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Agriculture is the largest single source of global
anthropogenic methane (CH4) emissions, with
ruminants the dominant contributor. Livestock CH4
emissions are projected to grow another 30% by
2050 under current policies, yet few countries have
set targets or are implementing policies to reduce
emissions in absolute terms. The reason for this
limited ambition may be linked not only to the
underpinning role of livestock for nutrition and
livelihoods in many countries but also diverging
perspectives on the importance of mitigating these
emissions, given the short atmospheric lifetime of
CH4. Here, we show that in mitigation pathways
that limit warming to 1.5°C, which include cost-
effective reductions from all emission sources, the
contribution of future livestock CH4 emissions
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to global warming in 2050 is about one-third of that from future net carbon dioxide emissions.
Future livestock CH4 emissions, therefore, significantly constrain the remaining carbon budget
and the ability to meet stringent temperature limits. We review options to address livestock
CH4 emissions through more efficient production, technological advances and demand-
side changes, and their interactions with land-based carbon sequestration. We conclude that
bringing livestock into mainstream mitigation policies, while recognizing their unique social,
cultural and economic roles, would make an important contribution towards reaching the
temperature goal of the Paris Agreement and is vital for a limit of 1.5°C.

This article is part of a discussion meeting issue ’Rising methane: is warming feeding
warming? (part 1)’.

1. Introduction
Agriculture, including associated emissions from deforestation, accounts for about 21% of total
annual anthropogenic greenhouse gas emissions when emissions are weighted using the Global
Warming Potential with a time horizon of 100 years (GWP100; [1]). Agriculture is the largest single
source of global methane (CH4) emissions from human activities. About 80% of agricultural
CH4 arises from livestock systems, of which almost 90% comes from enteric fermentation by
ruminants such as cattle and sheep, and about 10% from animal manure [2]. The remaining 20%
arise primarily from rice paddies with a minor contribution from agricultural residue burning.
Global livestock CH4 emissions in 2017 were estimated to be around 115 Mt CH4, an increase of
10–13% relative to the average in 2000–2006 [3,4].

Agricultural CH4 emissions are projected to increase by about 30% in 2050 relative to 2010
under current policies (FAOSTAT; [5]), with a range from 20 to 50% in integrated assessment
models (IAMs; [6–8]). Increases are due to a growing human population and increasing demand
for animal protein as incomes rise, but with significant variations in demands and trends between
regions and countries [7,9,10].

Limiting warming to 1.5°C, the ambitious end of the temperature goal of the Paris Agreement,1

would require opposite emission trends. Global agricultural CH4 emissions reduce by 24–47%
(interquartile range) and carbon dioxide (CO2) emissions reach net-zero by mid-century in
modelled pathways that limit warming to 1.5°C with no or limited overshoot at least global
cost [7]. More than 100 countries include agriculture in their nationally determined contributions
(NDCs; [11]). However, most NDCs lack details and few (including industrialised) countries
have specific targets or are designing policies that could drive absolute sector-wide reductions
of agricultural CH4 emissions [12,13]. By contrast, at least 46 countries had price-based policies
that target CO2 emissions from fossil fuels implemented or scheduled for implementation in
2020 [14].

This study does not aim to explore systematically why the ambition of agricultural mitigation
policies has remained limited so far. Key factors are likely to include the small share of
agricultural emissions in national totals for most industrialized countries, high levels of economic
protection for agricultural producers in many countries, and the critical role of agriculture to
achieve nutrition goals, rural development and poverty alleviation in many developing countries
[9,15,16].

The development of more ambitious agricultural climate policies could further be hampered
by the perception that CH4 is fundamentally less important than CO2 as a target for mitigation.
Given that CO2 persists in the atmosphere over centuries to millennia and hence accumulates
over time [17,18], net CO2 emissions must drop to zero for temperature to stabilize, and additional
warming will occur until that condition is reached. By contrast, CH4 has an atmospheric lifetime

1The Paris Agreement aims to strengthen the global response to climate change, including by ‘holding the increase in the
global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature
increase to 1.5°C above pre-industrial levels’ (Article 2.1(a)).
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of approximately 12 years and emissions do not accumulate over centuries; hence, even a very
moderate reduction of global CH4 emissions at a rate of about 0.3% per year would stabilize
warming from CH4 at approximately current levels [19–21].

