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Abstract

Alterations in α-synuclein dosage lead to familial Parkinson’s disease (PD), and its accumulation 

results in synucleinopathies that include PD, dementia with Lewy bodies (DLB) and multiple 

system atrophy (MSA). Furthermore, α-synuclein contributes to the fibrilization of amyloid-β 
and tau, two key proteins in Alzheimer’s disease, which suggests a central role for α-synuclein 

toxicity in neurodegeneration. Recent studies of factors contributing to α-synuclein toxicity and 

its disruption of downstream cellular pathways have expanded our understanding of disease 

pathogenesis in synucleinopathies. In this Review, we discuss these emerging themes, including 

the contributions of aging, selective vulnerability and non-cell-autonomous factors such as α­

synuclein cell-to-cell propagation and neuroinflammation. Finally, we summarize recent efforts 

toward the development of targeted therapies for PD and related synucleinopathies.

α-synuclein (SNCA) is a 14-kDa protein that forms a major component of abnormal 

neuronal aggregates known as Lewy bodies (LBs)1. It is highly soluble and enriched 

at presynaptic terminals, where it binds lipids and regulates the release of synaptic 

vesicles2,3. N-terminal point mutations in α-synuclein (A30P, E46K, H50Q, G51D, A53E 

and A53T)4–10 and genomic duplications or triplications that contain the α-synuclein locus 

result in autosomal dominant forms of familial PD11,12. In addition, multiple genome-wide 

association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) in α­

synuclein as risk factors that increase susceptibility to sporadic PD13,14. Among these SNPs 

is a risk variant in a noncoding distal enhancer element of SNCA that leads to increased 

α-synuclein expression15. This genetic evidence helps to further highlight a crucial link 

between increased α-synuclein levels and PD pathogenesis.

α-synuclein also accumulates in other synucleinopathies, including dementia with Lewy 

bodies (DLB), multiple system atrophy (MSA)16,17 and various lysosomal-storage 

disorders, such as Gaucher’s disease18 (Table 1). Importantly, α-synuclein regulates the 

fibrilization of both amyloid-β (aβ) and tau, two key proteins in Alzheimer’s disease 
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(AD) pathophysiology19–23. Thus, delineation of the downstream effects and factors that 

contribute to α-synuclein toxicity will be crucial for assessing potential therapeutics for both 

synucleinopathies and AD.

In this Review, we present evidence for various routes to cellular dysfunction caused by 

α-synuclein toxicity, including synaptic dysfunction, mitochondrial impairment, defective 

endoplasmic reticulum (ER) function and autophagy–lysosomal pathway and nuclear 

dysfunction. We discuss additional factors that contribute to α-synuclein toxicity, including 

the role of aging, selective neuronal vulnerability, non-cell-autonomous factors such as 

α-synuclein propagation and the role of glia and neuroinflammation, and the interplay of 

α-synuclein with aβ and tau. Finally, we compare therapeutic strategies currently being 

developed to target α-synuclein and minimize its toxicity in disease.

α-synuclein in neurodegenerative diseases

α-synuclein has been implicated in several diseases, which we discuss here to give an 

impression of the broad reach of its pathogenesis.

In PD, dopaminergic neurons in the substantia nigra pars compacta (SNc) degenerate, 

which results in dopamine loss in the basal ganglia, an area of the brain responsible for 

coordinating fine motor control, which ultimately leads to the onset of clinical Parkinson’s 

symptoms such as bradykinesia, muscular rigidity, resting tremors and postural instability24. 

α-synuclein accumulates in sporadic PD in neuronal cell bodies and processes to form 

Lewy bodies and Lewy neurites in the brain, spinal cord and peripheral nervous system24. 

However, Lewy pathology is also observed in a subset of neurologically healthy patients 

(in a condition called incidental Lewy body disease), which indicates that additional 

factors other than Lewy pathology alone might be required for α-synuclein’s toxicity in 

patients25. α-synuclein locus duplication results in autosomal dominant forms of PD with 

late onset (~60 years), typical of patients with sporadic PD. By contrast, α-synuclein locus 

triplication leads to early PD onset (<40 years)11, demonstrating that increased α-synuclein 

levels accelerate PD pathogenesis. Of note, patients with familial PD who have mutations 

in other PD-associated genes, such as leucine-rich repeat kinase 2 (LRRK2), can also 

develop Lewy body pathology26–28. LRRK2 overexpression was initially found to accelerate 

neuropathology progression in α-synuclein A53T mice (tetO-A53T), whereas LRRK2 
depletion delayed its progression29. Subsequent studies demonstrated that LRRK2 knockout 

or inhibition prevented α-synuclein-induced neurodegeneration in animal models30,31, and 

mutated LRRK2 increases α-synuclein levels and its recruitment into neuronal inclusions32, 

which further suggests potential functional interplays between α-synuclein toxicity and 

other PD-associated genes.

Patients with MSA develop autonomic failure, as well as parkinsonism and cerebellar ataxia, 

as a result of respective striatonigral and olivopontocerebellar degeneration33. In contrast 

to individuals with PD, patients with MSA develop cytoplasmic α-synuclein inclusions in 

oligodendrocytes. Notably, various α-synuclein mutations result in both Parkinson’s and 

MSA symptoms33.
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Parkinson’s disease with dementia (PDD) and DLB occurs in patients who first present with 

parkinsonism or dementia, respectively, which is followed by onset of other symptoms34. 

A subset of patients with PDD or DLB develop α-synuclein Lewy pathology and amyloid 

plaques, although a greater plaque load has been reported in DLB than in PDD34, which 

suggests an intimate link between α-synuclein and aβ toxicity. This contributes to a disease 

spectrum that ranges from PD with α-synuclein pathology to PDD and DLB with mixed 

pathology and AD with aβ pathology.

AD is the leading cause of dementia and involves progressive memory loss and 

cognitive impairment coupled with neurodegeneration of various brain regions, including 

the hippocampus35. In patients with AD, the microtubule-binding protein tau is 

hyperphosphorylated and accumulates into intracellular tangles, whereas aβ, an extracellular 

fragment cleaved from amyloid precursor protein (APP), accumulates into extracellular 

plaques35. Notably, elevated soluble α-synuclein levels have been observed in the AD­

afflicted brain and are correlated with cognitive decline36.

