models with predictive
apability. In particular, we aim to develop a clear, efficient, and reproducible methodology for optimization
arameters, whose implementation is illustrated by using data from three representative regions from Chile and a
uitable generalized SIR model. The methodology relies on a numeric procedure called the Trust-Region-Reflective
ptimization algorithm. Simultaneously, we computed the model’s predictive power using goodness-of-fit criteria
nd assessed parameter uncertainty through sensitivities that yield the standard errors.

. A generalized SIR model with constant time delays and fitted positivity rate

The classical SIR model’s main assumptions are that the mean infection and recovery rates are positive constants
ver time, which is not necessarily realistic for a given disease. In COVID-19, when a susceptible has just been
nfected does not instantaneously show symptoms. There should be a time-delay period due to the SARS-CoV-2
ncubation. Similarly, the infected subjects are not recovered or dead instantaneously, but this would occur within

time-delay period. Indeed, these time-delay periods for both phenomena, incubation, and removed (by recovery
r dead), are well documented and reported, e.g., in [23].
2
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In this work, we consider the following generalization of the classical SIR model (adapted from the model from
Book by Hairer et al. [15] p. 295; [19]), which we will call generalized SIR model with constant time delays:

d S
dt

(t) = −
β(t)
N

S(t)I (t − τ1), (1a)

d I
dt

(t) =
β(t)
N

S(t)I (t − τ1) − γ I (t − τ2), (1b)

d R
dt

(t) = γ I (t − τ2). (1c)

he parameters of the model (1) are β(t) that corresponds to the average number of contacts per person per time,
ultiplied by the probability of disease transmission in exposure between a susceptible and an infectious subject

see first report at the web site [7]), or more simply, β(t) is the mean rate of disease transmission; γ is the mean
emoval rate, which in the classical SIR model represents the average time of infection duration; τ1 is the mean
ncubation time of disease; τ2 is the median time from onset to clinical recovery or death caused by disease, or the
uration time of disease until recovery or death.

Parameter β(t) depends essentially on two factors: the disease characteristics and the contact rate within the
opulation [12]. Since we cannot modify the disease characteristics, authorities can foster or even impose incentives
o each individual to reduce his/her contact rate with other individuals in the population, causing a decrease in β(t).
onsequently, we consider β(t) variable in time to consider mitigation strategies dynamics of COVID-19 such as

cenarios confinement and opening at different periods.
The variables of model (1) are:

1. S, the number of susceptible individuals;
2. I , the number of infectious individuals;
3. R, the number of removed (and immune), or deceased individuals.

he initial conditions have to satisfy S(t0) + I (t0) + R(t0) = N , where N is the size of the population under study
or a closed system and taking into account that (S + I + R)′(t) = 0 for all t > 0, and where t0 is a day chosen
uitably after the pandemic began, and which varies for every studied population (in Chile, the first infected subject
as detected on March 02, 2020). We remark that the model (1) considers the symptomatic and presymptomatic

ubjects since the term I (t − τ1) at the right-hand side of Eq. (1a) represents the number of infected cases that do
ot manifest symptoms yet since the infection is under incubation.

The solution of model (1) will be defined in [t0, T [, where T is defined as the first time at which the infected
umber becomes zero, i.e., I (T ) = 0. From Eq. (1b), we have that for every t ∈ [t0, T [, I ′(t) > 0 if and only if

β(t)
N

S(t)I (t − τ1) − γ I (t − τ2) > 0,

r equivalently

Re(t) := RSI R
e (t)RI (t) > 1, where RSI R

e (t) :=
β(t)S(t)

γ N
and RI (t) :=

I (t − τ1)
I (t − τ2)

. (2)

n Eq. (2), Re(t) is the effective reproductive number of the generalized SIR model with constant time delays (1),
RSI R

e (t) is the effective reproductive number in the classical SIR model, and RI (t) is the ratio of the latent over the
emoved infected.

It is worth to note that the generalized SIR model with constant time delays can generate a complex dynamics
ince, as we will see in Section 4, by contrast to the classical SIR model, it can simulate more than one local
aximum, providing thus a way to explain a COVID-19 second-outbreak, as already observed in some European

ountries.
We assume that infectious subjects are detected only when RT-PCR tests are applied to them, and their results

re positive. Therefore the observation of this variable is equivalent to the number of positive RT-PCR tests. In
his sense, the number of asymptomatic subjects in the population is underestimated, given that they are difficult
o detect since they do not manifest any symptoms. Therefore this variable is difficult to observe with accuracy, so
e did not consider it in our modeling directly.
3
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Remark. The generalized SIR model with constant time delays would produce better prediction results than the
classical SEIR model since no observation of the exposed population is available. This is because, similarly to the
asymptomatic population, the exposed are difficult to observe. Indeed, the Chilean government database [16,17],
apart from the symptomatic cases, counts the asymptomatic cases, and there is no way to know how many become
symptomatic ones.

By contrast, the symptomatic cases are detected as symptoms manifest themselves, and the RT-PCR test confirms the
infection. Therefore, this variable is relatively well-observed, provided that the RT-PCR tests are reliable and enough
are available. Taking this into account, we assume that the daily number of infected with symptoms reported by the
ministry of health, denoted by Ir (t), is underestimated since it depends on the availability and proper application of
RT-PCR tests; see the presentation on COVID-19 in Chile in [2]. Consequently, we assume that Ir (t) is a fraction
of the actual number of infected cases I (t), i.e.,

Ir (t) = f (t)I (t). (3)

In Eq. (3), f (t) is the ratio between positive RT-PCR tests number and the real infected cases for day t , which
accounts for the real positivity rate. It is worth noting that f (t) is related to the positivity rate of detected cases,

enoted by fr (t), reported by the Ministry of Health, and defined as the proportion of tests that result positive to
he total number of applied tests for day t , denoted by T (t). Let us denote by RIT (t) =

I (t)
T (t) the ratio of actual

infected cases to the total number of applied tests, and by f A(t) =
I A
r (t)
I (t) the proportion of asymptomatic infected

ubjects to the actual infected ones, where I A
r (t) stands for the asymptomatic infected reported for day t . Since the

umber of positive detected cases corresponds to the total number of confirmed infected reported with and without
ymptoms, Ir (t) + I A

r (t), then it easily follows that

fr (t) =
Ir (t) + I A

r (t)
T (t)