These different temperature outcomes have led some authors to argue that expressing
CH4 emissions as ‘CO2-equivalent’ emissions based on the common 100-year Global Warming
Potential (GWP100) is misleading and dangerous as it could misdirect attention from the need to
reduce global net CO2 emissions to zero as quickly as possible [22–25].

These concerns have led some to maintain that deep reductions of agricultural CH4 emissions
are not necessary to support ambitious climate action (e.g. [26–29]). This view is further supported
by an interpretation that slowly declining CH4 emissions already represent climate neutrality,
given that this would not result in additional warming compared to the present (e.g. [30]), and
more rapid reductions would effectively give a free ride to CO2 emitters [31]. The biological origin
of livestock CH4 emissions can further add to the perception that these emissions are part of a
natural cycle and hence fundamentally less problematic than the burning of fossil fuels (e.g. [27]).

Differing perspectives on the importance of livestock CH4 are the focus of continued debate
in New Zealand, the only country currently planning to implement a comprehensive price-
based policy to reduce agricultural CH4 emissions [32]. Similar discussions may arise in other
countries where reductions in agricultural emissions will become increasingly necessary to
achieve ambitious long-term economy-wide emission reduction targets. For example, the UK and
all states of Australia have adopted targets for net-zero emission of all greenhouse gases including
methane for 2050; modelled pathways to achieve such goals include carbon dioxide removals
along with substantial reductions in livestock CH4 emissions, but the scale of both carbon dioxide
removals and of livestock CH4 reductions are politically contested [33–36].

Given this context, the purpose of this study is twofold: one is to clarify the extent to which
global reductions in CH4 emissions from livestock are necessary to support the temperature goal
of the Paris Agreement (§2), touching also on whether such reductions might be seen as fair
and consistent with the way CO2 emissions are treated. The second purpose is to consider the
feasibility of such CH4 reductions, focusing particularly on the potential of novel technologies
to increase the mitigation potential in some production systems (§3). We then move beyond a
narrow focus on CH4 to consider the role of livestock in landscape-based solutions to climate
change (§4). Our conclusions summarize key insights for the development of policies consistent
with the goals of the Paris Agreement.

2. Howmuch are livestock contributing to climate change?
Enteric fermentation and manure management together contribute roughly 30% of total
anthropogenic CH4 emissions [3]. The radiative forcing from anthropogenic CH4 emissions,
including indirect effects, has been estimated at just over 40% of total radiative forcing from
all human activities in 2011 [17], which approximates its share in anthropogenic warming. This
suggests that CH4 emissions from livestock are responsible for roughly 12% of anthropogenic
warming to date. Detailed model simulations give a similar magnitude, at 14% [37]. The precise
contribution is subject to updated estimates of radiative efficacy (e.g. [38]) and tropospheric ozone
chemistry, which constitutes a key indirect warming from CH4 emissions [39–41].

The significant contribution from livestock CH4 emissions to current warming does not,
however, determine how much those emissions must be reduced to support the temperature goal
of the Paris Agreement. While the need to reduce the dominant, long-lived greenhouse gas CO2
to zero is unambiguous, the same does not apply to CH4, owing to the different lifetimes of these
gases and temperature response to their emissions.