Lysosomal storage disorders (LSD) such as Gaucher’s disease have also been linked to 

α-synuclein toxicity. Gaucher’s disease is caused by mutations in GBA1, which encodes 

glucocerebrosidase (GCase), a lysosomal hydrolase that converts glucosylceramide into 

ceramide and glucose37. Patients with Gaucher’s disease develop thrombocytopenia, anemia, 

hepatosplenomegaly and bone pain, and seizures and cognitive impairment occur in more 

severe neuropathic forms. Importantly, some patients develop parkinsonism coincident with 

α-synuclein Lewy body pathology37, and mutations in GBA1 are a risk factor for the 

development of PD38. Recently, several other LSDs, including Sanfilippo syndrome, GM2 

gangliosidosis and Niemann–Pick type C, have also been shown to demonstrate α-synuclein 

pathology18.

Finally, neurodegeneration with brain iron accumulation (NBIA) is a collection of genetic 

diseases involving iron accumulation in the globus pallidus and substantia nigra, resulting in 

parkinsonism, spasticity and dystonia. To date, patients with mutations in the mitochondrial 

membrane protein C19orf12 and the A2 phospholipase PLA2G6 have confirmed Lewy body 

and neurites. In addition, mutations in ATP13A2 (also known as PARK9), a lysosomal 

ATPase present in Lewy bodies, also contribute to NBIA, juvenile onset parkinsonism, 

dementia and neuronal ceroid lipofuscinosis (NCL)39.

Pathways implicated in α-synuclein toxicity

α-synuclein is intrinsically disordered40 and forms multiple conformations, including 

amyloidogenic oligomers41. α-synuclein contains three distinct regions3: an amino-terminal 

lipid-binding region, a recently crystalized central NAC (non-amyloid-β component) 

hydrophobic region42, which contributes to its oligomerization, and an intrinsically 

disordered carboxy-terminal (Box 1).

Although α-synuclein normally localizes to the presynaptic terminal, its oligomers and 

aggregates localize throughout the cell body and neurites, which suggests that α-synuclein 

might disrupt cellular function beyond the presynaptic terminal. Indeed, multiple organelles 
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are implicated in α-synuclein toxicity, including synaptic vesicles, mitochondria, ER and 

Golgi, lysosomes and autophagosomes and the nucleus (Fig. 1). Moreover, interorganelle 

contacts and organelle axonal transport are also disrupted by α-synuclein toxicity.

Synaptic-vesicle trafficking.

α-synuclein normally localizes to the presynaptic terminal, where it associates with synaptic 

vesicles43,44, binds membranes45 and induces membrane curvature46. α-synuclein regulates 

soluble NSF attachment protein receptor (SNARE) complex assembly47 by binding 

the SNARE protein synaptobrevin-2/vesicle-associated membrane protein 2 (VAMP2) to 

promote synaptic-vesicle fusion at the presynaptic terminal2. It also potentially regulates 

additional steps during synaptic-vesicle trafficking48–52.

Large α-synuclein oligomers preferentially bind VAMP2 and disrupt SNARE complex 

formation, dopamine release53 and synaptic-vesicle motility54, and increased α-synuclein 

levels disrupt neurotransmitter release via decreased synaptic-vesicle recycling-pool size55 

and mobility50. Thus, it has been proposed that α-synuclein’s normal function might be 

disrupted in synucleinopathies. By contrast, other studies have suggested that α-synuclein’s 

physiological role at the synapse is not altered in disease, and have found that α-synuclein 

oligomers actually promoted SNARE assembly56, and that PD-linked mutations (except 

the lipid-binding-deficient A30P mutation) does not disrupt SNARE assembly57 or synaptic­

vesicle clustering51.

Elevated levels of α-synuclein might also disrupt dopamine neurotransmission. Mice lacking 

α-synuclein show increased dopamine release from nigrostriatal terminals58, although α­

synuclein deletion does not affect cytosolic dopamine levels59. Conversely, transgenic mice 

overexpressing human α-synuclein show dopaminergic terminal loss60, deficient dopamine 

release and altered synaptic-vesicle distribution61. Increased α-synuclein expression has also 

been linked to a reduction in dopamine reuptake and defective dopamine transporter (DAT) 

function62, which suggests several potential mechanisms through which α-synuclein might 

disrupt dopamine turnover.

Mitochondrial function.

Mitochondria are crucial for ATP synthesis, calcium storage, lipid metabolism and neuronal 

survival63. α-synuclein toxicity might directly disrupt mitochondrial homeostasis, given 

that mice with A53T α-synuclein mutations have increased mitochondrial DNA damage64 

and mitophagy65,66, and increased α-synuclein levels promote dynamin related protein 1 

(DRP1)-independent mitochondrial fission in cell lines and mouse models overexpressing 

α-synuclein67,68. Interestingly, in mice lacking α-synuclein, 1-methyl-4-phenyl-1,2,3,6­

tetrahydropyridine (MPTP)-induced degeneration of dopaminergic neurons is prevented69, 

potentially because α-synuclein oligomers promote mitochondrial dysfunction via increased 

calcium uptake70. Post-translationally modified species of α-synuclein have also recently 

been suggested to disrupt mitochondrial function by impairing mitochondrial protein 

import71. By contrast, mitochondrial dysfunction might also be induced indirectly by α­

synuclein toxicity via decreased levels of the mitochondrial biogenesis factor PGC-1α. 

This has been observed in cell models that express oligomeric α-synuclein, mice that 
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express A30P α-synuclein72 and the brains of patients with PD, whereas PGC-1α activation 

rescued neuronal loss induced by mutant α-synuclein73. Dopaminergic α-synuclein induced 

pluripotent stem cell (iPSC) models of PD also display inhibition of the MEF2C–PGC-1α 
mitochondrial transcription network via increased S-nitrosylation of transcription factor 

MEF2C (ref. 74).

Endoplasmic reticulum and Golgi function, and the endocytic pathway.

The endoplasmic reticulum (ER) is essential for protein folding, trafficking to the Golgi, 

calcium buffering and the unfolded protein response (UPR). Both wild-type and mutant 

α-synuclein disrupt ER to Golgi trafficking in yeast75 and induce ER stress and early 

secretory-pathway dysfunction, which is rescued by certain Rab GTPases such as RAB1, 

RAB3A or RAB8A (refs. 76,77). Increased α-synuclein expression also disrupts endosomal 

transport events via the E3 ubiquitin ligase yeast RSP5 and its mammalian homologue 

NEDD4 and endosomal transport can be rescued by the drug N-aryl benzimidazole78,79. 

Moreover, α-synuclein accumulation disrupts GCase trafficking in PD iPSCs and patient 

brains; this leads to reduced GCase lysosomal activity80, which in turn might be mediated by 

the aberrant association of α-synuclein with cis-Golgi–tethering factor GM130 and RAB1A 

mislocalization81 or by inhibiting ER to Golgi formation via the R-SNARE ykt6 (ref. 82). 