=
[

f (t) + f A(t)
]

RIT (t), (4a)

f (t) =
fr (t)

RIT (t)
− f A(t). (4b)

rom (4b), one has that if RIT (t) ≥ 1 then f (t) < fr (t). In addition, assuming that RIT (t) ≤ c for some constant
< c < 1 satisfying that 1−c

c ≥ M where M > 0 is the maximum of I A
r (t)
Ir (t) , which can be determined from data,

rom (4a) it can be proven that fr (t) ≤ f (t).
We modeled f (t) in the same way as Cabrera-Vives et al.; see the first report in [6]. That is to say, f (t) is

n inverted Sigmoid-type function such that if I (t) is small enough, which occurred during the beginning of the
utbreak, then an important fraction of the real infected cases are detected (Ir (t) ≈ I (t)). On the contrary, when I (t)
s large enough, which occurred just before the quarantines were imposed, then only a small fraction 0 < a < 1 of
he real infected cases are detected (Ir (t) ≈ aI (t)). Precisely, f (t) is defined as

f (t) = 1 +
a − 1

1 + e−k(I (t)−Im ) (5)

hose parameters are a, k and Im , where a and k represent the minimum and the decay rate of f (t), respectively.
n the other hand, the measure of how large/small is I (t) is given by a threshold Im such that I (t) ≪ Im implies

f (t) ≈ 1, and I (t) ≫ Im implies f (t) ≈ a.

. Material and methods

This section describes the data and the methodology used for estimating the optimal parameters that produce the
odel’ fit to the data.
The data corresponds to the reported Chilean government’s daily official cases at the regional level in the current

ear, which we used to predict the COVID-19 spreading. We chose data from some representative regions of the
orth, south, and central zones. Specifically, we worked with the Antofagasta, the Metropolitan, and the Ñuble
egions, where the Metropolitan Region is the most populous and which capital is Santiago of Chile, the country’s
apital. The data we used is available from the web site [17]; also, the countrywide level data is at [16]. The data
n [17] contains not only the number of confirmed cases but also the size of targeted populations (N ) and the periods

f quarantines per commune.

4
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3.1. Scenarios for the fittings and forecastings

We fitted the model (1) to each dataset by taking into account different scenarios that encompass, at least, three
phases of the pandemic spreading: an early stage characterized by low dissemination and levels of daily new infected
cases relatively low, followed by a fast-propagation under quarantine, a measure taken by the Ministry of Health as
a reaction to the first phase in a selective way by sectors that may encompass several communes of the region at
different periods, characterized by a fast increasing of daily new infected cases and finally, a spreading slowdown
stage where the quarantine is relaxed. In a general way, to account for the phases described, we modeled the mean
rate of COVID-19 transmission β(t) by a piecewise constant function as

β(t) =

n∑
i=1

βi 1[ti−1, ti [(t) for every t ∈ [t0, T [ . (6)

In Eq. (6), βi denotes the mean rate of transmission for every scenario i = 1, . . . , n, n ≥ 3 is the number of
cenarios, 1[ti−1,ti [(t) stands for the indicator (or characteristic) function of the time interval [ti−1, ti [ that corresponds

to the i−th scenario, t0 is the initial time, and T is the maximal time of existence of model solutions, defined in
ection 2. For the three datasets considered, the initial condition was imposed at a day t0 chosen with respect to

day 1 that corresponds to March 03, 2020, when it began to measure the infected in the three targeted regions.
From the definition (6), we denote the model parameters as the vector
θ = (β1, β2, · · · , βn, γ, τ1, τ2, a, k, Im) ∈ Rn+6, where n = 3 is the minimum of scenarios to calibrate the

model (1) to the data. In our computations, for the Antofagasta Region dataset, we split the second phase into two
to capture the real behavior of COVID-19 expansion more accurately due to two differentiated periods of quarantine
in that region, taking n = 4 in that case.

Finally, we simulated a possible change of scenario, which was evaluated by computing the relative errors
redicting data after the final calibration time. To do that, we solved the model (1) by taking a mean rate of
ransmission β(t), as in (6), adding one more scenario to the n computed from the calibration, and letting vary βn+1

o verify the value that forecasts the best possible the data after the calibration. To be precise, we solved the model
1) by redefining β(t) as

β(t) =

n∑
i=1

β̂i 1[ti−1, ti [(t) + βn+11[tn , tn+1[(t) for every t ∈ [t0, T [ , (7)

where (β̂1, β̂2, · · · , β̂n) ∈ Rn denotes the parameters estimated for the fitting of every dataset (computed together
with (γ̂ , τ̂1, τ̂2, â, k̂, Îm)), the time tn represents a new change of scenario, tn+1 extends until the last predicted
datum, and βn+1 describes the value of the mean rate of transmission after the time tn (βn+1 = β̂n means no change
of scenario).

3.2. Identifiability analysis of model’ parameters

In this section, we explain in detail the methodology to conduct the identifiability analysis of model’ parameters,
i.e., finding the parameters of the generalized SIR model with constant time delays (1) that best fit to the every
dataset.

3.2.1. Direct and inverse problem
Given a parameters vector θ ∈ Rn+6, the direct problem consists of finding the (unique) solution (S, I, R)(t, θ)

of model (1) with initial condition imposed at a suitable initial time, after the pandemic began. The solution to the
direct problem is required to solve the inverse problem. The present study aimed to forecast and simulate different
scenarios of COVID-19 expansion in Chile, for which we developed a clear, efficient, and reproducible methodology
to solve the parameter identification problem. This procedure is referred to as the inverse problem, i.e., given data
that provides observations of the variable I (t), namely Ir (t), for some time points t to identify the parameters vector
θ ∈ Rn+6 such that the mathematical model (1) fits the data in the sense of the least-squares. More precisely, to
5



P. Cumsille, Ó. Rojas-Dı́az, P. M. de Espanés et al. Mathematics and Computers in Simulation 193 (2022) 1–18

w
s
g
t
w

n
R
f

t
o
fi
a

3

i
t
e
[
t
a
t
e
p
w

p
s
c
d
u

w
o
o
d
i

O

solve the inverse problem of parameter estimation, we have to find the vector θ ∈ Rn+6 that minimizes the sum of
squares

