
Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

1 of 9

A P P L I E D P H Y S I C S

Learning the solution operator of parametric partial
differential equations with physics-informed DeepONets
Sifan Wang1, Hanwen Wang1, Paris Perdikaris2*

Partial differential equations (PDEs) play a central role in the mathematical analysis and modeling of complex
dynamic processes across all corners of science and engineering. Their solution often requires laborious analytical
or computational tools, associated with a cost that is markedly amplified when different scenarios need to be
investigated, for example, corresponding to different initial or boundary conditions, different inputs, etc. In this
work, we introduce physics-informed DeepONets, a deep learning framework for learning the solution operator
of arbitrary PDEs, even in the absence of any paired input-output training data. We illustrate the effectiveness of
the proposed framework in rapidly predicting the solution of various types of parametric PDEs up to three orders
of magnitude faster compared to conventional PDE solvers, setting a previously unexplored paradigm for modeling
and simulation of nonlinear and nonequilibrium processes in science and engineering.

INTRODUCTION
As machine learning (ML) methodologies take center stage across
diverse disciplines in science and engineering, there is an increased
interest in adopting data-driven methods to analyze, emulate, and
optimize complex physical systems. The dynamic behavior of such
systems is often described by conservation and constitutive laws
expressed as systems of partial differential equations (PDEs) (1). A
classical task then involves the use of analytical or computational
tools to solve such equations across a range of scenarios, e.g., differ-
ent domain geometries, input parameters, and initial and boundary
conditions (IBCs). Mathematically speaking, solving these so-called
parametric PDE problems involves learning the solution operator
that maps variable input entities to the corresponding latent solu-
tions of the underlying PDE system. Tackling this task using tradi-
tional tools [e.g., finite element methods (2)] bears a formidable cost,
as independent simulations need to be performed for every differ-
ent domain geometry, input parameter, or IBCs. This challenge has
motivated a growing literature on reduced-order methods (3–9) that
leverage existing datasets to build fast emulators, often at the price
of reduced accuracy, stability, and generalization performance (10, 11).
More recently, ML tools are actively developed to infer solutions of
PDEs (12–18); however, most existing tools can only accommodate
a fixed given set of input parameters or IBCs. Nevertheless, these
approaches have found wide applicability across diverse applications
including fluid mechanics (19, 20), heat transfer (21, 22), bioengi-
neering (23, 24), materials (25–28), and finance (29, 30), showcasing
the remarkable effectiveness of ML techniques in learning black box
functions, even in high-dimensional contexts (31). A natural ques-
tion then arises: Can ML methods be effective in building fast emu-
lators for solving parametric PDEs?

Solving parametric PDEs requires learning operators (i.e., maps
between infinite dimensional function spaces) instead of functions
(i.e., maps between finite dimensional vector spaces), thus defining
a new and relatively under explored realm for ML-based approaches.
Neural operator methods (32–34) represent the solution map of

parametric PDEs as an integral Hilbert-Schmidt operator, whose
kernel is parametrized and learned from paired observations, either
using local message passing on a graph-based discretization of the
physical domain (32, 33) or using global Fourier approximations
in the frequency domain (34). By construction, neural operators
methods are resolution independent (i.e., the model can be queried
at any arbitrary input location), but they require large training data-
sets, while their involved implementation often leads to slow and
computationally expensive training loops. More recently, Lu et al.
(35) has presented a novel operator learning architecture coined as
DeepONet that is motivated by the universal approximation theorem
for operators (36, 37). DeepONets still require large annotated data-
sets consisting of paired input-output observations, but they provide
a simple and intuitive model architecture that is fast to train, while
allowing for a continuous representation of the target output func-
tions that is independent of resolution. Beyond deep learning ap-
proaches, operator-valued kernel methods (38, 39) have also been
demonstrated as a powerful tool for learning nonlinear operators,
and they can naturally be generalized to neural networks acting on
function spaces (40), but their applicability is generally limited due
to their computational cost. Here, we should again stress that the
aforementioned techniques enable inference in abstract infinite-
dimensional Banach spaces (41), a paradigm shift from current ML
practice that mainly focuses on learning functions instead of opera-
tors. Recent theoretical findings also suggest that the sample com-
plexity of deep neural networks (31, 42, 43), and DeepONets in
particular (44), can circumvent the curse of dimensionality in cer-
tain scenarios.

