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Abstract

Ruminant supply chains contribute 5.7 gigatons of CO, ,, per annum, which represents approximately 80% of the

livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH,), accounting for
approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on
reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors
influence cattle CH, production, such as breed, genetic makeup, diet, management practices, and physiological status of
the host. The influence of genetic variability on CH, yield in ruminants indicates that genomic selection for reduced CH,
emissions is possible. Although the microbiology of CH, production has been studied, further research is needed to identify
key differences in the host and microbiome genomes and how they interact with one another. The advancement of “-omics’
technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved
understanding of genetic mechanisms associated with CH, production and the interaction between the microbiome

profile and host genetics will increase the rate of genetic progress for reduced CH, emissions. Through a systems biology
approach, various “-omics” technologies can be combined to unravel genomic regions and genetic markers associated

with CH, production, which can then be used in selective breeding programs. This comprehensive review discusses

current challenges in applying genomic selection for reduced CH, emissions, and the potential for “-omics” technologies,
especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different
levels of biological information using a systems biology approach is also discussed, which can assist in understanding the
underlying genetic mechanisms and biology of CH, production traits in ruminants and aid in reducing agriculture’s overall
environmental footprint.
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Abbreviations

FE feed efficiency

GC-MS gas chromatography-mass
spectrometry

GHG greenhouse gas

GWAS genome-wide association study

ITS internal transcribed spacer

LC-MS liquid chromatography-mass
spectrometry

LMBD livestock metabolome database

MAGs metagenomic-assembled genomes

MFA milk fatty acid

mGWAS metabolite genome-wide association
study

MIR mid-infrared

MS mass spectrometry

NGS next-generation sequencing

NMR nuclear magnetic resonance

OTU operational taxonomic unit

PCR polymerase chain reaction

PEX2 Peroxisomal Biogenesis Factor 2

PME predicted methane emission

gPCR quantitative polymerase chain
reaction

RFI residual feed intake

RNA-Seq RNA sequencing

SF6 sulfa hexafluoride

SNP single-nucleotide polymorphism

TSPAN14 Tetraspanin 14

WGCNA weighted gene co-expression

network analysis

Using “-Omics” Technologies to Mitigate
Methane Emissions

Ruminants can utilize cellulolytic and hemicellulolytic
feedstuffs, which are broken down via prokaryotic and
eukaryotic microorganisms (Newbold and Ramos-Morales, 2020).
During the breakdown process, hydrogen, carbon dioxide (CO,),
and formic acid are produced as end products of fermentation
(Hook et al., 2010; Danielsson et al., 2017). Within the rumen,
the methanogenic archaea use H, to reduce CO, to produce
methane (CH,), leading to increasing levels of greenhouse gas
(GHG) (Danielsson et al., 2017). Global demands and initiatives
to reduce GHG emissions are being implemented, such as
the UK Climate Change Act (Gill et al., 2010; Yan et al., 2010;
Sejian et al., 2011), Ontario’s (Canada) GHG initiatives to reduce
GHGs based on the 2007 climate change action plan (Ontario,
Go Green, 2007) which has been successfully completed and
the Intergovernmental Panel on Climate Change (IPCC) Paris
agreement on climate change which aims to limit the climate
warming to 2 °C (Nisbet et al., 2019). Of the major GHGs, CH,,
which is a product of enteric fermentation from ruminants, is
regulated by multiple physiological and environmental factors
(Manzanilla-Pech et al., 2016). Approximately 40% of agricultural
emissions in Canada come directly from CH,, with ruminants
contributing up to 90% of this CH, production (Agriculture and
Agri-Food Canada, 2019). Various CH, mitigation strategies are
being investigated to lower CH, levels produced by ruminants,
such as the manipulation of dietary formulations (Caro et al.,
2016) and chemical inhibitors to reduce rumen methanogenesis
(Kumar et al., 2014). Despite the effectiveness of such approaches,
the use of genetic and genomic selection to breed for reduced

CH, production is expected to provide substantial genetic gains,
which are cumulative and permanent over generations (de Haas
et al., 2011; Gonzalez-Recio et al.,, 2020). Breeding for lowered
CH, emissions has been shown to be an effective approach in
sheep (Rowe et al.,, 2019) Low CH, sheep in a 10-yr study in New
Zealand grew more wool, had smaller rumens with different
microbiomes, were leaner, and had a different fatty acid profile
in the muscle, which are more economically sustainable
compared to high CH, sheep (Rowe et al., 2019).

To achieve genetic progress for complex traits, the genetic
mechanisms and underlying biology must be well understood.
The recent availability of “-omics” technologies atlower costs has
contributed to the generation of larger datasets, which are being
used to improve the understanding of the underlying functional
biology of economically relevant traits such as feed efficiency
(FE) and its association with CH, in ruminant species (Herd
etal., 2016; Lgvendahl et al., 2018; Seymour et al., 2019; Sun et al.,
2019). These “-omics” techniques include metagenomics, which
allows for the evaluation of taxonomic and genetic composition,
and functionality of microbial communities, and has been used
to help elucidating the relationship between host phenotypes
and microbial diversity and density in the rumen (Morgavi et al.,
2013; Denman and McSweeney, 2015; Malmuthuge and Guan,
2016, 2017). In addition, metabolomics is a multidisciplinary
approach integrating biostatistics, biochemistry, and
bioinformatics, and allows for metabolite profiling that can
help identify biomarkers reflecting physiology. For example,
metabolomics has been used to highlight biological processes
regulating milk production and other economically relevant
traits (Fontanesi, 2016). Metagenomics and metabolomics
coupled with other “-omics” data sources such as genomics,
transcriptomics, and proteomics, in an integrated systems
biology approach are critical to understanding the biological
architecture of complex traits and molecular modifications
in response to internal and external factors (Deusch et al.,
2015; Sun et al., 2020). The integration of complementary data
sources may lead to improved genetic progress for complex
traits and contribute to the long-term economic benefits and
sustainability of ruminant production systems (Denman and
McSweeney, 2015; Sun et al., 2020).

Using approaches that integrate -omics data is especially
beneficial when studying complex traits, which are influenced by
multiple genes and genetic features and therefore can be better
understood when studying the trait as a biological system. Such
approach can determine relationships between phenotypic,
genetic, and metabolic features, and reveal causal regulatory
mechanisms. Systems biology approaches have taken top-down
and bottom-up strategies to understand successive levels of
biological information and how it influences a system (Shahzad
and Loor, 2012). As CH, is a product of rumen fermentation
and methanogenic archaea, the approach to identify animals
with a genetic profile or select for specific pathways or species
within the microbiome to reduce CH, production would apply
a top-down approach. Reconstruction of this system using a
top-down approach involves sampling of host tissues, as well
as rumen fluid, contents, and tissue, use of high-throughput
sequencing (i.e., genomics, metagenomics, transcriptomics,
metatranscriptomics, metabolomics), statistical analysis, and
biological interpretation (Shahzad and Loor, 2012). Various
statistical models have been applied such as Bayesian gene
networks, following a top-down approach by associating
genotypes and operational taxonomic units (OTU) profiles
(Parviainen and Kaski, 2017). By using a top-down approach, we
can continue to use host genetic information and associate this



level with rumen microbial community structure and function.
Ways to implement multi-omics top-down approach can involve
the collection of information about genes, genetic variants, and
metabolites of the host and rumen microbiome.