Notably, DAT trafficking is also disrupted upon α-synuclein overexpression83. Increased 

α-synuclein levels also raise cytoplasmic calcium levels, which leads to the activation of 

a toxic calmodulin–calcineurin cascade84,85 and suggests that calcium buffering in the ER 

might be disrupted by α-synuclein. Finally, α-synuclein has been proposed to bind the ER 

chaperone GRP78 (also known as BIP)86 and interfere with ER folding machinery, which is 

ameliorated in α-synuclein transgenic mice by decreasing ER stress87,88.

Autophagy or lysosomal pathway.

Autophagy is a dynamic pathway involved in the degradation of damaged organelles and 

protein aggregates89. α-synuclein overexpression disrupts ER to Golgi trafficking of the 

autophagic transmembrane protein ATG9 and decreases the formation of omegasomes, 

a precursor for autophagosome biogenesis90. In chaperone-mediated autophagy (CMA), 

A53T and A30P α-synuclein bind the lysosomal receptor LAMP2A more tightly than wild­

type α-synuclein, which prevents their own degradation and cargo loading of other CMA 

substrates into lysosomes91. In addition, dopamine-modified α-synuclein also blocks CMA, 

which might contribute to selective dopaminergic vulnerability in PD92. In neuronal models 

incubated with α-synuclein preformed fibrils (pffs), autophagosomes formed normally 

but had defective lysosomal fusion and autophagic cargo accumulation93, potentially 

owing to defective autophagosome axonal transport94. Finally, because efficient autophagic 

degradation relies on lysosomal enzymatic activity, the lysosomal activity of multiple 

enzymes, including GCase, cathepsin B, β-galactosidase and hexosaminidase, is reduced 

in α-synuclein triplication PD iPSCs as compared to control iPSCs as a result of defective 

ER-to-Golgi trafficking80,81,95.

Nuclear function.

Although α-synuclein was also originally localized to the nucleus96, this finding has 

since been up for debate, potentially because of the use of different antibodies against 
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cleaved forms of α-synuclein (Box 1). The targeting of α-synuclein to the nucleus 

has been proposed to be regulated by the nuclear protein TRIM28 (ref. 97) and to 

inhibit histone acetylation98. Moreover, PD-associated mutations (A30P, A53T and G51D) 

in α-synuclein demonstrate increased nuclear localization as compared to wild-type α­

synuclein98,99. Altered activation of various transcription factors has also been observed, 

including decreased activation of the mitochondrial biogenesis factor PGC-1α in α­

synuclein A53T PD-patient-derived iPSC neurons and PD-afflicted substantia nigra72–74; 

decreased activation of the autophagy–lysosomal pathway transcription factor TFEB in rats 

overexpressing α-synuclein via adeno-associated virus (AAV)100; and increased activation 

of nuclear factor of activated T cells (NFAT) via calcineurin activation in cell lines that 

overexpress wild-type or A53T α-synuclein, in dopaminergic neurons from α-synuclein 

transgenic mice and in brains of patients with PD or DLB84,85.

Disruption of inter-organelle contacts.

In the past few years, multiple inter-organelle contacts have emerged as sites of cellular 

homeostatic regulation. One such site is the mitochondria-associated ER membrane (MAM), 

a subdomain of the ER tethered to mitochondria via a group of adaptor proteins, which 

serves as a critical site for autophagosome biogenesis, mitochondrial fission, calcium 

homeostasis, phospholipid transport and fatty acid and cholesterol transfer101. Two recent 

studies have implicated the MAM in α-synuclein toxicity with opposing conclusions; one 

of these studies found increased numbers of MAM contact sites, resulting in increased 

mitochondrial calcium uptake from the ER upon α-synuclein overexpression102, whereas the 

other study identified α-synuclein in MAM fractions and saw decreased numbers of MAM 

contact sites upon wild-type, A53T or A30P α-synuclein overexpression103. However, in 

both reports, mitochondrial fragmentation was observed. Thus, further studies to reconcile 

these differences, as well as experiments in neurons, will be crucial for understanding the 

interaction of α-synuclein with MAMs, as well as the role of other inter-organelle contacts 

in the context of α-synuclein toxicity.

Misregulation of organelle dynamics.

The majority of studies on α-synuclein cellular toxicity have been performed at steady 

state. However, organelles are highly dynamic and undergo axonal transport, fission and 

fusion events and maturation, and are intricately regulated by numerous signaling pathways 

mediated by phosphorylation, Rab GTPase activity, calcium signaling and electrical activity. 

Recently, α-synuclein fibrils were found to impair the axonal transport of autophagosomes 

and RAB7- and TrkB-receptor-positive endosomes, but not the transport of synaptophysin 

or mitochondria, which suggests that α-synuclein does not cause a generalized defect 

in axonal transport94. This may be partially due to decreased levels of axonal transport 

proteins in patients with sporadic PD when compared to age-matched controls104 or 

decreased microtubule stability and kinesin-dependent cargo mobility, as observed in 

cellular models expressing α-synuclein oligomers105. Transport defects might also be 

mediated by interactions of α-synuclein with tau, a microtubule-binding protein that 

stabilizes and promotes microtubule assembly20,23. Neuronal exposure to extracellular 

α-synuclein also disrupts actin turnover and actin waves along axons, owing to cofilin 

inactivation106. By contrast, very little work has examined α-synuclein’s regulation of 
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vesicle fission and fusion and maturation dynamics in neurons, which suggests that further 

investigation of these processes might advance our understanding of α-synuclein’s role in 

neurodegeneration.

Understanding cellular dysfunction in α-synuclein toxicity

Numerous reports have described multiple pathways of cellular dysfunction in models 

of α-synuclein toxicity. Why have these different pathways been implicated thus far in 

α-synuclein toxicity?

One possibility is that distinct pathways might be affected in different synucleinopathies. 

The pathways affected in familial PD caused by α-synuclein mutations might not be 

identical to those disrupted by other PD-associated genes or in sporadic PD, and may be 

different from those involved in MSA or LBD. These differences might be exacerbated 

by differences in α-synuclein strain characteristics, specific cell types affected and diverse 

protein interactions.

Moreover, multiple pathways could be affected in synucleinopathies at different time points 

of disease progression. Some pathways may be disrupted early in disease (presymptomatic) 

versus late stage (post-symptomatic), whereas others might be compensating for dysfunction 

in other pathways. In addition, different pathways might have different rates of dysfunction, 

which may initially be below detection until the cell has already degenerated. Furthermore, 

additional factors, such as aging and genetic variability, might also affect when and which 

pathways become dysfunctional.