SS(θ ) =
1

N 2

M∑
j=1

[
(Ir ) j − f ( j, θ2)I ( j, θ1)

]2
. (8)

The objective function defined in (8) corresponds to the sum of squares of the absolute errors (Ir ) j − f ( j,θ2)I ( j,θ1)
N

relative to the size of the targeted population N , i.e., of the differences between the daily number of infected reported
ith symptoms, (Ir ) j , and the theoretical daily symptomatic infected f ( j, θ2)I ( j, θ1), which is a fraction of the real

ymptomatic infected I ( j, θ1), corresponding to the model solution evaluated at ( j, θ1) at days j = 1, . . . , M , for a
iven value of the parameters vector θ , and where M is the size of each dataset. The variable I (t, θ1) depends on
and θ1 = (β1, β2, · · · , βn, γ, τ1, τ2) ∈ Rn+3, while the fraction f (t, θ2) depends on t and θ2 = (a, k, Im) ∈ R3,
ith θ = (θ1, θ2) ∈ Rn+6.
The minimum of the sum of squares SS(θ ) is designated as θ̂ for every dataset. The vector θ̂ is called the

onlinear least-squares estimator denoted as nonlinear LSE hereafter. To minimize SS(θ ), we applied the Trust-
egion Interior Reflective (TIR) method implemented in Matlab c⃝ as the subroutine lsqnonlin, specially adapted

or solving nonlinear least-squares minimization problems.
Below, we describe the entire methodology extensively. In Section 3.2.2, we provide details on the implemen-

ation of the lsqnonlin solver, specifically on the procedure to assess the quality of the optimal solution θ̂ , and
n the stopping criterion associated with the algorithm, both concerning the convergence. Also, we computed the
t performance by some goodness-of-fit criteria and represented graphically the traditional sensitivity functions
ssociated with the nonlinear LSE to assess parameter uncertainty, as explained in Section 3.2.3.

.2.2. Parameter estimation
Convergence of TIR method, as described in [9], is theoretically achieved under general conditions. However,

n practice, the convergence depends strongly on the initial parameter estimations, which has to be relatively close
o the optimal solution. We were able to efficiently minimize the objective function by a trial and error process, by
xecuting the codes hundreds of times, to guess the suitable initial parameters vector that is different for every dataset
1,11]. It is worth noting that the initial parameters that mostly influence the fitting results are (β1, β2, · · · , βn)
hat describe the mean rate of COVID-19 transmission, according to the scenarios of expansion. As usual, there is

tradeoff among how well the model outputs fit the empirical data, the number of parameters (increasing n), and
he risk of overfitting. Moreover, there is the human factor involved in selecting the n time intervals associated with
ach parameter β, although changes in lockdown policies determine reasonable interval boundaries. We will estimate
arameters using hand-picked intervals to address this issue, justifying our choices in Section 4. In Section 4.4, we
ill explore our results’ robustness using equal length intervals and varying values of n.
To evaluate the objective function SS(θ ), we numerically solved the model (1) at days j = 1, . . . , M for different

arameters vectors θ depending on every dataset by applying a Runge–Kutta type formulae [22]. We invoked the
ubroutine dde23 implemented in Matlab c⃝ , designed for solving delay differential equations (DDE) systems with
onstant time delays. In addition, we had to reconstruct the function of history for the model (1) by interpolating the
aily reported data of infected with symptoms, recovered and dead considered for every dataset. The interpolation
sed is a shape-preserving piecewise cubic as devised by the interp1 Matlab subroutine with the option pchip.

As for the options chosen for the lsqnonlin solver, we first choose the TIR method as the optimization algorithm,
hich is the default. Secondly, the maximum number of iterations was set at 1,000, while the maximum number
f function evaluations was set at 20,000. Finally, the function tolerance was set at 1.0e − 17, whereas the norm
f step tolerance, denoted by tol, was set variable between 1.0e − 14 and 1.0e − 08, depending on the targeted
ataset. The norm of the step δ

(p)
θ > 0 measures the change between two successive iterates θ (p) and θ (p+1), which

s defined as:

δ
(p)
θ = ∥θ (p+1)

− θ (p)
∥. (9)

n the other hand,

δ
(p)
SS =

|SS(θ (p)) − SS(θ (p+1))|
, (10)
1 + |SS(θ (p))|
6
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is the relative change in the sum of squares. The stopping criterion for our algorithm is defined as:

δ
(p)
SS < 1.0e − 17 or δ

(p)
θ < tol. (11)

When the previous condition is met, the algorithm stops at iteration p + 1 and returns an approximation of the
nonlinear LSE θ̂ = θ (p+1), as well as an approximation of the Jacobian matrix χ evaluated at ( j, θ̂ ) for every
dataset; see Section 3.2.3 for details. To check the convergence of the algorithm, we also provided the first-order
optimality measure, which measures how close the approximation is to the actual minimum of the sum of squares
under the criterion of first-order partial derivatives. The first-order optimality measure is defined as the infinity norm
of the gradient of the objective function evaluated at the nonlinear LSE θ̂ , i.e., the maximum absolute value of the
partial derivatives of the objective function with respect to the θ variables:

∥∇SS(θ̂ )∥∞ = max
ℓ=1,...,n+6

⏐⏐⏐⏐∂SS
∂θℓ

(θ̂ )
⏐⏐⏐⏐ . (12)

ther metrics that quantify convergence are the norm of the step δ
(p)
θ , the relative change in the sum of squares δ

(p)
SS

see Eqs. (9)–(10)), and the number of iterations p + 1. Optionally, lsqnonlin displays the metrics of convergence
t the end of its execution.

We computed the model parameters θ = (β1, β2, · · · , βn, γ, τ1, τ2, a, k, Im) ∈ Rn+6 within the following
bounds: 1 ≤ τ1 ≤ 14, 7 ≤ τ2 ≤ 56 days (the average for the time of incubation and removal, by recovery or death,
is 5 and 14 days respectively; see [23]), 0 ≤ a ≤ 1, min{Ir (t)} ≤ Im ≤ max{Ir (t)} in the time interval considered,
nd all the rest of parameters are positive (i.e., between 0 and +∞).