Figure 1 illustrates these differences by showing the global net CO2 and livestock CH4
emissions and associated temperature change in pathways that limit overall warming to 1.5°C
above pre-industrial levels. Emissions reflect the average of five IAMs based on the SSP1 (global
sustainability) socio-economic scenario as assessed in Rogelj et al. [7]. In these pathways, CO2
emissions reach net-zero by about 2055 and become negative thereafter, while livestock CH4
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Figure 1. Temperature change associated with global net carbon dioxide (a–c) and livestock methane (d–f ) emissions. (a,d)
Global emissions for pathways consistent with limiting warming to 1.5°C with no or limited overshoot, using the average of
five RCP1.9-SSP1 scenarios from the IPCC SR15 database [42]. (b,e) Temperature change due to historical and projected future
emissions (thick solid lines) and historical emissions up to 2020 only (thin solid lines). The shaded areas indicate the contribution
towarming from future emissions. (c,f ) Temperature change due to future emissions only. Data sources: emissions scenarios are
from the scenario database of the IPCC Special Report on Global Warming of 1.5°C [42,43]. Livestock CH4 emissions are assumed
to be a constant fraction of AFOLU (Agriculture, Forestry and Other Land Use) CH4 emissions in these pathways. Temperature has
been modelled using a simplified pulse response model based on simulations using MAGICC [44]. (Online version in colour.)

emissions drop 38% by 2050 relative to 2010 and decline further to 2100. These pathways result in
just over 1.5°C peak warming around 2050 followed by a gradual decline.

The contributions from CO2 and CH4 to overall warming differ sharply in these pathways
(figure 1b,e). Warming from CO2 emissions continues to increase until emissions reach net-zero
and declines only once CO2 is actively removed from the atmosphere (through a combination of
large-scale use of bioenergy with carbon capture and storage (BECCS) and afforestation). Even
so, warming from CO2 is higher in 2100 than in 2020. By contrast, warming from livestock CH4
declines below current levels as soon as emissions drop significantly. Even though CH4 emissions
remain well above zero, the overall warming from livestock CH4 in these pathways in 2100 is
below the warming they caused in 2020.

These different behaviours have led some researchers to argue that using GWP100 is not just
inaccurate but gives the wrong sign for the change in temperature if CH4 emissions are declining
[19,23]. Going further, given this mismatch between cumulative emissions and temperature
change, it has been suggested that the use of GWP to inform climate change mitigation strategies
would be unfair [45], as even rapidly-reducing CO2 emissions would cause additional warming,
whereas rapid reductions in livestock CH4 emissions would cause less warming in 2050 than
today; yet CH4 emitters would be under continued pressure to reduce their remaining emissions
even further.

We suggest that care needs to be taken to disentangle the effect of past and future emissions
on the future climate, and in assigning responsibility for temperature changes related to ongoing
emissions.

Figure 1 shows (middle and right-hand panels) that even though rapidly declining livestock
CH4 emissions result in less warming in future than today, the climate in 2050 will be substantially
warmer with, compared to without, these future livestock CH4 emissions. In other words, future
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CH4 emissions make a substantial marginal contribution to climate change (borrowing from the
meaning of this term in economics, we use ‘marginal warming’ to denote the warming that an
additional emission causes, relative to the absence of that emission, all else being equal). CH4
emissions are no different in that regard to CO2. By the end of the twenty-first century, the
marginal warming from livestock CH4 emissions in these deep mitigation pathways is almost
0.1°C, more than one-third of the marginal warming from global net CO2 emissions of 0.25°C
in 2050 (i.e. the warming from future net CO2 emissions, compared to the absence of those
emissions). By 2100, the marginal warming from CO2 would drop below 0.1°C, given the large-
scale net removal of CO2 envisaged in these pathways, and thus reach a similar level as the
marginal warming from livestock CH4 emissions.

As decisions available today can only control future activities, efficient mitigation strategies
must consider marginal contributions of different sectors and gases to future temperature, as
this provides a measure of how much warming could be avoided by reducing future emissions
or enhancing removals. Consideration of marginal warming makes it clear that future livestock
CH4 emissions will be a significant contributor to future warming, not cooling: each future
tonne of CH4 emitted will make the climate warmer than it would be otherwise, regardless of
whether emissions are rising or declining over time. This is also reflected in the social cost of
methane, which is uncertain but substantially greater than the social cost of carbon on a tonne for
tonne basis [46–48]. Additional non-climate damages from CH4 emissions arise from increased
tropospheric ozone that can negatively affect crop production and human health [49]. Efforts to
reduce CH4 emissions as much as socially, environmentally and economically possible via policies
that place the cost of CH4 emission reductions on CH4 emitters would, therefore, be conceptually
fully consistent with a ‘polluter pays’ principle.