Analyses used to integrate -omics data at different levels
to determine associations include co-expression matrix
analysis, such as causal Bayesian gene networks (Parviainen
and Kaski 2017), and co-expression modules (i.e., clusters)
that identify eQTLs for different expression data types
(genotype, gene, protein, and/or metabolite expression
data) (Kadarmideen, 2016). More specifically, to study causal
regulatory mechanisms, Bayesian networks are used to
understand conditional dependencies and independencies
between random variables by modeling gene regulation
networks using statistical dependency models (Parviainen
and Kaski, 2017). These Bayesian networks are capable of
modeling multiple different measurements of expression of
the same genes, without being biased by data originating from
different platforms. Recently, Bayesian modeling has been
used to assess associations between host genetics and rumen
microbiota and its influence on CH, emissions in dairy cattle
(Zhang et al., 2020), using genotypes and OTU classification.
This study revealed that the host genetics genome and rumen
microbiota explain 25% and 7% of CH, emissions, respectively.
Additionally, specific host genes were significantly associated
with rumen microbiota composition (Zhang et al., 2020).
This provides evidence that applying integrated approaches
to assess associations between host genetics and rumen
microbiome can provide insights on their collective influence
on CH, emission variation. Other multi-omics approaches,
termed as “systems genetics” have combined genomics and
transcriptomics to model biological networks and reconstruct
causal gene networks using markers identified from genome-
wide association study (GWAS; Civelek and Lusis, 2014). These
studies suggest the emerging computational and statistical
analyses being applied to evaluate relationships between
the genome, transcriptome, and metabolome of the host and
rumen microbes. A complete understanding of several aspects
of genomic, metabolomics and metagenomics research, as
well as the current understanding of CH, emissions research
using the latter tools is needed for studying and applying of
integrative -omics approaches. This comprehensive review
discusses the methods for measuring CH,, and the generation,
analytics, and value of integrating genomics, metabolomics,
and metagenomics information to mitigate the effects of
climate change by reducing GHG emissions from ruminants.

Measuring Methane Emissions in
Ruminants

There are numerous ways to assess CH, emission in ruminants,
for example, using direct measurements, proxies, or prediction
equations (Herd et al, 2014; Negussie et al, 2017; Huws
et al,, 2018). One method is to measure the tracer gas sulfa
hexafluoride (SF,) which is nontoxic, physiologically inert,
and stable (Lester and Greenberg, 1950; Johnson et al., 1992).
Similar to CH,, SF, is capable of mixing with rumen air, and is
inexpensive to detect and analyze. However, the main issue
with SF, is the use of permeation tubes, which require precise
calculation of the release rate of SF,. The accuracy of release
rate calculation is critical for CH, determination and tubes with
high release rates represent higher CH, emission recordings,
which leads to a high error rate (Storm et al., 2012). Comparably,
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a more extensive but more accurate method to measure CH,
includes respiration chambers, which have been used for the
past century to study metabolic energy use in animals (Mclean
and Tobin, 1987; Johnson et al., 2003). Respiration chambers are
considered the gold standard methodology for measuring CH,
from individual animals as they enable accurate and repeatable
CH, measurements in ruminants (Leahy et al., 2013; Jonker et al.,
2018). However, this method is costly, complex, labor intensive,
and has a low capacity for number of animals that can be
measured at one time, thus limiting the availability for large-
scale application. Furthermore, it does not reflect the living
conditions of the animals in production systems (Storm et al,,
2012). Another method is the GreenFeed machine (C-Lock Inc,
2015), which is an automatic feeding system and CH, analyzer
that measures daily CH, and CO, mass fluxes from the breath
and eructation gas of individual cattle for ranking them based
on their daily measurements (Zimmerman et al., 2011; Hristov
et al.,, 2015). Automatic feeding systems allow ear tags or collars
to be read and measurements for all cows to be recorded while
the animal is consuming feed. This method can be applied in
conventional tie-stalls, and for grazing animals fed supplements
in feeders. A limitation with this system is that it is only able to
measure CH, when the animal’s head is in the feeder (Storm
et al,, 2012). Another technique that measures CH, includes
micrometeorological techniques. One such method is the
combination of long line-averaging concentration sensors (i.e.,
open path lasers) and inversion-dispersion methods which allow
animals to be measured in their natural environment (Flesch
et al,, 2019). One reported issue with this method is the need
to know the location of the emission source(s), i.e., the animal,
however this issue has been limited by narrowing the paddock.
Using a narrow paddock also increases the range of useable
wind directions, thus increasing the likelihood of a measurable
concentration downwind of the paddock (Flesch et al., 2019).
Another method to determine CH, is through proxies, such
as feed intake, milk production and composition, and feces.
A review by Negussie et al. (2017) provides a detailed assessment
of proxies for measuring CH,, therefore, this section provides a
general overview on major techniques used for CH, prediction.
There is increased interest in using proxies as indicators of CH,,
including measures of milk fatty acids, milk mid-infrared (MIR)
spectroscopy, and rumen metabolites (i.e., Dehareng et al., 2012;
Vanlierde et al., 2015; Negussie et al., 2017). In general, practical
proxies need to be accurate, inexpensive, and able to record on
a large-scale basis (Negussie et al., 2017). The combination of
proxies is an efficient and accurate way to predict CH,; however,
the combination of robust and applicable proxies across a variety
of environments is challenging. Lastly, prediction equations can
also be used to predict CH,. A primary prediction used for CH,
measurement proposed by Blaxter and Clapperton (1965) used
gross energy intake, apparent digestibility of dietary energy at
maintenance (%), and level of energy intake, relative to that
required for maintenance. However, this prediction equation is
no longer used due to substantial changes in the genetic merit of
the animals, which would require new validation studies. There
are also other numerous prediction equations available, and the
most accurate ones included dry matter intake, metabolizable
energy intake, acid detergent fiber intake, and lignin intake
(Sobrinho et al., 2019).

In summary, there are multiple methods to measure CH,,
however, each method has its associated advantages and
limitations. Therefore, careful consideration is required before
selecting an optimal method to use in future studies based on
experimental design and strategies. Similarly, when looking at
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CH, emissions in individual animals, it is important to consider
not only the amount of CH, produced, but the amount of feed
consumed and milk/meat produced, as this can be indicative of
animal efficiency.