.2.3. Goodness-of-fit criteria and parameter uncertainty
We used statistical methods (from the context of nonlinear least-squares regression) to quantify the fit perfor-

ance of the model to the data. More precisely, once estimating the nonlinear LSE θ̂ , one may compute several
oodness-of-fit criteria, which evaluate how well the model (1) fits each dataset. We calculated σ̂ 2 and σ̂ , the
nbiased variance of the residuals, and the root mean square error (RMSE) defined respectively in [3,13] as

(σ̂ )2
=

1
M − n − 6

M∑
j=1

[
(Ir ) j − f ( j, θ2)I ( j, θ1)

]2
= N 2 SS(θ̂ )

M − n − 6
, σ̂ = N

√
SS(θ̂ )

M − n − 6
. (13)

f the residuals [(Ir ) j − f ( j,θ2)I ( j,θ1)]
N were normally distributed or if the datasets sizes M were sufficiently large, then

he estimated covariance matrix, and the sensitivities associated with the nonlinear LSE θ̂ would be expressed as

Cov = σ̂ 2 [
χ tχ

]−1
, where, (14)

χ j,l =
∂( f I )
∂θl

( j, θ̂ ) for every j = 1, . . . , M; and every l = 1, . . . , n + 6 . (15)

Sθ̂l
(t) = χt,l for every t; and each l = 1, . . . , n + 6 fixed. (16)

he matrix χ is called the traditional sensitivity function, and it quantifies the variation of the state variable
f (t, θ2)I (t, θ1) with respect to changes in the parameters vector components θ = (θ1, θ2) ∈ Rn+6. Sensitivity
nalysis can provide information about the relevance of data measurements to identify parameters; it then yields the
asis for new tools to design inverse problem studies; see [4] for details. By using the covariance matrix given in
14), we can compute the standard errors, seθ̂ , and the normalized standard errors, nseθ̂ , associated to the nonlinear
SE θ̂ from which we could quantify the accuracy of the parameter estimate. Both quantities are defined by

seθ̂l
=

√
(Cov)l,l , nseθ̂l

= 100 ·
seθ̂l

θ̂l
, for every l = 1, . . . , n + 6. (17)

he quantities defined by (14)–(17) are asymptotic, i.e., they are valid only if each dataset size M is sufficiently
arge because the nonlinear least-squares estimators are asymptotically normally distributed [3,13]. We computed
he nseθ̂ and the sensitivities of parameters θ̂l , Sθ̂l

(t), with a nseθ̂l
larger than 100%; see (16). Also, we plotted

S (t) to justify why some parameters were estimated relatively reliably even if their nse were larger than 100%.
θ̂l θ̂l

7
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4. Results and discussion

In this section, we show and discuss the numerical results obtained according to the generalized SIR model
with constant time delays (1), for each dataset corresponding to the selected regions of Chile for performing the
calibration and prediction. We start by describing how we chose the different scenarios, followed by the fitting and
prediction by using a figure that depicts the actual and calibrated infected, I (t) and f (t)I (t), respectively, computed
ccording to our model. Next, we discuss parameter estimation’s reliability by depicting the traditional sensitivity
unctions for those parameters having a nse larger than 100% if it applies; see (16)–(17). A table follows that
hows quantitative measures to verify the convergence of the optimization algorithm. Concretely, the table shows
he number of iterations made by the optimization solver to meet the stopping criterion, the sum of squares’ optimal
alue, the RMSE, the first-order optimality measure, the norm of step, and the estimated parameters’ values. Finally,
e show numerical results to simulate an eventual change of scenario, which effect we measured by computing the

elative errors for predicted data after the final time of calibration and discussing the number of infected’ curve’s
ong-time behavior.

We should warn that the actual values would depend on people behavior and of the measures taken by sanitary
uthorities of the state. Therefore, the results of the article should consider as a general trend on curves’ behavior
t simulation’ conditions.

.1. Results for the Antofagasta Region

Next, we show and discuss fitting and forecasting results for the Antofagasta Region, whose capital is
ntofagasta, located 1093 km to the North of Santiago of Chile straight line. The region has N = 691, 854

nhabitants, and it is representative of the country by its important ore activity. We fitted data starting from day
6 up to day 201, corresponding to April 7 and September 19, respectively (dataset size M = 165). We chose April
as the initial time because the number of active accumulated cases was 69.
The region had four of nine communes under confinement (Antofagasta, Mejillones, Calama, and Tocopilla) in

he following periods. Antofagasta and Mejillones from May 5 to May 29, and from June 23 to September 28;
alama from June 9 to September 21, and Tocopilla from June 23 to August 9. On average and taking into account

he population density, we defined four scenarios for Antofagasta Region as follows: [t0, t1[ = [36, 64[ for the early
xpansion free of quarantine (between April 7 and May 5); [t1, t2[ = [64, 84[ for the phase of fast propagation
nder the first quarantine (between May 5 and May 29); [t2, t3[ = [84, 113[ for a phase of quarantine’ relaxation
ith relatively fast propagation (between May 29 and June 23); and [t3, t4[ = [113, 201[ for a phase of slowdown

xpansion under the second quarantine (between June 23 and September 19).
Fig. 1 depicts the model fitted to the Antofagasta Region dataset, plotting them each four-time points.

Fig. 1. Calibration for the Antofagasta Region dataset from April 7 up to September 19.
8
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Fig. 1 shows that the calibrated and actual curves of infected are very different from each other, except in
scenario 1 and near the end of scenario 4 of the pandemic. We expected this result since a few infected people
would be almost all detected, so the calibrated and actual curves would coincide. On the other hand, we observe
that the calibrated curve of infected fits quite well the data (infected reported Ir (t)). Indeed, since the dataset is large
enough and encompasses the four stages of the pandemic, we estimated the parameters reliably. Only parameter k̂,
corresponding to the decay rate of fraction f (t) (see (5)), has a nse larger than 100%; see Table 1. Its sensitivity
function, Sk̂(t), varies in the interval [−1.2e−05, 7.8e−06] for all t within the time interval of calibration; therefore,
its estimate is unreliable. However, all the rest of the parameters have a nse less than 100%, so fitting is relatively
reliable. Indeed, from Table 1, one can observe that the overall fitting is suitable since the error is quite low (sum
of squares and RMSE).
Table 1
Fit performance for the Antofagasta Region dataset from April 7 up to September 19.