While the aforementioned methodologies have demonstrated
early promise across a range of applications (45–49), their applica-
tion to solving parametric PDEs faces two fundamental challenges.
First, they require a large corpus of paired input-output observations.
In many realistic scenarios, the acquisition of such data involves the
repeated evaluation of expensive experiments or costly high-fidelity
simulators, thus generating sufficient large training datasets that may
be prohibitively expensive. Ideally, one would wish to be able to
train such models without any observed data at all (i.e., given only
knowledge of the PDE form and its corresponding IBCs). The sec-
ond challenge relates to the fact that, by construction, the methods
outlined above can only return a crude approximation to the target

1Graduate Group in Applied Mathematics and Computational Science, University of
Pennsylvania, Philadelphia, PA 19104, USA. 2Department of Mechanical Engineering
and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA.
*Corresponding author. Email: pgp@seas.upenn.edu

Copyright © 2021
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
License 4.0 (CC BY).

mailto:pgp@seas.upenn.edu

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

2 of 9

solution operator in the sense that the predicted output functions
are not guaranteed to satisfy the underlying PDE. Recent efforts
(16, 50–53) attempt to address some of these challenges by design-
ing appropriate architectures and loss functions for learning dis-
cretized operators (i.e., maps between high-dimensional Euclidean
spaces). Although these approaches can relax the requirement for
paired input-output training data, they are limited by the resolution of
their underlying mesh discretization and, consequently, need modi-
fications to their architecture for different resolutions/discretizations
to achieve consistent convergence [if at all possible, as demonstrated
in (32)].

In this work, we aim to address the aforementioned challenges
by exploring a simple yet remarkably effective extension of the
DeepONet framework (35). Drawing motivation from physics-
informed neural networks (14), we recognize that the outputs of a
DeepONet model are differentiable with respect to their input co-
ordinates, therefore allowing us to use automatic differentiation
(54, 55) to formulate an appropriate regularization mechanism for
biasing the target output functions to satisfy the underlying PDE
constraints. This yields a simple procedure for training physics-
informed DeepONet models even in the absence of any training
data for the latent output functions, except for the appropriate IBCs
of a given PDE system. By constraining the outputs of a DeepONet
to approximately satisfy an underlying governing law, we observe
substantial improvements in predictive accuracy (up to one to two
orders of magnitude reduction in predictive errors), enhanced
generalization performance even for out-of-distribution prediction
and extrapolation tasks, as well as enhanced data efficiency (up to
100% reduction in the number of examples required to train a
DeepONet model). Hence, we demonstrate how physics-informed
DeepONet models can be used to solve parametric PDEs without
any paired input-output observations, a setting for which existing
approaches for operator learning in Banach spaces fall short. More-
over, a trained physics-informed DeepONet model can generate
PDE solutions up to three orders of magnitude faster compared to
traditional PDE solvers. Together, the computational infrastructure
developed in this work can have broad technical impact in reducing
computational costs and accelerating scientific modeling of complex

nonlinear, nonequilibrium processes across diverse applications in-
cluding engineering design and control, Earth System science, and
computational biology.