Nonetheless, various policy choices are possible on how to share the cost of emission
reductions across society (e.g. instead of ‘polluter pays’, one could adopt a ‘beneficiary pays’
principle), and what scale of reductions is socially and economically feasible and acceptable.
However, these choices are relevant for all greenhouse gases and emitters; CH4 from livestock
does not occupy a special role in this regard simply because of its short lifetime or biogenic
origin.

There are also valid questions on how to recognize the contribution from past CO2 emissions
and other long-lived gases to future global warming in the design of climate policies. However,
this raises fundamentally different ethical and policy questions compared to those dealing with
the warming caused by future emissions. Future CO2 emitters are not necessarily the same as
those responsible for past CO2 emission, and the benefits of past CO2-emitting activities tend to be
spread across today’s society (particularly in the case of past deforestation that provides the land
for today’s livestock agriculture). How countries might incorporate the warming from past CO2
emissions into climate policy thus raises questions that go well beyond the scope of this study.
Nonetheless, we argue that a clear separation of legacy warming from past emissions (which is
significant only for long-lived gases), and marginal warming from current and future emissions
and removals (which applies for all gases) may support a more constructive conversation about
how to best address emissions of different gases in mitigation strategies.

Choices about abatement of livestock CH4 emissions strongly influence the amount of CO2
that can be emitted while remaining within stringent temperature limits. Figure 2 illustrates this
trade-off by comparing global net CO2 and livestock CH4 emissions in 1.5°C-consistent pathways
with a hypothetical alternative scenario where livestock CH4 emissions increase consistent with
current policies rather than decrease, and CO2 emissions are adjusted downwards to achieve the
same overall temperature outcome.

If livestock CH4 emissions rise rather than fall, as shown in figure 2, we find that this would
require a significantly more rapid reduction of net CO2 emissions between 2020 and 2030 (by
6.3% per annum rather than 4.9%), reaching net-zero emissions almost a decade earlier (by 2048
rather than 2055), and more and earlier net CO2 removal. The pace and scale of CO2 reductions to
limit warming to 1.5°C are already highly ambitious and at the limit of feasibility [43], and even
tighter constraints make this limit even less feasible. Of course, the world is not yet on track for
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emission reductions consistent with 1.5°C or even ‘well below’ 2°C [51], but this analysis shows
that excluding livestock CH4 emissions from transformative changes could jeopardize the 1.5°C
limit even if all other sectors undertook the rapid emission reductions necessary to reach global
net-zero CO2 emissions in the 2050s [52].

The trade-off between reducing livestock CH4 emissions and fossil CO2 emissions (or other
greenhouse gases) can also be quantified via the ‘remaining carbon budget’. This is defined as
the cumulative amount of CO2 emissions, up to net-zero, that would be consistent with limiting
warming to a specified level while considering the contribution of non-CO2 climate forcers to
total warming.

The remaining carbon budget consistent with a 50/50 chance of limiting warming to 1.5°C
has been estimated to be about 580 Gt CO2 from 2018, but this already assumes rapid concurrent
reductions of non-CO2 emissions as in figure 1 [7]. If, instead, livestock CH4 emissions increase
as in figure 2, we find that the cumulative CO2 emissions consistent with the same temperature
outcome are reduced by about 136 Gt CO2, or almost one-quarter from 580 to 444 Gt CO2. For a
temperature limit of 1.5°C, livestock CH4 emissions, therefore, act as a highly sensitive lever on
the remaining carbon budget. The relative influence would be smaller but remains significant for
less ambitious temperature goals. For example, the remaining carbon budget to limit warming to
2°C with 66% probability (often interpreted as warming remaining ‘well below’ 2°C) is estimated
at 1170 Gt CO2 [7], and failure to mitigate livestock CH4 emissions would reduce this budget by
about 12%.