Quantity Symbol Value

Iterations p + 1 37
Sum of squares SS(θ̂ ) 3.1149e − 07
RMSE σ̂ 31.0148
First-order optimality ∥∇SS(θ̂ )∥∞ 2.71e − 06
Norm of step δ

(p)
θ 6.6371e − 08

Mean transmission rate (β̂1, β̂2, β̂3, β̂4) (3.9591e − 01, 3.0843e − 01, 2.3631e − 01, 1.6749e − 01)
Normalized standard errors nse

β̂l
, l = 1, 2, 3, 4 (4.50%, 12.08%, 4.75%, 1.53%)

Mean removal rate γ̂ 1.8455e − 01
Normalized standard errors nseγ̂ ≪ 0.01%
Mean time delays (τ̂1, τ̂2) (8.4047, 10.0222)
Normalized standard errors nseτ̂l , l = 1, 2 (10.05%, 5.79%)
Parameters of fraction f (t) (â, k̂, Îm ) (23.20%, 1.0243, 68.8445)
Normalized standard errors nseâ, k̂, Îm

(37.02%, 512.03%, 15.99%)

The trend for the mean transmission rates is realistic. Indeed, β̂1 is the largest for scenario 1 (free of quarantine),
followed by β̂2 for scenario 2 (with quarantine), followed by β̂3 for scenario 3 (free of quarantine), and finally β̂4

is the least of the four for scenario 4 (with quarantine). The same trend is observed for the fittings of the other
datasets.

As explained in Section 3.1, we will show different predictions assuming that β(t) may vary after September
9. Concretely, we run simulations by considering a mean transmission rate β(t) defined by (7) taking n = 4. The
redicted data (not fitted) encompasses September 20 to October 05, t5 = 217 that corresponds to this last date.
able 2 shows the range (minimum and maximum) and the average of the relative errors of the model’ forecasting
or different values of β5, and where t4 = 210 to try of capturing that none commune of the Antofagasta Region
emained confined since September 28 (day 210).
able 2
redictions of the infected curve under different scenarios for the Antofagasta Region.

Value Minimum Maximum Mean

β5 = 2β̂4 1.2416e − 01 1.3163 4.3568e − 01
β5 = 1.5β̂4 1.4015e − 01 1.3163 4.7957e − 01
β5 = 3β̂4 1.7351e − 02 1.3163 4.9284e − 01
β5 = 1.25β̂4 1.3951e − 01 1.3163 5.2653e − 01
β5 = 1.125β̂4 1.2278e − 01 1.3163 5.4590e − 01
β5 = β̂4 1.4071e − 01 1.3163 5.7411e − 01
β5 = 0.75β̂4 1.4134e − 01 1.3163 6.2148e − 01
β5 = 0.5β̂4 1.4198e − 01 1.3163 6.6890e − 01
β5 = 0.4β̂4 1.4227e − 01 1.3163 6.8756e − 01
β5 = 0.3β̂4 1.5134e − 01 1.3163 7.0866e − 01
β5 = 0.25β̂4 1.5275e − 01 1.3163 7.1859e − 01
β5 = 0.125β̂4 1.4228e − 01 1.3827 7.3947e − 01

From Table 2, we observe that β5 = 2β̂4 yields the least relative error mean, which implies that after the
quarantine finished on September 28, the mean rate of transmission doubled, producing a negative change of
scenario. Our model forecasts that, if these conditions were kept, a COVID-19 second-outbreak would occur in
9
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the Antofagasta Region. The peak of this new outbreak would occur around January 24, 2021, with an estimate of
102,154 real infected and 23,703 daily reported infected.

4.2. Results for the Metropolitan Region

Next, we show and discuss the results of fitting and forecasting for the Metropolitan Region (RM), whose capital
is Santiago of Chile, also the capital of Chile. We fitted data starting from day 15 until day 203 corresponding to
March 17 and September 21, respectively (dataset size M=189). We chose March 17 as the starting day because
the number of newly infected with symptoms was 29, with 152 active accumulated cases.

The region has N = 8, 125, 072 inhabitants (around 41.76% of the total inhabitants of Chile) and 52 communes.
From these, 47 communes have been under selective quarantine at different periods (few of which are yet), the most
of which on average between May 7 and June 30. Therefore, we defined the three scenarios for MR as follows:
[t0, t1[ = [15, 66[ for the first stage that encompasses the period from March 17 to May 7 (early expansion free of
quarantine on average); [t1, t2[ = [66, 120[ for the second phase that ranges from May 7 to June 30 (fast propagation
under quarantine); and [t2, t3[ = [120, 203[ for the third step that goes from June 30 up to September 21 (slowdown
expansion with relaxation of quarantine on average).

Fig. 2 depicts the model fitted to the MR dataset, plotting them each four-time points.

Fig. 2. Calibration for MR dataset from March 17 up to September 21.
Fig. 2 shows that curves of calibrated and actual infected are very different from each other. On the other hand,

we observe a good calibration of the model to the data since the computed curve of infected, f (t)I (t), fits quite
ell the daily reported infected, Ir (t). Indeed, since the dataset is large enough and encompasses the three stages
f the pandemic, we estimated the parameters reliably, which is reinforced by the fact that the maximum nse is
9.39%, meaning accurate calibration results. To further appreciate the suitable fitting of the model, Table 3 presents
ts performance.

As explained in Section 3.1, we will show different predictions assuming that β(t) may vary after September
1. Concretely, we run simulations by considering a mean rate of transmission β(t) defined by (7) for n = 3. The
redicted data (not fitted) encompasses September 22 to 28, t4 = 210 that corresponds to this last date. Table 4
hows the range (minimum and maximum) and the average of the relative errors of the model’ forecasting for
ifferent values of β4 and for t3 = 182 to try of capturing that almost none commune of the MR remained confined
ince August 31 (day 182).

From Table 4, we observe that β4 = 1.125β̂3 yields the least relative error (minimum and mean), which reinforces
he assumption that the quarantine is valid for the MR between May 7 and June 30, on average, and that there was

little change of scenario from August 31 until September 28. Our model forecasts that, if these conditions were
ept, a COVID-19 second-outbreak would occur in the MR. The peak of this new outbreak would occur around
ay 24, 2021, with an estimate of 70,937 real infected and 16,568 daily reported infected.
10
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Table 3
Fit performance for the MR dataset from March 17 up to September 21.