RESULTS
The proposed physics-informed DeepONet architecture is summa-
rized in Fig. 1. Motivated by the universal approximation theorem
for operators (35, 36), the architecture features two neural networks
coined as the “branch” and “trunk” networks, respectively; the
automatic differentiation of which enables us to learn the solution
operator of arbitrary PDEs. The associated loss functions, perform-
ance metrics, computational cost, hyperparameters, and training
details are discussed in the Supplementary Materials. In the following,
we demonstrate the effectiveness of physics-informed DeepONets
across a series of comprehensive numerical studies for solving various
types of parametric PDEs. A summary of the different benchmarks
considered is presented in Table 1. It is worth emphasizing that, in
all cases, the proposed deep learning models are trained without any
paired input-output data, assuming only knowledge of the governing
equation and its corresponding initial or boundary conditions.

Solving a parametric ordinary differential equation
We begin with a pedagogical example involving the antiderivative
operator. The underlying governing law corresponds to an initial
value problem described by the following ordinary differential
equation (ODE)

 ds(x) ─ dx = u(x), x ∈ [0, 1] (1)

 s(0) = 0 (2)

Here, we aim to learn the solution operator mapping any forcing
term u(x) to the ODE solution s(x) using a physics-informed DeepONet.
The model is trained on random realizations of u(x) generated by
sampling a Gaussian random field (GRF) as detailed in the Supple-
mentary Materials, while prediction accuracy is measured in new

Branch net

Trunk net

DeepONet

PDE

BC & IC

Losss
Minimize

Fig. 1. Making DeepONets physics informed. The DeepONet architecture (35) consists of two subnetworks, the branch net for extracting latent representations of input
functions and the trunk net for extracting latent representations of input coordinates at which the output functions are evaluated. A continuous and differentiable rep-
resentation of the output functions is then obtained by merging the latent representations extracted by each subnetwork via a dot product. Automatic differentiation
can then be used to formulate appropriate regularization mechanisms for biasing the DeepONet outputs to satisfy a given system of PDEs. BC, boundary conditions;
IC, initial conditions.

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

3 of 9

unseen realizations that are not used during model training. Results
for one representative input sample u(x) from the test dataset are
presented in Fig. 2. It is evident that an excellent agreement can be
achieved between the physics-informed DeepONet predictions and
the ground truth. More impressively, below, we show that physics-
informed DeepONets can also accommodate irregular input func-
tions by using an appropriate neural network architecture, such as a
Fourier features network (56) for their trunk. As shown in Fig. 2,
the predicted solutions s(x) and their corresponding ODE residuals
u(x) obtained by a physics-informed DeepONet with a Fourier feature
trunk network are in excellent agreement with the exact solutions
for this benchmark. Additional systematic studies and visualizations
are provided in the Supplementary Materials (see figs. S1 to S11 and
tables S6 to S10). On the basis of these observations, we may also
conclude that physics-informed DeepONets can be regarded as a
class of deep learning models that greatly enhance and generalize the
capabilities of physics-informed neural networks (57), which are
limited to solving ODEs and PDEs for a given set of input parameters
that remain fixed during both the training and prediction phases
(see tables S7 and S8 for a more detailed comparison).

It is also worth pointing out that the trained physics-informed
DeepONet is even capable of yielding accurate predictions for
out-of-distribution test data. To illustrate this, we create a test dataset
by sampling input functions from a GRF with a larger length scale
of l = 0.2 (recall that the training data for this case is generated using
l = 0.01). The corresponding relative L2 prediction error averaged
over 1000 test examples is measured as 0.7%. Additional visualiza-
tions of the model predictions for this out-of-distribution prediction
task can be found in the Supplementary Materials (fig. S9).

Diffusion-reaction dynamics
Our next example involves an implicit operator described by a non-
linear diffusion-reaction PDE with a source term u(x)

 ∂ s ─ ∂ t = D ∂ 2 s ─
∂ x 2

 + k s 2 + u(x) , (x, t) ∈ (0, 1] × (0, 1] (3)

assuming zero IBCs, while D = 0.01 is the diffusion coefficient and
k = 0.01 is the reaction rate. Here, we aim to learn the solution
operator for mapping source terms u(x) to the corresponding PDE

solutions s(x). The model is trained on random realizations of u(x)
generated by sampling a GRF as detailed in the Supplementary
Materials, while prediction accuracy is measured in new unseen
realizations that are not used during model training.