Finally, the differences in cellular-pathway defects observed across studies might also be 

in part due to differences in the experimental model of α-synuclein toxicity. α-synuclein 

toxicity is commonly modeled by the overexpression of wild-type α-synuclein, expression 

of PD-linked α-synuclein mutations, injection or incubation with α-synuclein preformed 

oligomers or fibrils or targeted expression of α-synuclein using AAV. These studies 

are further complicated by differences in the choice of cell type (non-neuronal versus 

neuronal versus glial), animal model (human versus mouse versus rat) and time point of 

analysis (2 d versus 200 d versus 2 years). Indeed, using different models of α-synuclein 

toxicity, different steps in the autophagic pathway have been found to be disrupted, 

including autophagosome formation90, cargo loading in CMA91, autophagosome fusion 

with lysosomes and axonal transport93,94, and lysosomal degradative function78,80,107. 

Moreover, small changes in experimental preparation of α-synuclein oligomers or fibrils can 

lead to strain differences (Box 1) with distinct seeding, propagation and toxicity-inducing 

capabilities20,108, which further contributes to potential differences in observed cellular 

dysfunction. Mouse models of α-synuclein toxicity enable analysis of functional neuronal 

circuitry, but they do not exhibit accumulation of neuromelanin, a dark pigment that consists 

of oxidized catechols such as dopamine, which is a key feature of human SNc dopaminergic 

neurons. By contrast, dopaminergic neurons differentiated from human iPSCs allow for the 

study, over hundreds of days, of patient-derived cells with endogenous levels of α-synuclein, 

but lack the complex connections of an intact basal ganglia circuitry. Thus, understanding 

the capabilities of each model and characteristics such as which synucleinopathy and which 
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stage of the disease it most accurately reflects will be crucial for designing and interpreting 

future studies on α-synuclein toxicity.

Steps to α-synuclein toxicity

Although multiple cellular pathways have been implicated downstream of α-synuclein 

toxicity, several contributing factors might be crucial for the spread, extent and onset of 

α-synuclein toxicity. Indeed, human postmortem studies have shown that a subset of the 

population (10–20%) exhibits incidental Lewy body disease but presents as neurologically 

normal25, so the contributing factors that we discuss below might be crucial for determining 

which patients will become symptomatic, as well as influence their age of disease onset 

and rate of disease progression. Of note, different conformations of α-synuclein, as well as 

differences between α-synuclein strains, might further influence the toxicity of α-synuclein 

(Box 1). Finally, additional pathways have also been implicated in the augmentation of 

α-synuclein toxicity in Drosophila and mouse models, including loss of the molecular 

chaperone HSP70 (ref. 109) and presynaptic scaffold protein septin 4 (ref. 110), histone 

deacetylase sirtuin 2 activation111 and α-synuclein S129 phosphorylation112.

Aging.

Aging is the greatest risk factor for multiple neurodegenerative diseases, partially owing 

to decreased organelle function. Substantia nigra neurons demonstrate higher levels of 

mitochondrial DNA (mtDNA) deletion with age, which causes mitochondrial dysfunction 

via respiratory-chain deficiency113. Proteasome dysfunction in multiple cell types, including 

neurons, also increases with age owing to disassembly of proteasomes and decreased 

proteasome subunit expression114, and autophagy is less efficient with age because of 

decreased levels of autophagy proteins such as beclin 1, ATG5 and ATG7 in human brains89. 

These defects might further contribute to α-synuclein toxicity because defective protein 

degradation accelerates α-synuclein accumulation. Indeed, α-synuclein levels increase with 

age in the human substantia nigra115,116.

Oxidative stress also increases with age117, which contributes to pathogenic modifications 

of α-synuclein, such as nitration of tyrosine residues, which have been observed in the 

brains of patients afflicted with PD, DLB and MSA118. Importantly, α-synuclein nitration 

promotes its aggregation119 and decreases its lipid-binding ability120. In dopaminergic 

neurons, autophagic vesicles containing lipofuscin and neuromelanin, generated by iron­

catalyzed oxidation and oxidized catecholamines, respectively, accumulate with age121. α­

synuclein has been proposed to associate with the lipid component of neuromelanin in SNc 

dopaminergic neurons to promote its own aggregation122. However, given that neuromelanin 

may be neuroprotective by sequestering oxidized catecholamines, it remains unclear whether 

α-synuclein’s interaction with neuromelanin is beneficial.

Selective vulnerability.

Synucleinopathies are a diverse group of diseases with disparate affected cell types, 

including SNc dopaminergic neurons in PD, oligodendrocytes in MSA and cortical neurons 

in LBD. This suggests that cell-autonomous factors might further augment α-synuclein 
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toxicity in different populations. Identifying these factors for different cellular populations 

could thus facilitate targeted treatment development for specific synucleinopathies.

In PD, multiple cellular populations are lost, including neuromelanin-positive catecholamine 

neurons in the SNc and locus coeruleus, dorsal motor nucleus of the vagus neurons 

in the majority of patients and norepinephrine and dopaminergic neurons in the enteric 

nervous system123. Lewy body pathology is present but not limited to these regions, and 

has been proposed to progress through the brain in a caudo-rostral fashion124. Factors 

that might contribute to the susceptibility of these populations include the use of a 

monomamine neurotransmitter, highly branched axons with multiple release sites and 

increased excitability owing to autonomous pacemaking with low intrinsic calcium buffering 

abilities123.

Specifically, dopamine might also enhance α-synuclein toxicity, because dopamine adducts 

stabilize α-synuclein protofibrils125 by inhibiting α-synuclein aggregation and promoting 

oligomer formation126,127. Moreover, lowering cytosolic dopamine in cultured midbrain 

neurons is neuroprotective, and dopaminergic neurons lacking α-synuclein are resistant 

to L-DOPA-induced cell death59. Additionally, neuromelanin, a downstream product of 

oxidized dopamine, might be toxic, given that neuromelanin-containing neurons are lost in 

PD128. Neuromelanin is a homeostatic byproduct of increased oxidation and catecholamine 

adducts. However, in cases of excessive oxidation, elevated levels of neuromelanin 

accumulation in neurons might also contribute to neurodegeneration.