Quantity Symbol Value

Iterations p + 1 34
Sum of squares SS(θ̂ ) 9.0760e − 07
RMSE σ̂ 581.8176
First-order optimality ∥∇SS(θ̂ )∥∞ 9.07e − 06
Norm of step δ

(p)
θ 1.5147e − 08

Mean transmission rate (β̂1, β̂2, β̂3) (3.7426e − 01, 1.6679e − 01, 1.7155e − 01)
Normalized standard errors nse

β̂l
, l = 1, 2, 3 (6.14%, 9.73%, 8.69%)

Mean removal rate γ̂ 1.7429e − 01
Normalized standard errors nseγ̂ 9.54%
Mean time delays (τ̂1, τ̂2) (7.7609, 11.5809)
Normalized standard errors nseτ̂l , l = 1, 2 (2.76%, 3.60%)
Parameters of fraction f (t) (â, k̂, Îm ) (23.36%, 2.5772e − 03, 123.8884)
Normalized standard errors nseâ, k̂, Îm

(44.54%, 89.39%, ≪ 0.01%)

Table 4
Predictions of the infected curve under different scenarios for the MR.

Value Minimum Maximum Mean

β4 = 1.125β̂3 1.0763e − 01 3.8723e − 01 2.2169e − 01
β4 = 1.25β3 1.4605e − 02 7.3981e − 01 3.0414e − 01
β4 = β̂3 1.1228 1.5040 1.3079
β4 = 0.125β̂3 4.1640e − 01 6.4217 2.6687
β4 = 0.75β3 3.3321 5.0633 4.0505
β4 = 1.5β3 1.3802 2.5700 1.9916
β4 = 0.25β̂3 1.5586 7.1982 3.7048
β4 = 0.4β̂3 3.1184 7.4159 4.5583
β4 = 0.5β̂3 3.6698 7.1802 4.8149
β4 = 2β̂3 6.0875 1.0406e + 01 7.7380
β4 = 3β̂3 2.2805e + 01 4.3345e + 01 2.9752e + 01

4.3. Results for the Ñuble Region

Next, we show and discuss fitting and forecasting results for the Ñuble Region, located 403.8 km to the south
of Santiago of Chile, and whose capital city is Chillán (population N = 511, 551). On September 21, Chillán was
the fourth city with more active infected per 100,000 inhabitants (407 cases). The three scenarios considered here
are more easily identifiable than for the MR and the Antofagasta Region since the quarantines in the Ñuble Region
were imposed mostly in Chillán at a single date within the time interval of calibration.

We split the results into two parts; first, we did the fitting for the data from March 21 to April 27 and next
from March 21 to September 02. Therefore, the scenarios are the following: [t0, t1[ = [19, 28[ for the first stage
that encompasses the period from March 21 up to March 30 (early expansion); [t1, t2[ = [28, 52[ for the second
phase that ranges from March 30 up to April 23 (fast propagation under quarantine); and [t2, t3[ where t2 = 52 and
t3 = 57 or t3 = 184 for the third step that goes from April 23 to April 27 and to September 2 (slowdown expansion,
ree of quarantine), corresponding to the first and second results, respectively.

.3.1. Results for fitting until April 27
To compare with the only quantitative results we know of for the fitting of data from the Ñuble Region (see the

rst report by Cabrera-Vives et al. [6]), we did the fitting starting from day 19 (March 21) until day 57 (April 27)
dataset size M = 39), when the accumulated infected at the Ñuble Region were 58. It is worth noting that, because
f the small number of data points, the third scenario does not represent a spreading’s slowdown. We performed
his fitting only to compare our results with that of Cabrera-Vives and collaborators’ first report.
11
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Fig. 3. Calibration for the Ñuble Region dataset from March 21 up to April 27.

Fig. 3 depicts the model fitted to the dataset for the Ñuble Region, plotting the data each two-time points.
From Fig. 3, we observe that the calibrated curve of infected does not fit suitably the data, despite that the

optimization solver converged (the last change in the relative sum of squares is less than the value of the function
tolerance). Indeed, the calibrated curve does not represent the trend of not fitted data from April 28 to May 02
(not reported here). Following the findings in [4], the explanation is that the data used to make the fitting is close
to the zero equilibrium (the early stage of the pandemic), suggesting limited ability to determine some parameters
reliably. This is related to the traditional sensitivity functions, depicted in Fig. 4, for the parameters estimated with
a nse larger than 100%; see Table 5.

Fig. 4. Sensitivity functions for parameters estimated with a nse larger than 100%.

From Fig. 4(right), we observe that parameters k̂ and Îm (see Eq. (5)) have the smallest sensitivities (very near to
zero for every t), which implies that their estimations are not reliable. By contrast, Fig. 4(left) shows that parameter
γ̂ has the largest sensitivity, which means that its estimate is relatively better than the other parameters having a
nse larger than 100%. In the case of parameters (β̂1, β̂2, β̂3), Sβ̂1

(t) and Sβ̂3
(t) are small in the regions of scenarios

and 3, where β̂1 and β̂3 represent the mean rates of transmission, respectively; by contrast, Sβ̂2
(t) is large enough

n the region of scenario 2, where β̂ describes the mean rate of transmission. Consequently, the estimation of β̂
2 2

12
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is relatively better than those of β̂1 and β̂3. We will see that fitting the data in the three phases of the pandemic
provides better results.

Table 5 shows the quantitative results of the fitting.
Table 5
Fit performance for the Ñuble Region dataset from March 21 up to April 27.