The top panels of Fig. 3 show the comparison between the pre-
dicted and the exact solution for a random test input sample. More
visualizations for different input samples can be found in the Sup-
plementary Materials (fig. S12). We observe that the physics-informed
DeepONet predictions achieve an excellent agreement with the cor-
responding reference solutions. Furthermore, we provide a com-
parison against the conventional DeepONet formulation recently put
forth by Lu et al. (35). This case necessitates observations of paired
input-output pairs [u(x), s(x, t)] to be provided as training data, as
no physical constraints are leveraged during model training. The
mean and SD of relative L2 errors of the conventional DeepONet
and physics-informed DeepONet over the test dataset are visualized
in the bottom panel of Fig. 3. The average relative L2 error of
DeepONet and physics-informed DeepONet are ∼1.92 and ∼0.45%,
respectively. In contrast to the conventional DeepONet that is trained
on paired input-output measurements, the proposed physics-informed
DeepONet can yield much more accurate predictions even without
any paired training data (except for the specified IBCs). In our ex-
perience, predictive accuracy can be generally improved by using a
larger batch size during training. A study of the effect of batch size
for training physics-informed DeepONets can be found in the Sup-
plementary Materials (figs. S13 and S16). A series of convergence
studies aiming to illustrate how predictive accuracy is affected by
the number of input sensor locations m and different neural net-
work architectures is also presented in the Supplementary Materials
(fig. S14).

Burgers’ transport dynamics
To highlight the ability of the proposed framework to handle non-
linearity in the governing PDEs, we consider the one-dimensional
(1D) Burgers’ benchmark investigated in Li et al. (34)

 ds ─ dt + s ds ─ dx − ν d 2 s ─
d x 2

 = 0, (x, t) ∈ (0, 1) × (0, 1] (4)

 s(x, 0) = u(x), x ∈ (0, 1) (5)

with periodic boundary conditions

 s(0, t) = s(1, t) (6)

 ds ─ dx (0, t) = ds ─ dx (1, t) (7)

where t ∈ (0,1), the viscosity is set to = 0.01, and the initial con-
dition u(x) is generated from a GRF ∼𝒩(0,252(− + 52I)−4), satis-
fying the periodic boundary conditions.

Our goal here is to use the proposed physics-informed DeepONet
model to learn the solution operator mapping initial conditions u(x)
to the full spatiotemporal solution s(x, t) of the 1D Burgers’ equa-
tion. To this end, the model is trained on random realizations of
u(x) generated by sampling a GRF as detailed in the Supplementary
Materials, while prediction accuracy is measured in new unseen
realizations that are not used during model training.

Table 1. Summary of benchmarks for assessing the performance of
physics-informed DeepONets across various types of parametric
differential equations. The reported test error corresponds to the
relative L2 prediction error of the trained model, averaged over all
examples in the test dataset (see eq. S20).

Governing law Equation form Random input Test error

Linear ODE ds(x) _ dx  = u(x) Forcing terms 0.33 ± 0.32%

Diffusion
reaction ∂ s _ ∂ t  = D   ∂  2 s _ 

∂ x  2
 + k s  2 + u(x) Source terms 0.45 ± 0.16%

Burgers’ ∂ s _ ∂ t  + s  ∂ s _ ∂ x − ν ∂  2 s _ 
 x  2

  = 0
Initial

conditions 1.38 ± 1.64%

Advection ∂ s _ ∂ t  + u  ∂ s _ ∂ x = 0
Variable
coefficients 2.24 ± 0.68%

Eikonal ∥ ∇ s∥2 = 0 Domain
geometries 0.42 ± 0.11%

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

4 of 9

The average relative L2 error of the best trained model is ∼1.38%
(see figs. S17 to S19). The physics-informed DeepONet achieves the
comparable accuracy compared to Fourier operator methods (34),
albeit the latter has been only tested for a simpler case corresponding

to = 0.1 and requires training on a large corpus of paired input-
output data. Furthermore, visualizations corresponding to the worst
example in the test dataset are shown in the top panels of Fig. 4.
One can see that the predicted solution achieves a good agreement