In addition, given that L-DOPA increases dopamine levels and is used to treat PD, and that 

A10 dopaminergic neurons from the ventral tegmental are spared in PD, dopamine alone 

might not be sufficient to cause degeneration in the context of α-synuclein toxicity during 

PD. SNc A9 dopaminergic neurons lost in PD might be more susceptible than A10 neurons 

owing to their increased cytosolic calcium levels59, which drive dopamine metabolism and 

increase cellular metabolism. Of note, SNc degeneration in PD might also be mediated 

by non-cell-autonomous mechanisms, such as the expression of cytokines (e.g., interferon 

(IFN)-γ)129.

In MSA, α-synuclein preferentially accumulates in oligodendrocytes, but whether this 

occurs in a cell-autonomous manner or results from neuronal release and subsequent 

oligodendrocyte uptake remains unclear. Transgenic mice overexpressing α-synuclein 

in oligodendrocytes undergo degeneration and myelin autophagocytosis130. Selective 

vulnerability of oligodendrocytes in MSA might be mediated by the accumulation and 

binding of p25α, an oligodendrocyte-specific protein, to aggregated α-synuclein131, or by 

decreased glial-derived neurotrophic factor (GDNF) levels132.

Cell-to-cell spreading of α-synuclein.

α-synuclein spreading was observed initially from host human PD-afflicted brains into 

grafted nigral neurons over a decade after transplantation133,134. Subsequently, α-synuclein 

transmission via endocytosis to neighboring neurons was observed in cell culture and mouse 

models135. Exogenous introduction of human α-synuclein fibrils recruited endogenous α­

synuclein to form Lewy body–like pathology in human cell lines136 and mouse neurons137. 

Wong and Krainc Page 9

Nat Med. Author manuscript; available in PMC 2021 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Studies in vivo subsequently found that mouse α-synuclein fibril inoculation into wild­

type mouse brains caused Lewy pathology propagation and progressive dopaminergic 

SNc loss138. α-synuclein intramuscular injection also induced Lewy pathology139 and 

demonstrated efficient crossing of the blood–brain barrier140, and injection into the olfactory 

bulb also mimicked the sequential progression of Lewy-body-like pathology141.

One potential mechanism for α-synuclein secretion is exosome release142, which is 

increased upon the expression of ATP13A2 via increased exosome biogenesis143,144; 

RAB11 expression145; and in a calcium-dependent manner upon thapsigargin treatment146. 

α-synuclein spreading might also involve clathrin-mediated endocytosis147, lymphocyte­

activation gene 3 (LAG3)-mediated endocytosis148 or lysosomal vesicles traveling 

through tunneling nanotubes149. Importantly, protein spreading might occur in multiple 

neurodegenerative diseases because neurons are particularly vulnerable to protein 

propagation owing to their extensive anatomical connections150. However, various issues 

remain unaddressed, including whether the spreading of Lewy body pathology is required 

for clinical symptoms, the relevance of using elevated fibril concentrations to induce 

spreading in various models and the heterogeneity of Lewy body pathology across PD 

cases that do not always follow the stereotypical caudo-rostral progression151. Thus, the 

role, timing and mechanisms of α-synuclein propagation remain to be further investigated in 

the context of cellular pathogenesis.

Glia and neuroinflammation.

The role of glia (oligodendrocytes, astrocytes and microglia) has been increasingly studied 

in the context of neurodegeneration in recent years. However, although α-synuclein 

accumulates in oligodendrocytes in MSA, whether oligodendrocyte dysfunction occurs in 

other synucleinopathies has not been well characterized. Similarly, astrocyte involvement 

in α-synuclein toxicity has not been clearly elucidated, although astrocytes can take up 

neuronally released α-synuclein via endocytosis, which leads to gene expression changes 

that are indicative of an inflammatory response152.

Microglial activation has been observed both in patients with PD153 and those with MSA154, 

which suggests that neuroinflammation might contribute to the pathogenesis of α-synuclein­

mediated toxicity. Indeed, neuroinflammation has been observed in multiple animal models 

of α-synuclein toxicity155–158 and might be mediated by microglial expression of the major 

histocompatibility complex (MHC) II, a key regulator of the immune response, given 

that MHCII depletion reduces microglial activation and dopaminergic neurodegeneration 

in mouse models of α-synuclein toxicity159. Increased α-synuclein expression also increases 

toll-like receptor (TLR)-4 immunoreactivity in mouse models of MSA154.

Various mechanisms have been proposed through which α-synuclein might induce a 

neuroinflammatory response. Extracellular α-synuclein released from neurons has been 

found to be an endogenous agonist for TLR2, leading to microglial activation160, whereas 

oligomeric α-synuclein has been proposed to directly bind the heterodimer TLR1/2 on the 

cell membrane to induce a proinflammatory response dependent on myeloid differentiation 

primary response gene 88 (MyD88) (ref. 161). α-synuclein has also been suggested 

to be a chemoattractant that promotes microglial migration162, and proinflammatory 
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responses to α-synuclein toxicity might be additionally mediated by the microRNA-155 

(miR-155)163. Finally, dopaminergic neurons in PD might be particularly susceptible 

to immunomodulation, because mice lacking cytokine IFN-β develop spontaneous 

neurodegeneration of dopaminergic neurons, motor and cognitive impairments and Lewy 

body pathology164, and genetic polymorphisms in the locus of HLA-DR—a component 

of MHCII—have been linked to late-onset sporadic PD165. Further studies on the role of 

neuroinflammation and microglial activation in α-synuclein toxicity will thus be important 

for understanding α-synuclein pathophysiology and might additionally contribute to the 

development of future therapeutics for synucleinopathies.

Interplay of α-synuclein with aβ and tau.

Lewy body pathology is observed in about half of patients with AD, and soluble 

α-synuclein levels are increased in AD-afflicted brains and correlated with cognitive 

decline36, which suggests that α-synuclein might contribute to hippocampal and cholinergic 

neurodegeneration in AD. Early studies using doubly transgenic mouse models found that 

aβ enhanced α-synuclein fibrilization both in vitro and in vivo22, and that α-synuclein 

promoted aβ 1–38 aggregation upon coincubation in vitro21. By contrast, injection of 

α-synuclein fibrils into transgenic mouse models of AD failed to cross-seed aβ in vivo, 

and mice co-expressing α-synuclein A30P actually inhibited plaque formation in transgenic 

mutant amyloid precursor protein (APP) and presenilin 1 (PS1) mice19. These intriguing 

findings suggest that in contrast to α-synuclein’s ability to cross-seed both itself and tau, 

α-synuclein suppresses aβ deposition and reduces plaque formation in vivo. Further studies 

will thus be crucial for examining whether α-synuclein directly interacts with aβ and 

whether preventing aβ aggregation increases the levels of toxic aβ oligomers and contributes 

to neuronal dysfunction, despite a reduction in plaque formation.