The difference between mitigated and unmitigated livestock CH4 emissions amounts to a
temperature difference of about 0.1°C towards the end of the twenty-first century (figure 2).
Failure to reduce livestock CH4 emissions would, therefore, not in itself cause warming to
exceed 2°C. Whether mitigation of livestock CH4 emissions is viewed as necessary to achieve the
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temperature goal of the Paris Agreement, thus depends on how concerned we are about adding
0.1°C to the warming caused by all other sectors and gases. However, this concern is not unique to
livestock CH4, since every individual sector makes only a small contribution to global warming;
yet, if every sector were to avoid mitigating its emissions because of this, warming would almost
certainly exceed 2°C [43].

We emphasize that these conclusions hold irrespective of greenhouse gas emissions metrics
and despite the short lifetime of CH4 in the atmosphere. A focus on marginal warming
demonstrates that future livestock CH4 emissions make a significant, positive contribution to
future warming. This contribution is more than one-third of the contribution of future CO2
emissions to peak warming around 2050 in the most stringent mitigation pathways.

The pressure of livestock production on the remaining carbon budget is even more pronounced
if both CH4 and nitrous oxide (N2O) emissions from livestock are considered and remain
unabated [12], or if the food system as a whole is considered [53]. The trade-off between mitigating
livestock emissions and CO2 from other sectors, along with the need for land-based CO2 removal
to remain within a tight remaining carbon budget, points to the need to adopt a broader landscape
approach to evaluate effective mitigation strategies. We return to this integrated perspective in a
later section, but first, consider the prospects for reducing livestock CH4 emissions at the global
scale.

3. Prospects for livestock methane mitigation in the near and long term
Reductions of livestock CH4 emissions can occur via supply and demand-side approaches. In
this section, we briefly summarize existing supply-side options but do not attempt a detailed
review (for recent comprehensive reviews, see [9,54–56]) and then focus on the potential of
emerging technologies. The complementary role of demand-side approaches is considered in the
next section.

Supply-side interventions can be grouped into the use of different feeds and feed additives,
measures to increase feed quality, increased livestock and crop/pasture productivity (e.g.
increased growth rates, milk yields and animal fertility), and manure management through
aeration or biogas production and use [55]. The mitigation potential from these measures varies
across studies, with the technical potential to reduce CH4 emissions from enteric fermentation
estimated at up to about 50 Mt CH4 yr−1 by 2050 [54], and up to about 5 Mt CH4 yr−1 from
manure management. The economic potential is generally smaller, with reductions of less than
20 Mt CH4 yr−1 at carbon prices of up to US$100/tCO2-eq [9,56]. For reference, livestock CH4
emissions are projected to rise to more than 140 Mt CH4 under current policies by 2050, whereas
modelled emissions in 1.5°C-consistent pathways fall to about 70 Mt CH4 [7].

In the absence of targeted mitigation policies, currently feasible practices are those that deliver
mitigation as a co-benefit to improved production efficiency [57]. These approaches primarily
reduce emissions intensity, which can serve as an important entry point for mitigation efforts in
developing countries, given the co-benefits of productivity gains for rural development and food
security [58–61]. However, enhanced production efficiency on its own may offset environmental
benefits through increased resource use and increasing economic incentives to expand into
marginal lands. Reducing absolute emissions relies on complementing reductions in emissions
intensity with measures to limit overall demand and/or land use [12,62–65].

Overall, existing assessments of supply-side mitigation options indicate that it will be
immensely challenging to achieve the abatement indicated in cost-effective mitigation pathways,
especially given the limited development of dedicated policies so far [12,13]. However, such
assessments typically do not consider emerging supply-side technologies either in sectoral
bottom-up or IAM-based top-down mitigation scenarios. We suggest that novel technologies
could achieve significantly stronger supply-side reductions of CH4 emissions in some livestock
systems and/or make reductions more feasible. Relevant technologies include novel feeds such
as genetically modified ryegrass, physical CH4 capture and neutralization devices, and feed
additives including CH4 inhibitors, as well as vaccines.
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In the remainder of this section, we focus on four areas that are closest to commercialization
and/or are under active development, and that could materially change global emissions, namely
synthetic CH4 inhibitors; a CH4 vaccine; low-emissions breeding and the use of seaweed as a feed
additive.