Fig. 2. Solving a one-dimensional parametric ODE. (A and B) Exact solution and residual versus the predictions of a trained physics-informed DeepONet for a representative
input function sampled from a GRF with length scale l = 0.2. (C and D) Exact solutions and corresponding ODE residuals versus the predictions of a trained physics-
informed DeepONet with Fourier feature embeddings (56) for a representative input function sampled from a GRF with length scale l = 0.01. The predicted residual u(x)
is computed via automatic differentiation (55).

Fig. 3. Solving a parametric diffusion-reaction system. (Top) Exact solution versus the prediction of a trained physics-informed DeepONet for a representative exam-
ple in the test dataset. (Bottom) Mean and SD of the relative L2 prediction error of a trained DeepONet (with paired input-output training data) and a physics-informed
DeepONet (without paired input-output training data) over 1000 examples in the test dataset. The mean and SD of the relative L2 prediction are ∼1.92 ± 1.12% (DeepONet)
and ∼0.45 ± 0.16% (physics-informed DeepONet), respectively. The physics-informed DeepONet yields ∼80% improvement in prediction accuracy with 100% reduction
in the dataset size required for training. Tanh, hyperbolic tangent; ReLU, rectified linear unit.

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

5 of 9

against the reference solution, with a the relative L2 error of 3.30%.
Here, we must also emphasize that a trained physics-informed
DeepONet model can rapidly predict the entire spatiotemporal solu-
tion of the Burgers equation in ∼10 ms. Inference with physics-
informed DeepONets is trivially parallelizable, allowing for the
solution of 𝒪(103) PDEs in a fraction of a second, yielding up to
three orders of magnitude in speed up compared to a conventional
spectral solver (58), see the bottom panel of Fig. 4.

Despite the promising results presented here, we must note the
need for further methodological advances toward enhancing the ac-
curacy and robustness of physics-informed DeepONets in tackling
PDE systems with stiff, turbulent, or chaotic dynamics. For example,
we have observed that the predictive accuracy of physics-informed
DeepONets degrades in regions where the PDE solution exhibits
steep gradients; a behavior that is pronounced as the viscosity
parameter in the Burgers equation is further decreased (see fig. S20
and table S11 for more details and quantitative results). We conjec-
ture that these issues can be tackled in the future by designing of
more specialized architectures that are tailored to the dynamic be-
havior of a given PDE, as well as more effective optimization algo-
rithms for training.

Advection equation
This example aims to investigate the performance of physics-informed
DeepONets for tackling advection-dominated PDEs; a setting for
which conventional approaches to reduced-order modeling faces
significant challenges (7, 10, 11). To this end, we consider a linear
advection equation with variable coefficients

 ∂ s ─ ∂ t + u(x) ∂ s ─ ∂ x = 0, (x, t) ∈ (0, 1) × (0, 1) (8)

with the IBC

 s(x, 0) = f(x) (9)

 s(0, t) = g(t) (10)

where f(x) = sin (x) and g(t) = sin (π _ 2 t) . To make the input
function u(x) strictly positive, we let u(x) = v(x) − min x v(x) + 1 ,
where v(x) is sampled from a GRF with a length scale l = 0.2. The
goal is to learn the solution operator G mapping variable coefficients
u(x) to associated solutions s(x, t) (see the Supplementary Materials
for more details).