Interestingly, tau has previously been identified as a PD risk factor13. α-synuclein and tau 

cross-seed one another, and their coincubation leads to the fibrilization of both proteins20,23. 

Misexpression of α-synuclein and tau in Drosophila leads to neuronal dysfunction and 

axonal transport defects166, and α-synuclein oligomers potentially impair microtubule 

assembly105. However, the precise role of the interplay between tau and α-synuclein in 

disease and the downstream cellular dysfunction that may occur remain to be further 

investigated.

Future questions in α-synuclein research

Multiple pathways and contributing factors have been investigated in the context of α­

synuclein toxicity. However, several crucial questions remain unanswered in this field:

What are the precise mechanisms through which α-synuclein disrupts cellular pathways?

At the synapse, the pathological role of α-synuclein still remains controversial as to 

whether α-synuclein toxicity involves a loss of its physiological function at the synapse. 

Furthermore, the exact steps of synaptic-vesicle trafficking that are disrupted in disease, 

whether synaptic defects preferentially affect specific neuronal subpopulations and how 

pathogenic forms of α-synuclein interact with synaptic-vesicle machinery still remain 
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unclear. In addition, whether α-synuclein affects mitochondrial function directly by 

interacting with mitochondrial lipids and proteins or indirectly through other organelles 

is also unknown. Similarly, α-synuclein has been shown to disrupt multiple ER functions, 

including Golgi trafficking and calcium buffering, but the precise mechanisms through 

which α-synuclein interacts with ER proteins to induce these defects also remain unclear. 

Finally, as previously mentioned, few studies have examined the effect of α-synuclein 

toxicity on inter-organelle contacts or the live-cell dynamics of organelles. Thus, studies 

investigating α-synuclein’s cellular localization, dynamics and interaction partners will be 

important for advancing our understanding of the basic cellular mechanisms through which 

α-synuclein disrupts organelle function.

Which cellular pathways are disrupted earliest in synucleinopathies?

This might depend on both the type of synucleinopathy and on genetic heterogeneity 

between patients, which could leave different pathways more susceptible to dysfunction. 

PD-linked mutations and risk factors cluster predominantly around endolysosomal proteins 

(LRRK2, ATP13A2 and GCase) and mitochondrial proteins (parkin, PINK1 and DJ-1), 

which suggests that α-synuclein might mediate the convergence between endolysosomal 

and mitochondrial pathway dysfunction in PD, and that these pathways might be disrupted 

early on in disease progression. Importantly, identifying which pathways are affected 

earliest in disease will be highly valuable for therapeutic development. For example, if 

decreased mitochondrial biogenesis due to decreased PGC-1α activation is an early step in 

α-synuclein-induced toxicity, activators of PGC-1α might be important for reducing cellular 

dysfunction. By contrast, if decreased mitochondrial biogenesis occurs as a compensatory 

response to inefficient lysosomal degradation, the activation of PGC-1α could potentially 

exacerbate α-synuclein toxicity at later stages. Thus, future studies examining organelle 

dynamics and function in living cells over extended periods of time will be crucial to 

confirm the order of cellular pathway dysfunction in PD and other synucleinopathies.

Which factors contribute to α-synuclein accumulation?

Genetic forms of PD exemplify the crucial role of α-synuclein dosage on its toxicity, 

because both α-synuclein locus duplication and triplication lead to familial PD11,12. In these 

cases, α-synuclein accumulation is a known starting cause of pathophysiology, and targeting 

α-synuclein directly or potential downstream pathways might be beneficial. By contrast, 

in sporadic forms of PD and other synucleinopathies, α-synuclein ultimately accumulates 

into Lewy bodies even without mutations or increased dosage levels of α-synuclein, 

which suggests that upstream factors, such as oxidation, nitration, decreased proteasomal 

and/or lysosomal function, increased dopamine adducts or interplay with aβ and tau 

might contribute to α-synuclein accumulation. Furthermore cell-to-cell spreading involving 

neurons and/or glia might further contribute to the accumulation of α-synuclein in specific 

cellular subtypes, such as SNc dopaminergic neurons in PD or oligodendrocytes in MSA. 

Importantly, different factors might be more important in different synucleinopathies, or a 

combination of factors might be necessary to trigger initial α-synuclein accumulation. In 

these cases, targeting upstream factors that lead to α-synuclein accumulation would be most 

effective, and could even be preventive if targeted during prodromal stages before clinical 

onset. Finally, a subset of familial forms of PD linked to genes other than that encoding 
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α-synuclein also results in α-synuclein accumulation, which suggests that mutations in 

these genes might exacerbate the role of the upstream factors previously mentioned, or 

alternatively, might lead to α-synuclein accumulation through an independent pathway 

specific to that gene. Thus, understanding the nuances and the role that each factor has in 

different synucleinopathies and across patient populations will be crucial for informing our 

knowledge of α-synuclein toxicity in disease.

Therapeutically targeting α-synuclein in neurodegeneration

Various studies have targeted α-synuclein directly at various stages of its synthesis and 

action as a potential therapeutic intervention (Fig. 2). In addition, there are other therapeutic 

approaches currently in clinical trials that target contributing factors to α-synuclein toxicity, 

such as the selective vulnerability of A9 SNc dopaminergic neurons in PD using the 

calcium-channel blocker isradipine, which may also prove to be successful for treating 

synucleinopathies.

Reducing α-synuclein synthesis.

Given that increased α-synuclein expression causes familial PD, several studies have aimed 

to decrease its synthesis by using siRNA that targets α-synuclein mRNA. In mice, direct 

siRNA infusion decreases hippocampal and cortical α-synuclein levels for a week after 

infusion167, whereas in mice expressing a human form of α-synuclein, injecting siRNA­

containing exosomes decreases protein aggregation in the SNc168. Given that antisense 

oligonucleotide (ASO)-mediated therapies are being tested in clinical trials currently as 

potential therapeutics for other neurodegenerative diseases, ASO targeting of α-synuclein 

may also be effective.

Increasing α-synuclein protein degradation.