Genomic Selection for Reduced Methane
Emissions in Ruminants

Observed phenotypes are the result from the host genetic-
makeup and environmental factors (i.e., FE or CH,). Methane
production in ruminants is heritable with estimates ranging
from 0.12 to 0.52 (de Haas et al.,, 2011; Kandel et al., 2012;
Pickering et al., 2015a; Brito et al., 2018), indicating that genetic
progress can be made through selective breeding. Reducing
CH, by improving genetic merit of the herd is a cost-effective
strategy to decrease CH,, although, under practical conditions,
measuring CH, remains challenging (de Haas et al., 2011, 2017).
Genomic selection has been implemented to select for difficult-
to-measure traits such as hoof lesions in Holstein cattle (Dhakal
et al., 2015), fertility in Holstein cattle (Guarini et al., 2019), and
mastitis in meat sheep (McLaren et al., 2018) and thus could
be implemented for reduced CH, (Hayes et al., 2013). However
genomic selection requires a sizeable training population (i.e.,
animals that have both genotypic data and measurements for
CH,) to be successfully implemented. Additionally, limitations
should be considered, such as training populations for specific
livestock that commonly have crossbred or mixed populations
(i.e., sheep and beef cattle), which may result in less accurate
and more biased genomic predictions unless larger and well-
structures training populations are designed, and breed
composition is accounted for. Another factor to consider is
antagonistic effects between CH, emissions and desirable
production traits, which should be considered when selecting
for CH, reduction (Breider et al., 2019; Pszczola et al.,, 2019;
Gonzalez-Recio et al., 2020).

The relatively small number of CH, records in genotyped
animals has limited investigation of this phenotype (de Haas
et al,, 2011, 2017; Hayes et al., 2013, 2016; Rowe et al., 2014).
Furthermore, defining phenotypes and biological indicators
of CH, is a major challenge as it should be independent of
other physiological and nutritional factors (Rowe et al.,, 2014),
and be easily measured and ideally obtained at a low cost to
breeders. A positive and moderate genetic correlation (0.72)
between residual feed intake (RFI; a common measure of FE) and
predicted CH, emissions (PME) has been reported (de Haas et al,,
2011), suggesting the importance of studying FE in coordination
with CH, traits. With the heritability of RFI ranging from low
to moderate in beef (0.07 to 0.62; Berry and Crowley, 2013) and
dairy (0.04 to 0.36; Jensen et al., 1995; Hurley et al., 2016) cattle,
there is potential for genetic improvement in RFI in coordination
with CH, (Berry and Crowley, 2013). The use of proxy variables
for FE that have moderate to high heritability (de Haas et al.,
2011; Pickering et al., 2015a) and for PME with heritability
between 0.05 + 0.03 (Pickering et al., 2015b) and 0.35 + 0.12 (de
Haas et al., 2011), may be of great value to increase the rate of
genetic progress for reduced CH, (Verbyla et al., 2010; de Haas
et al., 2011). To enlarge datasets for direct selection for reduced
CH,, an international effort is necessary to jointly gather feed
intake and CH, records in ruminants. International projects and
initiatives currently exist that promote use of accessible data
across countries in order to reach a sufficiently sized training
population; such projects and initiatives include METHAGENE
(www.methagene.eu), the Efficient Dairy Genome Project (http://

genomedairy.ualberta.ca/), and the Resilient Dairy Genome
Project (http://www.resilientdairy.ca).

Genomic selection can be enhanced which a systems biology
approach incorporating both metagenomics and metabolomics,
to identify host functional genes, biomarkers, and rumen
microbial genes potentially associated with CH, to be identified.
A complementary approach to identify important genomic
regions and candidate genes associated with traits of interest
is known as GWAS. For instance, a GWAS performed for CH,
yield and gross CH, in sheep identified two significant markers
harboring the candidate genes Tetraspanin 14 (TSPAN14) which
has been significantly associated with inflammatory bowel
disease in human (Jostins et al., 2013) and Peroxisomal Biogenesis
Factor 2 (PEX2) which is hypothesized to be important to lipid
metabolism and fatty acid oxidation in cattle (Mach, 2013;
Rowe et al., 2014). Thus, Rowe et al. (2014) concluded that due
to rumen fermentation involving fatty acid metabolism and the
complex microbial community of the human colon, both are
good physiological candidates for CH, yield. Therefore, using
systems biology and GWAS, information can be incorporated in
genomic prediction approaches to improve selection strategies
aimed to reduce CH, (Saleem et al., 2013; Ursell et al., 2014;
Canovas, 2016). As mentioned previously, high selection pressure
on specific traits should be considered due to antagonistic
effects on other commercially important traits. However, this
emphasizes the importance to consider approaches that help to
better understand CH, emissions across multiple -omics levels.
Furthermore, various environmental factors must be considered
such as nutritional and management practices (Manzanilla-
Pech et al., 2016).

Metagenomics and Metabolomics as
Additional Approaches to Mitigate Methane
Emissions in Ruminants