As shown in Fig. 5, the trained physics-informed DeepONet is
able to achieve an overall good agreement with the reference PDE
solution, although some inaccuracies can be observed in regions
where the solution exhibits steep gradients (similarly to the Burgers’
example discussed above; see additional visualizations presented in
fig. S21). The resulting relative L2 prediction averaged over all
examples in the test dataset is 2.24%, leading to the conclusion
that physics-informed DeepONets can be effective surrogates for
advection-dominated PDEs.

Eikonal equation
Our last example aims to highlight the capability of the proposed
physics-informed DeepONet to handle different types of input
functions. To this end, let us consider a 2D eikonal equation
of the form

 ∥ ∇ s(x) ∥ 2 = 1
s(x) = 0, x ∈ ∂ Ω

 (11)

Fig. 4. Solving a parametric Burgers’ equation. (Top) Exact solution versus the prediction of the best-trained physics-informed DeepONet. The resulting relative L2
error of the predicted solution is 3%. (Bottom) Computational cost (s) for performing inference with a trained physics-informed DeepONet model [conventional or modified
multilayer perceptron (MLP) architecture], as well as corresponding timing for solving a PDE with a conventional spectral solver (58). Notably, a trained physics-informed
DeepONet model can predict the solution of 𝒪(103) time-dependent PDEs in a fraction of a second, up to three orders of magnitude faster compared to a conventional
PDE solver. Reported timings are obtained on a single NVIDIA V100 graphics processing unit (GPU).

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

6 of 9

where x = (x, y) ∈ ℝ2 denotes 2D spatial coordinates, and is an
open domain with a piece-wise smooth boundary ∂. A solution to
the above equation is a signed distance function measuring the dis-
tance of a point in to the closest point on the boundary ∂, i.e.

 s(x) = {
d(x, ∂ Ω)

if x ∈ Ω

− d(x, ∂ Ω)

if x ∈ Ω c

where d(· , ·) is a distance function defined as

 d(x, ∂ Ω) ≔ inf
y∈∂Ω

 d(x, y) (12)

Signed distance functions (SDFs) have recently sparked increased
interest in the computer vision and graphics communities as a tool
for shape representation learning (59). This is because SDFs can
continuously represent abstract shapes or surfaces implicitly as their
zero-level set, yielding high-quality shape representations, inter-
polation, and completion from partial and noisy input data (59). In
this example, we seek to learn the solution map from a well-behaved
closed curve to its associated signed distance function, i.e., the solution
of the eikonal equation defined in Eq. 11. As a benchmark we consider
different airfoil geometries from the University of Illinois--Urbana-
Champaign (UIUC) database (60), a subset of which is used to train
the model (see the Supplementary Materials for more details).

The trained DeepONet model is then capable of predicting the
solution of the eikonal equation for any given input airfoil geometry.
To evaluate its performance, we visualize the zero-level set of the

learned signed distance function and compare it with the exact air-
foil geometry. As shown in Fig. 6, the zero-level sets achieve a good
agreement with the exact airfoil geometries. One may conclude that
the proposed framework is capable of achieving an accurate approxi-
mation of the exact signed distance function. Additional systematic
studies and quantitative comparisons are provided in the Supple-
mentary Materials (see figs. S23 to S25).

DISCUSSION
This paper presents physics-informed DeepONets, a novel deep
learning framework for approximating nonlinear operators in
infinite-dimensional Banach spaces. Leveraging automatic differ-
entiation, we present a simple yet remarkably effective mechanism
for biasing the outputs of DeepONets toward physically consistent
predictions, allowing us to realize significant improvements in pre-
dictive accuracy, generalization performance, and data efficiency
compared to existing operator learning techniques. An even more
intriguing finding is that physics-informed DeepONets can learn the
solution operator of parametric ODEs and PDEs, even in the ab-
sence of any paired input-output training data. This capability is
introducing a new radical way of simulating nonlinear and non-
equilibrium phenomena across different applications in science and
engineering up to three orders of magnitude faster compared to
conventional solvers.