Quantity Symbol Value

Iterations p + 1 41
Sum of squares SS(θ̂ ) 2.0949e − 08
RMSE σ̂ 13.5179
First-order optimality ∥∇SS(θ̂ )∥∞ 2.19e − 08
Norm of step δ

(p)
θ 1.0606e − 10

Mean transmission rate (β̂1, β̂2, β̂3) (3.7849e − 01, 2.2784e − 02, 1.1015e − 01)
Normalized standard errors nse

β̂l
, l = 1, 2, 3 (148.27%, 1163.89%, 363.29%)

Mean removal rate γ̂ 7.5470e − 02
Normalized standard errors nseγ̂ 347.77%
Mean time delays (τ̂1, τ̂2) (5.4927, 7.1330)
Normalized standard errors nseτ̂l , l = 1, 2 (44.74%, 25.31%)
Parameters of fraction f (t) (â, k̂, Îm ) (67.02%, 7.7127, 16.3431)
Normalized standard errors nseâ, k̂, Îm

(71.45%, 16, 164.15%, 409.00%)

The results are comparable with that from the first report by Cabrera-Vives et al. [6] (a similar RMSE), although
e did the fitting by using the real date at which the authorities imposed the quarantine. Our model also forecasts

hat, if the same conditions of the third scenario were kept, the outbreak’s peak would occur around February
0, 2021, that qualitatively coincides with the prediction obtained by Cabrera-Vives et al. [6]; see the bottom of
igure 1 from the first report. However, according to the previous discussion, the fitting obtained from data near an
quilibrium point produces wrong prediction results [4,5].

.3.2. Results until September 2
Now, we show the results of fitting and predictions for the data from Ñuble Region, widening the time window

from March 12 to September 02 (dataset size M = 175), considering the same constraints as before (quarantine
rom March 30 to April 23), but now t3 = 184 instead of 57 (day 184 corresponds to September 2). Fig. 5 depicts
he model fitted to the dataset for the Ñuble Region, plotting the data at each four-time points

Fig. 5. Calibration for the Ñuble Region dataset from March 21 up to September 2.
From Fig. 5, we observe that the calibrated curve of infected fits quite well the data. In this case, since the

dataset is large enough and encompasses data from the three stages of the pandemic, this time, we estimated the
13
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parameters reliably, except maybe for k̂ that is the only with a nse larger than 100%; see Table 6. Fig. 6 depicts
the sensitivity function of k̂.

Fig. 6. Sensitivity function for parameter k̂.

From Fig. 6, we observe that Sk̂(t) is relatively large in the region corresponding to scenario 3, and therefore
estimate of k̂ is relatively reliable. The result is better than the last fitting (data until April 27); see Fig. 4 and the
discussion below it.

Table 6 shows the corresponding quantitative results of the fitting.
Table 6
Fit performance for the Ñuble Region dataset from 12 March to 02 September.

Quantity Symbol Value

Iterations p + 1 68
Sum of squares SS(θ̂ ) 1.3061e − 07
RMSE σ̂ 14.4360
First-order optimality ∥∇SS(θ̂ )∥∞ 3.65e − 07
Norm of step δ

(p)
θ 1.1492e − 08

Mean transmission rate (β̂1, β̂2, β̂3) (1.3248, 1.3487e − 01, 1.9592e − 01)
Normalized standard errors nse

β̂l
, l = 1, 2, 3 (19.65%, 73.85%, 39.71%)

Mean removal rate γ̂ 1.7578e − 01
Normalized standard errors nseγ̂ 47.84%
Mean time delays (τ̂1, τ̂2) (7.4305, 9.4810)
Normalized standard errors nseτ̂l , l = 1, 2 (13.78%, 13.73%)
Parameters of fraction f (t) (â, k̂, Îm ) (26.78%, 9.5539e − 02, 50.9513)
Normalized standard errors nseâ, k̂, Îm

(90.91%, 163.47%, 26.74%)

Consistently with the results obtained fitting the dataset until April 27, our model forecasts that, if the same
onditions of the third scenario were kept, the outbreak’s peak would occur around March 02, 2021. However, we
ould expect a change of scenario since September 2 because authorities re-imposed confinement in Chillán due

to the high increase in daily new cases.
As explained in Section 3.1, we will show different predictions assuming that β(t) may vary after September

due to the confinement (helpful or counterproductive measure depending on people behavior). Concretely, we
un simulations by defining β(t) as in (7) (with n = 3) to predict the data (not fitted) between September 3 and
eptember 22 (data number = 20), and putting t3 = 184 and t4 = 204 that correspond to September 2 and 22,
espectively. Table 7 shows the range (minimum and maximum) and the average of the relative errors of the model’
orecasting for different values of β4.

From Table 7, we observe that β4 = 0.75β̂3 yields the least relative error maximum and mean. The interpretation
s that quarantine effectively reduced the transmission rate, and therefore there was a positive change of scenario
14
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Table 7
Predictions of the infected curve under different scenarios for the Ñuble Region.

Value Minimum Maximum Mean

β4 = 0.75β̂3 1.8775e − 02 1.0677 3.0481e − 01
β4 = 0.5β̂3 2.6869e − 02 2.9773 7.2569e − 01
β4 = β̂3 5.2774e − 02 2.8704 7.9289e − 01
β4 = 1.125β̂3 5.7721e − 03 3.8428 1.1393
β4 = 0.4β̂3 6.0453e − 02 4.8728 1.2234
β4 = 1.25β̂3 2.1683e − 02 5.0685 1.5241
β4 = 0.25β̂3 2.6635e − 02 7.1286 2.0765
β4 = 1.5β̂3 1.0001e − 01 8.2770 2.3404
β4 = 0.125β̂3 1.0034e − 02 8.4642 2.7584
β4 = 3β̂3 2.2141e − 01 3.9640e + 01 9.1426

since September 2. Our model forecasts that, if these conditions were kept, a COVID-19 second-outbreak would
not occur in the Ñuble Region.

Finally, Fig. 7 depicts the calibrated and real curves of infected for the Ñuble Region until September 25, by
taking β4 = 0.75β̂3 as before. The third peak corresponds to September 2, the final calibration date.

Fig. 7. Forecasted curve of infected for Ñuble Region from March 21 to September 25.
The result of Fig. 7 coincides with a report by the Chilean Society of Intensive Medicine, published on September

25, which pointed out that Chillán underwent the third peak of the COVID-19 outbreak by this date; see [20].

4.4. On the robustness of the optimization algorithm and the estimation of the infection fatality rate

To assess the robustness of the β parameter estimations we repeated the fitting processed we described in
Section 4.2 after modifying some assumptions. Instead of assuming that β(t) is piecewise constant and defining
he three scenarios based on actual policy changes, here we considered β(t) to be piecewise linear with n −1 equal
ength time intervals. More formally we replaced Eq. (6) with

β(t) =

n∑
i=1

βi Ti (t) (18)

here Ti is the tent function with value of one at ti and tapers off to zero at ti−1 and ti+1. Thus, we determine n
alues for the β̂i ’s. We tried 5 values for n and we summarize the results in Table 8.