The use of metagenomic and metabolomic approaches to
understand the variation in microbial genomes and microbial
profiles has provided important insights to the contribution of
rumen microbial structure and metabolite profiles (Attwood
et al.,, 2008; Goldansaz et al., 2017); as well as the regulation of
complex phenotypes such as FE, CH,, and nitrogen retention
(Bath et al., 2013; Artegoitia et al., 2017; Meale et al.,, 2017).
Metagenomics provides information on relative abundance
and identification of microbial species and genes, which
has advanced the evaluation of taxonomic and genetic
composition of complex microbial communities. This has
enabled the identification and quantification of microbial data
to describe microbial community structure and functions.
Microbiomes consist of many genomes compared to the host,
and the microbial structure of microbiomes can be studied
using metagenomics (Te Pas et al.,, 2017). In ruminant research
specifically, metagenomics has been used to determine sequence
information from microbes to elucidate the relationship
between microbial diversity and density with host phenotypes
in cattle and sheep (Shi et al., 2014; Denman and McSweeney,
2015; Wallace et al., 2015; Huws et al., 2018; Saborio-Montero
et al, 2019). However, the use of metagenomics to define
microbiomes when studying potential associations between
host microbial profiles with CH, was first carried out in cattle
in 2018 (Difford et al., 2018). This study revealed that variation
in CH, is influenced 21% by the host genome and 13% by
microbiota composition. It was also found that the host genome
and rumen microbes were largely independent from each other,
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which suggests that breeding for lower CH, emitting animals is
unlikely to result in unfavorable changes in the rumen microbes
(Difford et al., 2018). A recent study used structural equation
models to integrate genomic, metagenomic, and phenotypic
information to identify the biological relationships between
the host-metagenome-phenotype relationships in dairy cattle
(Saborio-Montero et al., 2019). They found that positive genetic
correlations were estimated consistently for the different phyla
including Ciliophora phylym, Euryarchaeota (Methanobrevibacter
sp.), Chytridiomycota (Neocallimastix sp.), and Fibrobacteres
(Fibrobacter sp.) phyla. Presently, metagenomic sequencing
of host microbiomes and microbial genomic sequencing of
various sample types, including the rumen microbiome, is
expanding (Kim et al., 2017; Stewart et al., 2018; Martinez-Alvaro
et al., 2020). The use of metagenomics has allowed for near-
complete microbial genomes to be assembled and results in the
identification of many sequenced rumen microbial strains and
species (Stewart et al., 2018). Additionally, networks such as The
Rumen Microbial Genomics Network (www.rmgnetwork.org/),
and the development of the reference microbial genome catalog
is expanding (Hungate1000 Project, Seshadri et al., 2018). There
is also the Global Rumen Census in which 35 countries were
involved (Henderson et al., 2015). The Global Rumen Consensus
aimed to identify the foregut microbial community in 742
samples, from 32 rumen and camelid species. They found that
similar bacteria (Prevotella, Butyrivibrio, and Ruminococcus, as well
as unclassified Lachnospiraceae, Ruminococcaceae, Bacteroidales,
and Clostridiales) and archaea (Methanobrevibacter gottschalkii,
Methanobrevibacter ruminantium Methanosphaera sp. and two
Methanomassiliicoccaceae group 10 and group 12) dominated in
nearly all samples. Thus, making it possible to mitigate CH,
emissions by developing strategies to target the few dominant
methanogens including vaccines or small-molecule inhibitors
(Henderson et al., 2015). Other research by Seshadri et al. (2018)
identified and sequenced 410 cultured bacteria and archaea
species, increasing the coverage of rumen microbes inhabiting
archaeal and bacterial domains. However, there remains a lack
of sequence and culture information on specific rumen microbes
for reference databases. Studies have used metagenomic and
metatranscriptomic approaches at the rumen microbiome
level to study CH,. For instance, Xue et al. (2020) found that
the rumen microbiome of high milk protein cows also had
lower relative abundances of organisms with methanogen and
methanogenesis functions, which suggest that these animals
produce less CH,. Martinez-Alvaro et al. (2020) investigated
functional niches in the rumen microbiome that affects variation
in CH, in high and low emitters. They found that CH, emissions
was mainly explained by variables involved in organic matter
degradation pathways, rather than only being methanogen
driven. Therefore, to improve the accuracy of identifying
functional information about the microbial genome, and further
interpret their interactions using metagenomics, the genetic
diversity, annotation, and accuracy of the microbial reference
genomes is necessary. Thus, the incorporation of metagenomic
data with functional analysis such as metatranscriptomics and
network-based approaches provide integrative information on
microbial function and activity (Wang et al., 2017; Li et al., 2017,
2018, 2019).

Metabolomics enables the identification of a network of
biological indicators that reflect physiological and pathological
events occurring, highlighting phenotypic differences observed
between extreme groups of animals. The use of metabolomics in
ruminant research has advanced the evaluation of system-wide
metabolism and biology (Goldansaz et al., 2017), contributing
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to the definition of numerous organic molecules present in
a biological tissue or fluid. Such metabolites are produced
by different biochemical pathways and various enzymatic
reactions (Oliver et al., 1998). Additionally, metabolomics
highlights biological processes involved in regulating the animal
body (Rohart et al., 2012). Through metabolomics, numerous
metabolites including milk fatty acid metabolites, volatile
metabolites, and nonvolatile metabolites have been identified
and metabolomic profiles between animal groups segregated by
extreme phenotypes have been compared (Deusch et al., 2015;
van Gastelen et al., 2018).

Metabolomic analysis in dairy cattle has largely focused on
identifying milk metabolites (Kithn et al., 2014), which can be
used to potentially predict CH, production (van Gastelen et al,,
2018). van Gastelen et al. (2018) combined all the data collected
into four sets of test variables to develop 11 CH, prediction
models. They concluded that, of the models they tested, MFA
have a moderate potential to predict CH, emission in dairy cattle
fed forage-based diets, while it is not worthwhile to use volatile
and nonvolatile metabolites to estimate CH, emission. In
general, metabolites from rumen fluid, blood, and blood plasma
show a wide range of variation due to genetics and physiological
status (Suhre and Gieger, 2012; Artegoitia et al., 2017; Meale
et al,, 2017). In relation to CH, production, rumen fluid is critical
as it contains fermentation end products for host utilization,
contributing directly to GHG emissions (Moss, 1993; Newbold
et al., 1995). Wang et al. (2018) reported that rumen fluid from
slaughtered animals may be a useful method to study variations
in CH, from different cattle types (dairy vs. beef) and ages.
Additionally, the relationship between the rumen microbiome
and the host phenotype have been better understood by
characterizing the metabolomic profiling from divergent groups
relating to disease (Adamski and Suhre, 2013), FE (Artegoitia
et al.,, 2017), diet supplementation or transition (Mao et al., 2014;
Golder et al., 2018), and milk protein yield (Xue et al., 2020). Guan
et al. (2008) compared two divergent groups, high- and low-RFI
animals, and found the total volatile fatty acid concentration
in low-RFI animals to be almost doubled (P = 0.059) in rumen
fluid compared to high-RFI steers. Thus, indicating more active
microbial fermentation and relatively higher CH, production in
low-RFI steers. Due to the differences observed between groups,
rumen fluid serves as a valuable method to collect information
on metabolites and their association with CH, production (Guan
et al., 2008). However, the integration of metabolomic data from
several sample types is important for interpreting biological
networks and metabolic pathways (Goldansaz et al.,, 2017).
Thus, the characterization of livestock metabolites is currently
expanding and incorporated into the metabolite database for
livestock research (Livestock Metabolome Database [LMDB];
www.lmdb.ca).

Metagenomics

Platforms and technologies available for
metagenomics

Advances in molecular genetic techniques using next-
generation sequencing (NGS) technology, has enabled
the study of culture independent and complex microbial
communities (Delgado et al., 2019), due to its high-throughput
DNA sequencing methods using massive parallel sequencing
of millions of DNA molecules. NGS has allowed for different
yields and sequence lengths to be identified after a single
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run at a high-throughput level (Escobar-Zepeda et al., 2015).
It requires high read depth, but also allows for unbiased
microbial sequencing (Sharpton, 2014). Additionally, it can
perform untargeted massively parallel sequencing of microbes
present in biofluids, generating quantitative microbial profiles,
for example for rumen microbiomes (Ross et al., 2013). An
approach within NGS technology includes metagenomic
sequencing, which has been used to study rumen microbiomes.
The identification, quantification, and functional annotation
of metagenomic sequences resulting in the discovery of a
vast amount of microbial diversity have been possible due to
metagenomic sequencing. Currently, multiple platforms and
technologies are available for metagenomic sequencing of
rumen microbial genomes. Major metagenomic platforms are
summarized in Table 1.