Another mechanism for targeting α-synuclein involves increasing its lysosomal and/or 

autophagic degradation. Indeed, α-synuclein degradation is regulated by SIAH169 and 

NEDD4 (ref. 170) ubiquitin ligases, S129 phosphorylation by polo-like kinase 2 (PLK2)171 

and activation of lysosomal cysteine cathepsins172. Overexpression of the lysosomal 

transcription factor TFEB in rats expressing α-synuclein decreases α-synuclein oligomer 

levels and prevents lysosomal dysfunction decline and neurodegeneration100. Passive 

immunization of mice overexpressing α-synuclein by using antibodies against α-synuclein 

also promote its lysosomal clearance173 or target it into microglia, which rescues α­

synuclein-induced neurodegeneration and behavioral deficits174.

Another important therapeutic target that has emerged for α-synuclein degradation is GCase, 

because increased GCase levels enhance α-synuclein degradation in human neurons80. 

Importantly expression of GCase in the central nervous system reduces α-synuclein 

aggregation in a presymptomatic mouse model of Gaucher’s-related synucleinopathy mice; 

decreases soluble α-synuclein in mice expressing mutant human A53T α-synuclein175; 

and reduces α-synuclein accumulation and dopaminergic neurodegeneration in several 

rodent models of α-synuclein toxicity176,177. Recently, two noninhibitory GCase modulators 

(NCGC00188758 and NCGC607) were also found to increase GCase activity and decrease 
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α-synuclein accumulation and toxicity in human neurons derived from iPSCs107,178. 

Furthermore, patients with Gaucher’s disease who receive GCase enzyme replacement 

therapy (ERT) for more than 5 years have reduced oligomeric α-synuclein levels when 

compared with those who did not receive therapy179, which further confirms the validity of 

increasing GCase activity as a therapeutic approach. Finally, increased expression of other 

lysosomal proteins, including LIMP2 (ref. 180) and ATP13A2 (refs. 181,182), also promote 

α-synuclein degradation in various models, presenting additional targets for the acceleration 

of α-synuclein degradation.

Reducing α-synuclein aggregation.

Given that α-synuclein oligomers and fibrils are implicated in α-synuclein toxicity, several 

strategies have been attempted to reduce their formation. The porphyrin phtalocyanine 

tetrasulfonate binds and stabilizes vesicle-associated α-synuclein, which thus delays 

its misfolding and aggregation183. Passive immunization using a protofibril-selective 

antibody decreases soluble and membrane-bound α-synuclein protofibrils in the spinal 

cord and decreases motor dysfunction in mice expressing PD-associated mutant A30P 

α-synuclein184. In addition, if native α-synuclein exists predominantly as a tetramer, 

compounds that stabilize α-synuclein in this conformation—as has been applied for 

transthyretin, which misfolds in the multisystem disorder transthyretin-related amyloidosis

—might be effective at combating α-synuclein toxicity185. Several clinical trials are 

currently using small molecules186 to inhibit either α-synuclein aggregation (glycerol 

phenylbutyrate (University of Colorado, Denver); nilotinib (Georgetown University)) or 

α-synuclein oligomer formation (EGCG (University of Munich)).

Blocking α-synuclein propagation.

Because α-synuclein propagation may contribute to the spreading of α-synuclein toxicity, 

passive immunization studies to block spreading have also been performed. Antibodies 

against C-terminal truncated α-synuclein decrease its propagation in vitro and rescue motor 

and memory impairments in an α-synuclein mouse model187, and monoclonal α-synuclein 

antibodies prevent propagation and uptake of α-synuclein and rescue dopaminergic neuron 

loss and motor deficits in mice injected with α-synuclein pffs188. Importantly, understanding 

the role of propagation in disease will help to clarify whether these therapies will be 

successful for patients.

Active immunization.

Multiple studies have used active immunization to target α-synuclein. The first of these 

studies vaccinated human α-synuclein transgenic mice using human α-synuclein, which 

cleared α-synuclein aggregates, potentially via lysosomal pathways189. Subsequent studies 

have treated different α-synuclein transgenic mice with various forms of human α-synuclein 

antigen, with similar reductions in aggregates, improved motor and memory functions and 

reduced dopaminergic degeneration and dopamine loss186. Current PD and MSA clinical 

trials directly targeting α-synuclein involve active immunization with the vaccines PD01A 

and PD03A (AFFiRiS) for α-synuclein186 or passive immunization with antibodies against 

α-synuclein190, including PRX002 (Prothena) and BIIB054 (Biogen).
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Targeted drug development

Previous clinical trials for PD have focused predominantly on improving general cellular 

pathways to slow disease progression, such as correcting mitochondrial dysfunction and 

oxidative damage with coenzyme Q10 (ref. 191). However, these studies have been 

unsuccessful at slowing disease progression, potentially because of the absence of defined 

therapeutic molecular pathways and targets, heterogeneity within patient populations and 

a lack of relevant biomarkers as clear readouts for drug efficacy. Consequently, future 

clinical studies with well-defined therapeutic targets backed by an improved understanding 

of the basic cellular mechanisms behind disease pathophysiology and the pathways affected 

early in disease will be crucial for improving clinical trial outcomes, both in PD and other 

synucleinopathies.

Therapeutically targeting α-synuclein via GCase is one example of a well-defined molecular 

target; multiple studies have now shown that GCase activation promotes α-synuclein 

degradation both in vitro and in vivo192. Moreover, because GCase is an enzyme with 

well-characterized substrates, drugs that target GCase can be examined early on during 

the clinical trial for their efficacy by measuring GCase enzyme activity levels in plasma 

and cerebrospinal fluid (CSF) to show effective target engagement, as well as α-synuclein 

plasma and CSF levels as clear readouts of α-synuclein degradation rates and potential 

biomarkers for disease risk and progression193. Finally, further stratification of patient 

populations by well-characterized biomarkers, genetic screening and consistent clinical 

diagnostics before trial enrollment will also be important for producing a more homogenous 

patient population. Importantly, future work advancing our knowledge of α-synuclein 

toxicity as it relates to factors such as strain differences, propagation and interaction with 

other proteins such as aβ and tau may also influence future drug development and clinical 

trial design.

Targeting the immune system.