The results in Table 8 are, up to a point, compatible with the values shown in Table 3. For example, we can see
ˆ ˆ
hat for values of i ≈ n/2 the βi ’s are in the [0.13, 0.19] range consistently for β2 from Table 3. Moreover, for n = 4
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P. Cumsille, Ó. Rojas-Dı́az, P. M. de Espanés et al. Mathematics and Computers in Simulation 193 (2022) 1–18

i
c
t
r
[
a
n
a
T
β

e
t
b

p
p
i
n
s
w
a
s
I
T
I

d
b
w
r
M
a

5

t
i

Table 8
Estimators for β(t) using n − 1 segments piecewise linear functions.

n β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

8 7.5e − 01 8.2e − 02 2.1e − 01 1.4e − 01 1.8e − 01 2.1e − 01 1.2e − 01 4.2e − 01
7 1.3e − 01 1.6e − 01 1.7e − 01 1.6e − 01 9.2e − 02 5.8e − 02 2.4e − 01
6 1.7e − 01 3.3e − 01 1.3e − 01 1.7e − 01 2.2e − 01 8.7e − 02
5 5.3e − 01 1.9e − 01 1.4e − 01 1.9e − 01 9.0e − 02
4 1.7e − 01 1.5e − 01 1.3e − 01 3.9e − 01

and n = 5 the same trend follows as in Table 3, i.e., the values for β̂i are relatively large for both small and large
’s (first and last scenario). We already stated in Section 4 that this was a consequence of the different scenarios
onsidered for each dataset. The same trend is not seen if n = 7. This is natural, as having many time intervals, and
herefore many β̂i ’s parameters to adjust will tend to cause overfitting. Indeed, we observe across rows of Table 8 a
elatively large variability (range [0.13, 0.75]) among the β̂1’s. The same can be said about the values for β̂n (range
0.09, 0.42]). One consequence of this observation is that predictions are likely to be very inaccurate if we simply
ssume that β̂n will hold during an extrapolation beyond the last data point after trying the fitting with a single
. Nonetheless, we can use the ranges the β̂n’s lie on for a scenario analysis as we did in Section 4 (Tables 2, 4
nd 7). Another consequence is the difficulty to estimate precisely the effectiveness of the quarantine procedures.
his follows from the variability within each row of Table 8. In principle, quarantines should lower the values for
. However, because of the inherent inaccuracy of the estimation during the initial disease propagation, and the
nforcement of quarantines as soon as the cases multiply (and thus the estimation becomes reliable), computing the
emporal changes in β accurately is more than challenging. Yet, for small values of n (say 4 or 5), the qualitative
ehavior of the βi ’s we expect is observed.

Furthermore, it is of practical interest to estimate the lethality of a disease. The infection fatality rate (IFR), the
robability of dying for an infected person, is computed as the ratio of dead subjects to the number of infected
eople for the targeted population [18]. However, according to our model, there is a time delay between that an
nfected person recovers or dies (τ2), and therefore to compute the IFR at a given day t , we divided D(t) (the
umber of death at t) into the number of infected at time t − τ2. To exemplify the model’s usefulness, we will
how IFR estimations computed for each dataset by combining empirical data and model outputs. To do that, we
ill use τ2 from Tables 1, 3 and 6, D(t) the confirmed number of deaths for each region reported in [17], and the

ctual number of infected I (t) computed from the outputs of model (1). As usual, we divided the process into the
cenarios, as described in Section 4, plus the pandemic’s entire period used in the calibration. Table 9 shows the
FR medians in percentage.
able 9
FR median estimation for each dataset.

Region Scenario 1 Scenario 2 Scenario 3 Scenario 4 Entire

Antofagasta 0 0 6.8758e − 01 8.8174e − 01 7.9727e − 01
Metropolitan 1.1396 4.4294e − 01 1.0444 Does not apply 9.6547e − 01
Ñuble 0 0 0 Does not apply 0

We computed the median since it is more appropriate for skewed distribution, such as the confirmed number of
eaths, D(t), which are raw data. We did not plot the IFR since it presents many oscillations and a few outlier values
ecause of uncertainty in data and the numerical error of calibration results. The values of Table 9 are consistent
ith the recent results in [18], where the author claims that IFR ∈ [0%, 1.54%], which implies that the curve of

eal infected provided by the model is accurate since it yields a realistic value for the IFR’s median in the case of
R. By contrast, for the Ñuble and Antofagasta Regions, the confirmed death cases are not large enough to yield

n accurate IFR’s estimation (for neither mean nor median).

. Conclusions

We described and successfully implemented a clear, efficient, and reproducible parameter estimation methodology
o a generalized SIR model with constant time delays that can reproduce complex dynamics for COVID-19. We
llustrated our methodology and modeling by carrying out parameter estimation for three datasets corresponding to
16
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Chile’s three representative regions, although this can be applied to any country. From a methodological viewpoint,
we assessed the reliability of estimated parameters and showed that when the data are located in the transition from
the zero to the non-zero equilibria (encompassing all the stages of pandemic spread), the parameters are reliably
estimated. Also, we verified our optimization methodology’s robustness by considering an arbitrary number of n
scenarios.

The numerical results allow us to forecast the general trend of the infected’ curve, the calibrated and the real,
and provide some predictions that allow us to prognosticate a possible COVID-19 second-outbreak. This prognosis
is valid only if the conditions that allowed arrive at the estimated mean transmission rate are kept. In the absence
of an effective vaccine or drug, these conditions are essentially translated into self-care. Finally, we showed that
our model is precise enough to reproduce the infection fatality rate fairly accurately, according to the reported dead
cases.

There are two lines of research that we would like to tackle. First, we expect to apply our model and methodology
to other regions/communes in Chile. Because of the heterogeneity among their socio-economic conditions, the
pandemic has affected them differently. On the other hand, we intend to calibrate our model to the reported dead
to estimate more accurately and quantitatively the infection fatality rate of COVID-19, including structures of age
and the dynamics of interactions among individuals of diverse age groups.
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