Metagenomic analyses can identify the microbes (species,
phylum identification, and abundance) present in the rumen
and their activity (i.e., through functional annotation for genes
and pathways). In addition, modeling of kinetics and dynamics
of the rumen microbiome should also be explored to understand
and appropriately assess the function of the rumen microbiome
and its association with other -omics levels. More recently, the
Mlumina MiSeq system (Illumina Inc., San Diego, CA, USA) has
been used for metaxonomic sequencing of small genomes such
as bacteria, while reducing error rates by up to two magnitudes
(Kozich et al., 2013; Reuter et al.,, 2015). Application of the
Mlumina MiSeq platform is also commonly used for 16S rRNA
gene sequencing of rumen microbiota (Acinas et al., 2004).
Metagenomic analysis has also been applied using shotgun
sequencing, which allows for the fragmentation and sequencing
of the entire genome of an organism (Sharpton, 2014).

These high-throughput analyses have advanced traditional
polymerase chain reaction (PCR) and RNA/DNA amplicon-based
sequencing (amplicon-seq) metagenomics, by providing more
efficiency and throughput. Traditional quantitative polymerase
chain reaction (QPCR) is known to be efficient, inexpensive, and
specific, for target analysis, but has low-throughput capability
and is therefore not as beneficial for metagenomic analysis.
Comparably, RNA/DNA amplicon-seq, which is now considered
a metataxonomic analysis, of phylogenetic marker genes has
been used for profiling microbial communities using 16S rRNA/
rDNA gene amplicon data for prokaryotic organisms (bacterial
and archaeal sequencing) or 185 rRNA/rDNA gene amplicon
data and Internal Transcribed Spacer (ITS) region amplicon for
eukaryotic organisms or rumen fungi (Giovannoni et al., 1990;
Escobar-Zepeda et al., 2015; Fuyong et al., 2016). Specifically,
amplicon-seq for fungi sequencing includes sequencing of ITS
region; as the 18S rRNA gene contains more hyper variable
regions, ITS sequencing allows for maximized coverage of hyper

variable ITS domains which is more suitable for identifying fungi
(Bokulich and Mills, 2013). In contrast, 16S rRNA gene amplicon
data allow for the characterization of OTUs, which represent
clusters of similar bacterial and archaeal sequences and are
used to classify bacteria and archaea. Operational taxonomic
units profiles and abundance have been useful in characterizing
bacterial profiles across cattle divergent for FE (Carberry et al,,
2014a, b; McGovern et al.,, 2018; Paz et al.,, 2018). However, this
sequencing method has limited resolution and low sensitivity
(Poretsky et al., 2014). Overall, amplicon-seq has allowed for the
characterization of 16S rRNA and 18S rRNA genes, providing
more information on microbial diversity. Use of this technology
has identified microbial and rumen fermentation markers in
the methanogenic community associated with divergent RFI
groups (McGovern et al., 2020). However, to generate a deeper
characterization, shotgun metagenomic analysis is more
suitable for metagenomic analysis, as it can lead to improved
classification of OTUs compared to other approaches such as
amplicon-seq (Hao et al., 2012; Hilton et al., 2016). Additionally,
amplicon-seq for 16S rRNA phylogenic profiling of rumen
microbiome bacteria and archaea must consider multiple factors
that could limit accuracy and specificity in results, such as the
DNA extraction method used, choice of hypervariable regions of
marker genes, PCR conditions and so on (McGovern et al., 2018).

Metagenomic-assembled genomes (MAGs) can also be used
to assess trait associations with compositional and functional
potential of the rumen microbiome. Archaeal genomes of
the ruminant rumen microbiome exist, with methanogenic
archaeon classified. However, more research is needed to
better understand the relationship between methanogens and
CH, emissions, as proportional differences in methanogenic
archaeon’s does not directly associate with CH, production
(Stewart et al., 2019).

In addition to metagenomic sequencing and MAGs, high-
throughput RNA-Sequencing (RNA-Seq) has recently been
used for profiling of RNA molecules isolated from microbiome
(Cottier et al., 2018), and is termed as metatranscriptomics in
studies of transcriptomics of microbes. Metatranscriptomics
is based on mRNA quantification using RNA-Seq and can
measure differentially expressed genes by sequencing mRNA
and mapping to a reference sequence (Mortazavi et al., 2008;
Pightling et al., 2015). It can identify both the microbial species
present in a sample as well as providing information for gene
expression and functional annotation of rumen microbes.
Recently, meta-total RNA-Seq has been proven to provide the
highest sensitivity and accuracy for bacteria and fungi profiling
compared to other methods (Cottier et al., 2018). In addition,
RNA-Seq requires lower sequencing depth compared to shotgun
metagenomics (Cottier et al., 2018). Overall, the use of RNA-Seq

Table 1. Methods used and/or currently used to measure metagenomes, and significant benefits and limitations for metagenomic analysis

Technique Benefit

Limitation

Traditional DNA
Sequencing

Provide long continuous reads
Targeted and specific

Amplicon Sequencing
18s rRNA genes, OTUs)

High-throughput

Massive parallel sequencing

Unbiased microbiome profiling

High sensitivity and reproducibility

Require low sequencing depth

Shotgun Sequencing

RNA Sequencing

Characterize target sequences (i.e., 16s TRNA,

Laborious and time consuming
Amplification bias

Inefficient

Low-throughput method

Require high sequencing depth

Require biological replicates
Accuracy depends on annotation quality of reference genome




and shotgun metagenomics are currently the most efficient
and accurate technologies for large-scale profiling of rumen
microbiomes (Cottier et al., 2018). Functional annotation of
the rumen microbial genome is also important to evaluate the
activity and function of the metagenome. However, microbial
genomes are highly fragmented and currently the majority of
DNA in metagenomes is very difficult to annotate. Some useful
tools for functional annotation include enrichment analysis by
annotation of metagenomic sequences to Kyoto Encyclopedia
of Genes and Genomes pathways and Gene Ontology terms
(Kanehisa et al., 2019). Ongoing research has shown continuous
advancements in metagenomic sequencing technology allowing
lower costs and higher throughput analysis, which will lead to
improved characterization and identification of the microbial
metagenome.