(a) Methane inhibitors: synthetic
A CH4 inhibitor is a chemical compound that suppresses the activity of CH4 forming microbes
(methanogens) in the rumen. Inhibitors could be delivered as a feed additive or as a bolus
(a small capsule containing the active compound, inserted into the rumen). 3-Nitrooxypropanol
(3-NOP) has been shown to consistently reduce CH4 emissions by around 30% in Total Mixed
Ration (TMR) farm systems [66,67] without compromising animal productivity [68] and is
expected to be commercially available in some countries within the next 2 years. 3-NOP has
limited applicability in grazing systems as it decays within a few hours in the rumen, but its
applicability could be extended to most dairy systems via slow-release formulations [69,70].
Research is also progressing into the use of 3-NOP in young ruminants to stimulate lifetime
reductions [71], and other inhibitors with longer rumen lifetimes and low dosage rates to allow
bolus delivery [72,73].

These developments could increase the utility of CH4 inhibitors beyond TMR systems into
grazing systems of moderate to high management intensity. In the absence of significant co-
benefits for animal performance, adoption of CH4 inhibitors will depend on cost and, therefore,
climate policy incentives or consumer demand.

(b) Methane vaccine
Vaccination against the rumen methanogens is expected to have broad applicability globally
[74] and could be practical and cost-effective even in extensive systems. Research into a CH4
vaccine remains in the development phase and has not yet been demonstrated in live animals.
However, all major components of a vaccine chain have been demonstrated: genome sequencing
of methanogens has identified targets that stimulate antibody production; antibodies can be
created by host animals and detected in saliva and the rumen; and those antibodies have
been shown to suppress pure methanogen cultures in vitro [75–77]. The efficacy of a vaccine is
necessarily speculative, but a reduction of 30% is considered plausible, given the efficacy of CH4
inhibitors.

Commercial availability of a vaccine is estimated to take 7–10 years after demonstration of a
prototype. Vaccine adoption could be facilitated by administering it in combination with other
widely used animal vaccines. However, adoption rates will depend not only on costs but also
on veterinary practices, as many animal vaccines are not adopted fully even where proven to be
cost-effective [78].

(c) Breeding low-emission animals
Sheep vary naturally in the amount of CH4 they produce per kilogram of dry matter consumed.
This trait has been shown to be heritable and thus enables the breeding of low-CH4 emitting sheep
[79]. Emissions differ by approximately 10% after three generations, without adverse effects on
major production traits and with some positive correlations [80]. Following industry trials, the
low-CH4 trait is expected to be available to sheep farmers in New Zealand within the next 1–2
years [81,82]. Cattle show similar potential for breeding strategies [83–85], but commercialization
is less advanced due to the higher cost of measuring low-emitting animals. Research is underway
to develop proxy indicators (e.g. based on milk constituents, rumen microbial profiles) to enable
cheap and rapid identification of low-emitting animals [86,87].

Adoption of breeding approaches is subject to breeding programmes being accessible to
farmers and a favourable balance between the opportunity cost of selecting for low emissions
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(which depends on correlations with other desirable traits) and policy incentives for reduced
emissions. In countries using artificial insemination, relatively few bulls sire the majority of the
national dairy herd, offering potentially high efficacy of this approach.

(d) Methane inhibitors: seaweed
Algae of the genus Asparagopsis have been shown to reduce ruminant CH4 emissions by 20–98%,
although the persistence of this effect over multiple seasons remains unclear [88,89]. The role
of bromoform and bromochloromethane as active ingredients in Asparagopsis raises challenges
from a regulatory and market acceptability perspective, given that both substances are confirmed
animal carcinogens and probable/possible human carcinogens. Animal trials have detected
residues in urine and milk [90], but no detrimental effects on meat quality [91]. There are also
open questions regarding palatability to livestock, animal health and the ability to produce and
supply seaweed at a large scale, especially to extensively grazed livestock [88–90,92].

However, if these concerns can be addressed, a CH4-inhibiting seaweed feed additive could be
commercially available within the next few years. Additionally, if the inclusion of bromoform in
animal feed gains market and regulatory acceptance, this would open the opportunity to produce
bromoform cheaply via commercial chemical processes and provide it to animals directly and
more consistently (e.g. via a bolus or other feed supplements) rather than through seaweed.