Finally, the role of neuroinflammation in α-synuclein toxicity has also received much 

attention recently, and multiple studies are now examining the effect of manipulating 

the immune system to reduce α-synuclein toxicity. Treatment with the hypertension 

drug Candesartan cilexetil inhibited TLR2 expression and reduced the proinflammatory 

response in vitro in microglia treated with oligomeric α-synuclein161. In rat models of 

α-synuclein toxicity, treatment with either the immunosuppressant FK506 or AZD1480, 

a JAK1/2 inhibitor of the JAK–STAT pathway important for microglial activation and 

cytokine expression, reduced dopaminergic neurodegeneration194,195. In addition, treatment 

with potentially anti-inflammatory drugs, including hypoestoxide (a NF-κB modulator) 

or lenalidomide (an NF-κB signaling inhibitor) reduced motor-behavior defects and 

microgliosis in α-synuclein transgenic mice196,197. Thus, immunomodulation might be an 

important regulator of α-synuclein toxicity and a potential therapeutic target in combination 

with direct targeting of α-synuclein.
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Conclusions and future directions

Two decades ago, α-synuclein was identified as the main component of Lewy bodies1 

and genetically linked to familial PD4. Since then, numerous studies have implicated 

multiple dysfunctional pathways in its toxicity, as well as contributing factors, including 

its propagation, strain differences and glial activation. Importantly, these findings have 

identified various routes by which to therapeutically target α-synuclein, ranging from active 

and passive immunization to the upregulation of lysosomal machinery.

Several key goals still remain, including the establishment of a timeline of cellular pathway 

dysfunction during the progression of different synucleinopathies, further characterization 

of toxic and native α-synuclein species in control and disease-afflicted human brains, 

the identification of the role of α-synuclein propagation versus cell-autonomous factors 

and investigation of the role of glia and neuroinflammation. Finally, because α-synuclein 

is intimately connected with the fibrilization of both aβ and tau—key proteins in AD 

pathogenesis—understanding the interplay between these three proteins in the context of 

propagation and cellular toxicity will be crucial for advancing our understanding of AD and 

synucleinopathies, and potentially, for identifying novel therapeutics that are relevant to both 

fields.
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Box 1

Understanding the many conformations of α-synuclein

Native conformations: monomer and tetramer.

α-synuclein is able to transition between multiple different conformations, including 

monomers, tetramers, higher-level oligomers (soluble conformations), fibrils (highly 

ordered insoluble conformations characterized by β-sheet conformation) and aggregates 

shown in a. Early work demonstrated that α-synuclein natively exists as a monomer40, 

and recent studies have used α-synuclein purified from mouse brain198 and analysis of 

mammalian cells199 to demonstrate a compact monomeric state for native α-synuclein, 

which helps to shield its non-amyloid-β component (NAC) region from spontaneous 

aggregation. In addition, α-synuclein has also been observed to exist as both metastable 

conformers and stable monomers200, as well as to form tetramers201,202 mediated by 

its KTKEGV repeats203. PD-linked α-synuclein mutations, including A53T and E46K, 

decrease its tetrameric and increase its monomeric conformation, which suggests that the 

unfolded monomer might be a source of α-synuclein toxicity185. Thus, multiple forms of 

native α-synuclein might exist physiologically, depending on its cellular localization and 

membrane interactions.

Forming toxic conformations: oligomers and fibrils.

Multiple studies have examined the factors that promote α-synuclein’s initial 

oligomerization. Polyunsaturated fatty acids increase α-synuclein oligomer levels, 

whereas saturated fatty acids decrease them204. In addition, a low amount of negatively 

charged lipids205, mildly acidic environments such as endosomes and lysosomes206, and 

lipid vesicles all promote α-synuclein oligomerization207. Upon formation, α-synuclein 

oligomers subsequently undergo conformational changes to become more stable and 

compact proteinase-K-resistant oligomers, which induce higher oxidative stress, before 

becoming fibrils208.

Several studies have now begun to investigate whether oligomers or downstream 

fibrils are the more toxic conformation. Some reports have suggested that oligomers 

are more toxic, because α-synuclein transgenic mice and PD- and DLB-afflicted 

patient brains showed increased levels of soluble, lipid-dependent α-synuclein oligomers 

when compared to controls204. α-synuclein PD-linked A53T and A30P mutations also 

accelerate oligomerization but not fibrilization209, and injection of α-synuclein variants 
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promoting oligomer rather than fibril formation into the rat brain causes more severe 

dopaminergic loss210.

By contrast, recent work has suggested that α-synuclein fibrils might be 1,000-fold 

more toxic than their precursors211, and injection of different human α-synuclein 

assemblies into rat SNc demonstrated that fibrils rather than ribbons or oligomers 

induced the greatest amount of motor impairment, dopaminergic cell loss and synaptic 

impairment140. Thus, further studying the role of different α-synuclein conformations, 

such as oligomers and fibrils, in disease will be helpful for understanding α-synuclein 

toxicity.

Differential strains.

Recent studies on α-synuclein have identified the existence of different strains, shown 

in b defined as conformational variants of α-synuclein—that exhibit distinct properties 

such as differences in structure and toxicity and ability to seed, propagate108 and cross­

seed tau fibrilization20. These strain differences can occur both naturally or result from 

nuances in experimental preparation of higher-level α-synuclein conformations (i.e., 

oligomers and/or fibrils). Differences in α-synuclein strains have also been observed 

across different species (such as human and mouse); human α-synuclein but not mouse 

α-synuclein fibril inoculation into wild-type mice decreased Lewy body formation and 

was more effective in α-synuclein knockout mice as compared to wild-type mice, which 

suggests that efficient spreading might be attenuated when fibril and host monomers are 

from different species212,213.

In addition, differences in α-synuclein strains also exist between synucleinopathies, such 

as PD and MSA. Interestingly, brain extracts from patients with MSA but not those with 

PD accelerated neurodegeneration when injected into transgenic mice, suggesting that 

MSA-derived strains of α-synuclein might be more toxic214. Furthermore, brain extracts 

from different patients with MSA showed variable rates of α-synuclein transmission215, 

which suggests the presence of patient-to-patient strain variability even within MSA. 

Importantly, α-synuclein strain differences among patients may contribute to patient 

variability such as age of onset and rate of disease progression.
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Figure 1. 
Pathways implicated in α-synuclein toxicity. (a–c) Organelle dysfunction (a, purple boxes), 

defects in inter-organelle contacts (b, blue box) and dysfunctional organelle dynamics (c, 

green box) have all been implicated in α-synuclein toxicity.
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Figure 2. 
Therapeutically targeting α-synuclein toxicity. Various pathways have been manipulated 

to decrease α-synuclein toxicity, largely in mouse models of α-synuclein toxicity. These 

include (i) reducing α-synuclein synthesis with siRNAs, (ii) increasing α-synuclein 

degradation, (iii) reducing α-synuclein aggregation, (iv) blocking α-synuclein propagation 

and (v) active immunization of α-synuclein. Drug development to increase lysosomal 

activity via glucocerebrosidase (GCase) to accelerate α-synuclein degradation, as well as 

clinical trials using both passive and active immunization against α-synuclein, are currently 

under way.
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