Metagenomic profiling associated with methane
emissions in ruminants

Metagenomic profiling has been applied to microbiome
analysis in ruminant research, such as the characterization
of the rumen microbial metagenome and its association
with performance traits (Carberry et al.,, 2014a, b; Kamke
et al., 2016; Roehe et al., 2016; Wang et al., 2017; Hess et al.,
2020). A sophisticated network of symbiotic relationships
exists between the (rumen) microbiota and the host, which
are essential for metabolic maintenance, immune function,
and overall production efficiency of the host (Hobson, 1997).
In addition, many studies have investigated host-microbial
interactions and their association with economically and
environmentally important traits, including CH, and FE in
dairy cattle (Wang et al., 2017; Zhou et al., 2018), beef cattle
(Zhou et al., 2009, 2011; Carberry et al., 2014a, b; Wallace et al.,
2015; Roehe et al., 2016; Tapio et al., 2017), and sheep (Shi et al.,
2014; Kamke et al., 2016; Rowe et al., 2019; Hess et al., 2020).
For instance, Wang et al. (2017) identified rumen microbial
genes encoding enzymes involved in methanogenesis
pathways in dairy cattle. Higher archaea abundance and lower
Proteobacteria, specifically Succinivibrionaceae, were shown to
inhabit the rumen of higher CH, emitting animals, suggesting
that differences in microbial abundance may result in
fluctuation of acetate and hydrogen production, potentially
influencing methanogenesis and partially explaining the
variation of CH, in ruminants (Wallace et al., 2017). Similarly,
Roehe et al. (2016) revealed that genes associated with
methanogenesis’ pathways were divergent across CH, cattle
groups and 20 microbial genes were significantly associated
with CH,. In sheep, a study of the rumen metagenome has
enabled the identification of methanogenic pathways
associated with CH, phenotypes (Shi et al., 2014). In-depth
metagenomic sequencing of archaeal species demonstrated
a similar abundance of methanogens in high- and low- CH,
yielding sheep (Shi et al., 2014). Additionally, the integration
of bacterial metagenome and metatranscriptome (bacterial
gene expression) has enabled the identification of a high
Sharpea-enriched bacterial community associated with
low-CH, yielding sheep (Kamke et al, 2016), suggesting
that a lower hydrogen and CH, producing methanogenic
community inhabits the rumen of lower CH, producing
sheep. Lastly, Hess et al. (2020) developed a low-cost high-
throughput approach to capture the diversity of the rumen
microbiome between phenotypically extreme sheep for
CH,. This approach is promising for obtaining metagenomic
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profiles and is comparable to that of bacterial 16S rRNA gene
sequencing. Combining both metagenomic information and
genomic information on large numbers of animals will allow
predictions to be made for traits such as CH, (Hess et al., 2020).

Production traits such as FE have also shown associations
with CH, when evaluating rumen microbial and metabolic
pathway enrichment, supporting the influence of energy
partitioning on CH, and the importance of evaluating CH, with
correlated production traits (Shabat et al., 2016). Studies have
further used metagenomic profiling, such as metataxonomy,
to characterize rumen microbial profiles across divergent feed
efficient cattle, and for example, revealed bacterial OTUs from
specific bacterial families were present across divergent feed
efficient beef heifers and steers (Paz et al., 2018). However, few
studies have associated these production traits with CH, traits
using metagenomic technologies (Shabat et al., 2016).

The relationship between CH, and FE is of great relevance
when proposing alternatives to breed for lower CH,-emitting
animals. Assessment of the rumen microbiome by evaluating
the microbial ecology at the species, strain, or genotype level
may assist in determining strategies for mitigating CH, (Myer
et al., 2015). It has been shown that more feed efficient cattle
have lower methanogenic species variation and community
diversity compared to inefficient cattle (Zhou et al., 2009,
2011). Furthermore, there is evidence that differing FE
groups have similar metabolic pathways and host-microbial
interactions that affect the methanogenic metagenome,
which may influence CH, (Guan et al., 2008; Zhou et al., 2009,
2011). However, other studies evaluating total methanogen
abundance revealed no differences when comparing high
and low FE groups (Zhou et al.,, 2009, 2011; Carberry et al.,,
2014a). Metagenomic analysis of rumen content can be used
to identify microbial genes that are associated with CH, and
FE; thus, rumen microbial gene abundance may be used as
a predictor of these traits (Roehe et al., 2016). In addition to
rumen content and fluid sampling, the use of buccal swabs
for metagenomic analysis as a noninvasive collection method
and indirect way to assess the rumen metagenome has
been studied, which revealed no significant differences in
the microbial community across buccal or rumen sampling
methods in sheep (Kittelmann et al., 2015). Further studies on
the metagenomic analysis of biological samples such as saliva
or buccal swabs, and associations with rumen metagenome,
may lead to an indirect assessment of the rumen metagenome,
providing further insight into the biology underlying CH, in
ruminants.

Metagenomic profiling of the rumen microbiome in
different species and breeds shows promise of advancing
our understanding of the diversity, function, and evolution
of the microbial metagenome and its association with CH,.
Metagenomic profiling has the potential to provide further
insight into the associations between the host-microbiome
interactions and host production efficiency (Delgado et al., 2019;
Li et al., 2019), overall health (Malmuthuge and Guan, 2016), and
nutrient metabolism (Wang et al., 2019). Further studies are
necessary to determine links between host and rumen microbial
metagenomic abundance, taxonomy, and function which can be
used to predict important host phenotypes and performance.
Metagenomic studies of the rumen microbiome will advance
our understanding of rumen microbial diversity and community
structure, and potential indications on microbial interactions
and metabolism that may influence the regulation of CH, in
ruminants.



8 | Journal of Animal Science, 2021, Vol. 99, No. 10

Metabolomics

Platforms and technologies available for
metabolomics

Metabolomicanalysis has more recently become a major focus
for “-omics” technologies for robust phenotyping in humans,
crops, and model organisms, and its use and application in
ruminant research has become more evident (Goldansaz
et al., 2017; Huws et al., 2018). Metabolomics evaluates large
quantities of metabolites, which enables the identification of
physiological mechanisms and interactions between genes and
the environment and has been applied to evaluate metabolite
variations in milk, plasma, serum, urine, and ruminal fluid
(Sun et al., 2015; Fontanesi, 2016; Goldansaz et al., 2017). These
samples are commonly collected and assessed to provide
insight on animal energy metabolism, by focusing on residual
biomarkers. Comparing metabolites of individuals from
divergent phenotype groups enables a better understanding of
the biological processes that vary between individuals based on
their genetic make-up, which could lead to differences in the
phenotype observed.

There are numerous analytical instruments used to provide
information about livestock metabolomes. The three most
common methods are summarized with major advantages
and limitations in Table 2. The most used platform is nuclear
magnetic resonance (NMR) due to its high reliability (Goldansaz
et al., 2017; Bica et al., 2020). This technique considers the spin
properties of the nucleus of atoms, qualifying molecules, and
metabolites present in the samples to be identified (Moco
et al., 2007). Nuclear magnetic resonance enables metabolite
identification in a nondestructive nature with minimal need for
sample preparation time (Dettmer etal.,2007). However,chemical
shift signals may cause clustering, making it challenging to
identify individual metabolites in complex mixtures (Dettmer
etal., 2007). A common method used in animal research involves
NMR fingerprinting, which is based on collecting NMR spectra
of complex mixtures of bio-fluids and comparing samples to
pinpoint differences, enabling the identification of important
biomarkers associated with the phenotypes of interest (Ratcliffe
and Hill, 2005; Kochhar et al., 2006). Nuclear magnetic resonance
technology is one of the most used techniques, however, it is
relatively insensitive, as only substances in macromolar to
millimolar concentrations are quantified (Goldansaz et al., 2017).