Given the prominent role that PDEs play in the mathematical
analysis, modeling, and simulation of complex physical systems, the

Fig. 5. Solving a parametric advection equation. Exact solution versus the prediction of a trained physics-informed DeepONet for a representative example in the
test dataset.

Fig. 6. Solving a parametric eikonal equation (airfoils). (Top) Exact airfoil geometry versus the zero-level set obtained from the predicted signed distance function for
three different input examples in the test dataset. (Bottom) Predicted signed distance function of a trained physics-informed DeepONet for three different airfoil geometries
in the test dataset.

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

7 of 9

physics-informed DeepONet architecture can be broadly applied in
science and engineering since PDEs are prevalent across diverse
problem domains including fluid mechanics, electromagnetics, quan-
tum mechanics, and elasticity. However, despite the early promise
demonstrated here, numerous technical questions remain open and
require further investigation. Motivated by the successful application
of Fourier feature networks (56), it is natural to ask the following:
For a given parametric governing law, what is the optimal features
embedding or network architecture of a physics-informed DeepONet?
Recently, Wang et al. (61) proposed a multiscale Fourier feature
network to tackle PDEs with multiscale behavior. Such an architec-
ture may be potentially used as the backbone of physics-informed
DeepONets to learn multiscale operators and solve multiscale para-
metric PDEs. Another question arises from the possibility of achieving
improved performance by assigning weights in the physics-informed
DeepONet loss function. It has been shown that these weights play
an important role in enhancing the trainability of constrained neural
networks (62–64). Therefore, it is natural to ask the following: What
are the appropriate weights to use for training physics-informed
DeepONets? How to design effective algorithms for accelerating
training and ensuring accuracy and robustness in the predicted
outputs? We believe that addressing these questions will not only
enhance the performance of physics-informed DeepONets but also
introduce a paradigm shift in how we model and simulate complex,
nonlinear, and multiscale physical systems across diverse applica-
tions in science and engineering.

METHODS
DeepONets (35) present a specialized deep learning architecture that
encapsulates the universal approximation theorem for operators (36).
Here, we illustrate how DeepONets can be effectively applied to
learning the solution operator of parametric PDEs. Here, the termi-
nology “parametric PDEs” refers to the fact that some parameters of
a given PDE system are allowed to vary over a certain range. These
input parameters may include, but are not limited to, the shape of
the physical domain, the initial or boundary conditions, constant or
variable coefficients (e.g., diffusion or reaction rates), source terms,
etc. To describe such problems in their full generality, let (𝒰, 𝒱, 𝒮)
be a triplet of Banach spaces and 𝒩 : 𝒰 × 𝒮 → 𝒱 be a linear or non-
linear differential operator. We consider general parametric PDEs
taking the form

 𝒩(u, s) = 0 (13)

where u ∈ 𝒰 denotes the parameters (i.e., input functions) and s ∈
𝒮 denotes the corresponding unknown solutions of the PDE system.
Specifically, we assume that, for any u ∈ 𝒰, there exists an unique
solution s = s(u) ∈ 𝒮 to 13 (subject to appropriate IBCs). Then, we
can define the solution operator G : 𝒰 → 𝒮 as

 G(u) = s(u) (14)

Following the original formulation of Lu et al. (35), we represent the
solution map G by an unstacked DeepONet G, where denotes all
trainable parameters of the DeepONet network. As illustrated in
Fig. 1, the unstacked DeepONet is composed of two separate neural
networks referred to as the branch and trunk networks, respectively.
The branch network takes u as input and returns a features embedding

[b1, b2, …, bq]T ∈ ℝq as output, where u = [u(x1), u(x2), …, u(xm)]
represents a function u ∈ 𝒰 evaluated at a collection of fixed loca-
tions { x i } i=1 m . The trunk network takes the continuous coordinates y
as inputs and outputs a features embedding [t1, t2, …, tq]T ∈ ℝq. To
obtain the final output of the DeepONet, the outputs of the branch
and trunk networks are merged together via a dot product. More
specifically, a DeepONet G prediction of a function u evaluated at
y can be expressed by

 G θ (u) (y) = ∑
k=1

q
 b k (u(x 1) , u(x 2) , … , u(x m))

branch

 t k (y)
⏟

trunk

 (15)

where denotes the collection of all trainable weight and bias
parameters in the branch and trunk networks.