Table 1 summarizes our assessment of these key novel technologies, their current status and
applicability, and confidence in future applicability. Collectively, these selected interventions
could add considerably to the supply-side mitigation potential identified in sectoral studies and
increase the feasibility of achieving deep reductions in CH4 emissions from livestock systems by
2050 and beyond. We argue that such options should be included, at least as a sensitivity test, in
marginal abatement cost curves and long-term mitigation pathways of IAMs [94,95]. Widespread
application of inhibitors and low-emissions breeding is no more speculative by 2050 than the
deployment of BECCS at the scale of multiple gigatons per year, which is a routine component of
many IAMs [7]. Reliance on speculative technologies to achieve long-term mitigation goals poses
clear risks and is contested [96–98], but we suggest that excluding technologies that are already
in the process of commercialization presents a skewed picture, not least because their exclusion
hides the global benefit of policies to support their further development, commercialization and
adoption.

4. Integrating methane mitigation into a broader context
While a focus on targeted CH4 mitigation is beneficial, especially for technology development,
it excludes consideration of the land footprint of livestock and its carbon opportunity cost, and
nitrous oxide (N2O) emissions. Livestock systems occupy more than 80% of the total agricultural
land area, either directly for grazing or indirectly for the production of feed [99]. Freeing some
of this land to allow more carbon efficient uses (e.g. afforestation, agroforestry, or production
of biofuels; [100]) without compromising food security could achieve significant additional
mitigation from agricultural landscapes [9,59,101,102].

Hayek et al. [103] estimated the cumulative carbon opportunity cost of animal food production
at 332–547 Gt CO2 to 2050, based on a global diet with reduced animal-sourced foods as proposed
by Willett et al. [101] and assuming that land no longer needed to support livestock systems
would be used instead to sequester carbon in different ways. This study, while ambitious in its
assumptions, suggests that the carbon opportunity cost of livestock systems could be significantly
greater than the impact on the remaining carbon budget of approximately 136 Gt CO2 from
actions to mitigate livestock CH4 emissions quantified in our study.

Integrated consideration of emissions and sequestration potentials across agricultural
landscapes underlines the importance of demand-side responses. Reducing demand for livestock
not only complements supply-side interventions to reduce direct emissions and ensure that
intensification is sustainable, but also opens new choices for the use of finite land resources.
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Sequestering carbon from the atmosphere at rates necessary to help achieve net-zero CO2
emissions globally within the next few decades will require additional land. This land can only
be spared, without compromising food security, if global demand shifts towards not only less
emissions-intensive but also less land-intensive food production systems, including through
sustainable intensification [104,105].

Nonetheless, achieving transformative changes in demand and land use will require grappling
with several important challenges, and the wider set of social and environmental roles that
livestock systems perform needs to be considered [106].

One consideration is that adequate human nutrition requires more than a simple replacement
of the calorific value of livestock with plant products. Nutritionally balanced substitutions,
including micronutrients, are not necessarily feasible and affordable for all vulnerable
populations, and health outcomes depend strongly on detailed assumptions about diet
composition [107–113]. Cultured meat and dairy are relevant emerging substitutions [114,115],
but availability and affordability for vulnerable populations remain open questions, and their
overall climate impact compared to traditional farming depends on the time horizon considered
and energy emissions [116].

A second challenge is that soil carbon stocks under pastures are generally high, and shifts
to cropland result in a period of CO2 emissions; by contrast, integrating pastures into cropping
systems has been identified as one of the most effective soil carbon management strategies (e.g.
[117,118]). Lightly grazed and natural grasslands have recently been identified as large CO2 sinks
in response to rising temperatures, carbon-dioxide fertilization and nitrogen deposition [119], and
changes in the management of current pasturelands have well-documented if modest potential
to enhance soil carbon stocks in many locations [120–122]. Climate change will also require
adaptation of land management practices, and it will be important to integrate mitigation and
adaptation strategies [106]. Land-use changes thus need to consider the net balance of emissions
over a range of time horizons and climatic constraints.