Mass spectrometry (MS) is another technique used in
metabolomic studies, and unlike NMR, it can detect metabolites
at nanomolar to picomolar concentrations (Goldansaz et al.,
2017).Mass spectrometry provides high selectivity and sensitivity
with the potential to identify metabolites, however, it requires a
preparation step that can degrade metabolites from the sample
and therefore they will be undetected (Dettmer et al., 2007). For
this reason, to study the metabolome fully and comprehensively,
liquid chromatography-MS (LC-MS) and gas chromatography-MS
(GG-MS) have been combined with MS. Gas chromatography-MS

is less sensitive than LC-MS, but it is generally more robust and
reproducible (Goldansaz et al., 2017). Both LC-MS and GC-MS
can detect a wide variety of compounds in biological samples.
Liquid chromatography-MS utilizes soft ionization sources and
atmospheric pressure chemical ionization. This method is very
powerful as it has extremely high sensitivity, can reduce ion
suppression, and is commonly used for the analysis of complex
water samples and metabolomes (Dettmer et al., 2007; Ammann
and Suter, 2016). In comparison, GC-MS uses hard-ionization
methods and electron impact ionization and can analyze volatile
and non-volatile compounds (Moco et al., 2007; Lei et al., 2011).
As 0f 2017, the LC-MS technique has been used in approximately
25% of livestock metabolomic studies, while 15% of the livestock
metabolomic studies used GC-MS, which is also common for
other metabolomic disciplines (Goldansaz et al., 2017).

Ultimately, these approaches may yield useful information
for the chemical quantification and identification of metabolites
(Fontanesi, 2016). However, a potential challenge associated
with these high-resolution metabolomic technologies is
data management (Pieper et al, 2015). In the past, NMR was
the preferred method of choice, but both GC-MS and LC-MS
have become key analytical platforms for various types
of metabolomic applications. This is due to the increasing
reproducibility and higher sensitivity of these systems (Regal
et al,, 2011). In comparison, LC-MS appears to be the most
versatile due to its ability to separate compounds with a broad
range of polarity with minimal effort in sample preparation
(Moco et al., 2007). However, to broaden the metabolite coverage,
multiple metabolic platforms should be used.

Metabolomic profiling associated with methane
emissions in ruminants

The metabolomic profile of both human and livestock species
display a continuous range of variation among individuals,
and the amount of gut bacterial metabolites is presently
undetermined (Dorrestein et al., 2014; Fontanesi, 2016).
Uncovering these metabolomic profiles can lead to the
understanding of biological processes essential to genetic and
environmental differences among animals and could provide
insight on innovative applications in animal breeding and
management. In conjunction with genetic tools, metabolomics
illustrates one of the biological levels to help understanding
how the host genome influences an individual’s metabolism
and consequently, the potential causes of phenotypic variability.
A recent review highlighted the evident effect of host genetics
on rumen microbial features; however, the extent to which
these interactions are causal is not known (Newbold and
Ramos-Morales, 2020). The use of metabolome data to indirectly
assess CH, offers the ability to collect data in a noninvasive
and indirect collection of readily available samples such as
milk. For instance, Antunes-Fernandes et al. (2016) investigated
the milk metabolome of Holstein-Friesian cattle to identify
the biological pathways associated with CH, and reported

Table 2. Methods used and/or currently used to measure metabolites, and significant benefits and limitations for metabolomic analysis

Technique

Benefit

Limitation

Mass Spectrometry

Higher Performance Liquid Phase
Chromatography
Nuclear Magnetic Resonance
required

Provides high selectivity and sensitivity for
metabolite identification

Allows the identification of compounds in a
multi- component mixture

Nondestructive nature, minimal sample prep Individual metabolite identification in complex

Preparation step required can damage
metabolites
Costly process to run

mixtures is challenging due to clustering




four volatile (1-heptanol-decanol, 3-nonanone, ethanol, and
tetrahydrofuran) and six nonvolatile metabolites (acetoacetate,
creatinine, ethanol, formate, methylmalonate, and N-acetylsugar
A) positively related with CH, intensity, whereas, uridine
diphosphate-hexose B, and citrate were negatively related
with CH, intensity (Antunes-Fernandes et al., 2016). This study
supports the hypothesis that the milk metabolome is a valuable
source to understand the biological metabolism of dairy cows in
relation to CH,. Another group of researchers, Castro-Montoya
et al. (2016), investigated the relationship between milk fatty
acids (MFA) and CH, in dairy cows. They found that the use
of different methods for MFA collection and analysis between
studies results in difficulty to identify a clear pattern on the
association between MFA and CH, (Castro-Montoya et al., 2016).
Despite these findings, this is a promising area of research, and
thus, there is potential to identify MFA biomarkers associated
with CH,.

Further research in metabolomic profiling in ruminants is
necessary to improve the current understanding of biological
processes and biomarkers that play a role in the regulation of
desirable traits (van Gastelen et al. 2018; Newbold and Ramos-
Morales, 2020; Sun et al., 2020; Xue et al., 2020). Unfortunately, a
large gap in research exists on studies assessing the metabolome
and its association with CH,, and more specifically, on the
understanding of the rumen microbial metabolome (Newbold
and Ramos-Morales, 2020). The current understanding of the
functional context of rumen microbiome metabolome is limited
to our knowledge of defined and annotated rumen metabolites
(Newbold and Ramos-Morales, 2020). However, as biomarkers
have been insightful into higher milk yields and milk protein
quality, there is a great opportunity for the investigation of the
microbiome and its association with CH, using metabolomics
(Sun et al., 2015; Sun et al., 2020; Xue et al., 2020).