A third challenge comes from the roughly 1.3 billion human livelihoods currently linked to
livestock systems. In large parts of the developing world, mixed crop-livestock systems form the
backbone of livelihoods, food production and income generation in predominantly small and
medium-sized farms. Such systems produce over 60% of the meat and milk and more than 50%
of crops globally [2,123–125]. In many originally forested lands, pastures also provide landscape
heterogeneity that supports biodiversity, delivers recreational and heritage values and ensures
a diversity of employment and social networks [36,126,127]. Silvopasture, renewable energy
generation, farm- and eco-tourism offer land-use opportunities that can coexist with, rather than
replace livestock systems and the rural communities dependent on them [128–130].

Adopting a land-use perspective to facilitate more environmentally friendly food production
systems could contribute to Sustainable Development Goals and improve governance and policy
coherence across multiple land uses and users. By contrast, a sole focus on maximizing the
efficiency of land resources for nutrition and carbon sequestration risks overlooking the diverse
social and cultural roles of livestock systems. The need to provide for a ‘just transition’ for
livestock farmers under ambitious climate policies remains underexplored in academic literature
and policy [131–134].

5. Conclusion
We use the concept of marginal warming to describe the increase in temperature that would occur
with, compared to without, a given set of emissions, which directly relates to the warming that
could be avoided through future mitigation actions. Our analysis demonstrates that the marginal
warming from future livestock CH4 emissions amounts to more than one-third of the marginal
warming from CO2 emissions in mitigation pathways consistent with limiting warming to 1.5°C.
We find that failure to reduce livestock CH4 emissions would reduce the remaining carbon budget
consistent with this temperature goal by almost one-quarter and would make it substantially less
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feasible to limit warming to 1.5°C. The effect is less severe for a goal of remaining well below 2°C
but still amounts to more than 10% of the remaining carbon budget.

Options to reduce livestock CH4 emissions exist both on the supply and demand side, but
both face significant challenges in terms of implementation. We review recent progress in novel
technologies and find that CH4 inhibitors, vaccines, low-emissions breeding and the use of
certain types of seaweed as feed additives could potentially significantly increase the supply-
side mitigation potential and make deep emission reductions more feasible. We suggest that
such technologies should be considered routinely in long-term mitigation scenarios, at least as
sensitivity tests, given that most are by now no more speculative than gigatonne deployment of
BECCS envisaged in many scenarios. Their potential future contributions should not be used as
a reason to delay mitigation in the near term using existing practices, but their inclusion would
demonstrate the need for and global benefit of policies to support their further development and
commercialization and to spur further research and development.

However, a singular focus on reducing CH4 emissions from livestock is problematic, given the
multiple roles that livestock play in diverse landscapes. Not only are livestock a source of other
emissions (N2O and CO2 from land clearing), but their large land footprint also constitutes a
significant carbon opportunity cost. Measures to reduce demand for emissions-intensive livestock
products through dietary change and reduced food loss and waste are essential to not only allow
emission reductions but also additional carbon sequestration without threatening food security.

Nuanced policies and transitions will be needed to manage trade-offs relating to soil carbon,
biodiversity and wider ecosystem services. More fundamentally, the livelihoods of more than one
billion people are supported by current livestock systems, and policies aimed to reduce demand
for livestock systems will need to provide for a ‘just transition’ for those livelihoods. However,
the literature dealing with producer perspectives and offering pathways for a gradual transition
is distinctly underdeveloped, and we suggest that significant efforts are needed to ensure that
mitigation pathways consistent with 1.5°C or well below 2°C do not create new or exacerbate
existing inequalities and vulnerabilities.

Most fundamentally though, none of the mitigation pathways and options discussed in our
study will come to pass without targeted policies to address greenhouse gas emissions, reduce
the global demand for emissions-intensive livestock products and provide for transitions of
those most affected by the necessary transformative changes. The significant potential for the
reduction of livestock CH4 emissions can only be realized if agriculture, and livestock systems
in particular, become part of mainstream climate policies, while recognizing their unique and
multiple interacting social, cultural and environmental functions.
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