Integration of “-Omics” Data with
Functional Analyses to Identify Potential
Candidate Regions and Genes Regulating
Methane Emissions

Integration of high-throughput “-omics” technologies such
as metabolomics, metagenomics, and host genomics with
functional analyses using a systems biology approach can
provide important information on functional genes and
their influence on the regulation of complex trait phenotypes
including CH, (Canovas et al., 2014a, b; Canovas, 2016; Fonseca
et al.,, 2018). Additional to metabolomics and metagenomics,
transcriptomics is an “-omics” technology that evaluates the
transcriptome at a high-throughput level, which consists of
the total expressed RNA in a cell or tissue at a specific time
point, and allows for measurement of gene expression levels,
detection of structural variants including single-nucleotide
polymorphisms (SNP), insertions and deletions, and the
identification of differentially expressed splice variants in the
entire transcriptome (Wang et al., 2009). Such knowledge about
genetic variation and gene expression can provide information
on potential candidate regions and genes regulating CH,.
A widely used tool for transcriptome and functional analysis
includes RNA-Seq, which as previously mentioned, is used for
transcriptome profiling to measure gene expression and genome
structure through the identification of SNPs and other structural
variants (Canovas et al., 2010, 2013; Cardoso et al., 2018; Lam
et al., 2020, 2021; Suravajhala et al., 2016). RNA-Seq quantifies
all present genes and is more cost-effective, robust, accurate,
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and high-throughput compared to the traditional method of
microarray analysis (Cdnovas et al., 2010; Wickramasinghe
et al., 2014). Metatranscriptomics uses RNA-Seq technology to
evaluate community-wide function and activity of host tissue
transcriptome (i.e., muscle, liver, fat) as well as the transcriptome
of rumen microbes (i.e., rumen tissue, contents, or fluid), which
can be coupled with other “-omics” technologies to integrate
multiple levels of information using a systems biology
approach (Kamke et al., 2016; Li et al., 2018; Huws et al., 2018).
The integration of transcriptome and metatranscriptome data
of the host and rumen microbe transcriptome, respectively,
can provide information on similarities in the diversity,
abundance, and differential gene expression in microbial
communities and host genetics which may be associated with
CH, (Huws et al., 2018).

Following RNA-Seq analysis, several functional systems
biology technologies can be applied from RNA-Seq data
including, pathway analysis and Weighted Gene Co-Expression
Network Analysis (WGCNA) which is most commonly performed
on tissue RNA-Seq and provides information on networks and
clusters of highly correlated genes to be linked to cattle FE (Kong
et al., 2016). Few studies have used WGCNA network analysis in
ruminant research due to the requirement of a large population
size with RNA-Seq data. A recent study by Kong et al. (2016) on
beef cattle divergent for FE, performed WGCNA and revealed
three co-expressed gene clusters significantly correlated with
RFIL Sun et al. (2019) also performed WGCNA to relate models
of highly correlated genes to four FE-related traits. The authors
concluded that combining confounding factors (breed types,
start ages, body weight, tissues) with the weighted gene module-
trait relationship contributes to a high coverage and powerful
analysis of transcriptome interpretation (Sun et al., 2019).
Other functional technologies include the concept of Genetical
Genomics, which arose with the development of ruminant
genome sequences, and investigates the gene expression of
the entire transcriptome by integrating both structural and
functional genomics data through a combination of gene
expression and genotypic data (Canovas, 2016; Canovas et al.,
2017). The use of the latter integrative analyses may provide
further functional information on regulatory genes and gene
networks associated with important traits such as CH,.

Combining and interpreting multiple levels of datasets
resulted in the systems biology approach, allowing for a better
biological understanding of phenotypes (Canovas, 2016; Fonseca
et al.,, 2018), as it allows for the study of interactions between
components of biological systems and how the interactions
influence the function and behavior of those systems (Canovas
et al., 2014a, b; Dias et al., 2017; Te Pas et al., 2017; Fonseca et al.,
2018). Systems biology is especially useful to elucidate complex
traits that are regulated by multiple physiological processes.
Integration of different “-omics” datasets, such as metagenomics,
metabolomics, transcriptomics, metatranscriptomics, and
proteomics with systems biology tools such as network analyses
and multilevel data integration can provide a more complete
understanding of observed phenotypes in ruminant animals
(Huws et al., 2018; Sun et al., 2020). Due to vast improvements
in sequencing technologies, the efficiency and costs to obtain
different levels of information at the “-omics” level have
improved substantially (Suravajhala et al., 2016).

Genomic information from integrative “-omics” data and
systems biology analysis on desirable traits can then be
incorporated into breeding strategies to improve production
efficiency (Canovas, 2016; Suravajhala et al., 2016; Fleming et al.,
2018). Information from integrated “omics” data and systems
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biology can then be disseminated and applied to industry to
reveal more biological and genetic information to improve the
understanding of complex and difficult to measure performance
traits. This will result in increased accuracy of selection, a
reduction in the generation interval, and an increased rate
of genetic improvement of traits that are difficult to measure
(Céanovas, 2016; Suravajhala et al., 2016). Overall, this may lead to
improved competitiveness of the ruminant production industry
through the improvement of economically and environmentally
important traits such as CH,, using integrated “-omics”
technologies and a systems biology approach.

Integrative approaches are currently being applied to
uncover information associating different levels of omics, and
further investigation of multi-level analysis is needed, such as
integrating the genome, transcriptome, and metabolome. As
the genome and transcriptome directly affect metabolite levels
which result in changes to metabolite profiles; this highlights
the importance of evaluating these levels as a system since
specific metabolites are greatly affected by specific genetic
features, and approaches are emerging to connect genomics
with metabolomics. Integrative analyses include metabolite
genome-wide association study (mGWAS), which uses GWAS to
identify QTLs and significant SNPs associated with a metabolite.
This allows identification of SNP-Metabolite trait associations
or mQTL (Kadarmideen, 2016). In addition, machine learning
algorithms have been used for clustering analysis. This includes
multivariate analyses such as Random Forest analysis. Random
forest is a supervised machine learning algorithm that operates
with decision trees to classify specific features together (i.e.,
clustering multiple metabolites based on commonalities).
Melzer et al. (2013) demonstrated the use of Random Forest and
Partial Least Squares (PLS) to determine correlations between
milk traits and metabolite profiles. To further integrate this
approach with other -omics information, genetic correlations
of metabolite profiles with traits such as CH, emissions can
be done.

To integrate rumen microbiome features, other machine
learning approaches have been used in studies aiming to identify
relationships between the microbiome and host phenotypes,
including penalized regression, support vector machine, Random
Forest, and artificial neural networks (Namkung, 2020). Although
these analyses are already applied in human studies, there is a
lack of studies using these approaches to firstly integrate -omics
levels in livestock research, and secondly, to use the latter to
better understand CH, emissions at a system level.

Conclusions

Due to the negative environmental impact of global warming,
the demand to mitigate CH, in ruminants is increasing. The
development of cost-effective ways to mitigate CH, has become
a key priority worldwide, and this may be achieved by improving
breeding strategies for more economically and environmentally
efficient animals. Using previously collected data and existing
resources in combination with high-throughput “-omics”
technologies will advance our knowledge of the functional
understanding of the metabolome and metagenome of
ruminants. Increased integration of metabolomics and
metagenomic information with other high-throughput “-omics”
technologies and systems biology analyses are needed to provide
a deeper understanding of the genes and metabolic pathways
that influence the regulation and variation of CH, production in
ruminant animals.
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