Notice that the outputs of a DeepONet model are continuously
differentiable with respect to their input coordinates. Therefore,
one may use automatic differentiation (54, 55) to formulate an
appropriate regularization mechanism for biasing the target output
functions to satisfy any given differential constraints.

Consequently, we may then construct a “physics-informed”
DeepONet by formulating the following loss function

 ℒ(θ) = ℒ operator (θ) + ℒ physics (θ) (16)

where

 ℒ operator (θ) = 1 ─ NP ∑
i=1

N

 ∑
j=1

P
 ∣ G θ (u (i)) (y u,j (i)) − G(u (i)) (y u,j (i)) ∣

2
 (17)

 ℒ physics (θ) = 1 ─ NQm ∑
i=1

N

 ∑
j=1

Q

 ∑
k=1

m

 ∣ 𝒩(u (i) (x k) , G θ (u (i)) (y r,j (i))) ∣
2
 (18)

Here, { u (i) } i=1
N

 denotes N separate input functions sampled from 𝒰.
For each u(i), { y u,j (i) } j=1

P
 are P locations that are determined by the data

observations, initial or boundary conditions, etc. Besides, { y r,j (i) } j=1
Q

 is
a set of collocation points that can be randomly sampled in the do-
main of G(u(i)). As a consequence, ℒoperator() fits the available solu-
tion measurements while ℒphysics() enforces the underlying PDE
constraints. Contrary to the fixed sensor locations of { x i } i=1 m , we re-

mark that the locations of { y u,j (i) } j=1
P
 and { y r,j (i) } j=1

Q
 may vary for different

i, thus allowing us to construct a continuous representation of the
output functions s ∈ 𝒮. More details on how this general framework
can be adapted the different PDE systems presented in Results—
including the choice of neural network architectures, formulation
of loss functions, and training details—are provided in the Supple-
mentary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi8605

REFERENCES AND NOTES
 1. R. Courant, D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations

(John Wiley & Sons, 2008).
 2. T. J. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis

(Courier Corporation, 2012).

https://science.org/doi/10.1126/sciadv.abi8605
https://science.org/doi/10.1126/sciadv.abi8605

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

8 of 9

 3. D. J. Lucia, P. S. Beran, W. A. Silva, Reduced-order modeling: New approaches
for computational physics. Prog. Aerosp. Sci. 40, 51–117 (2004).

 4. J. N. Kutz, S. L. Brunton, B. W. Brunton, J. L. Proctor, Dynamic Mode Decomposition:
Data-Driven Modeling of Complex Systems (SIAM, 2016).

 5. P. Benner, M. Ohlberger, A. Patera, G. Rozza, K. Urban, Model Reduction of Parametrized
Systems (Springer, 2017).

 6. W. H. Schilders, H. A. Van der Vorst, J. Rommes, in Model Order Reduction: Theory, Research
Aspects and Applications (Springer, 2008), vol. 13.

 7. A. Quarteroni, G. Rozza, in Reduced Order Methods for Modeling and Computational
Reduction (Springer, 2014), vol. 9.

 8. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions.
Nonlinear Dyn. 41, 309–325 (2005).

 9. B. Peherstorfer, K. Willcox, Data-driven operator inference for nonintrusive projection-
based model reduction. Comput. Methods Appl. Mech. Eng. 306, 196–215 (2016).

 10. A. J. Majda, D. Qi, Strategies for reduced-order models for predicting the statistical
responses and uncertainty quantification in complex turbulent dynamical systems. SIAM
Rev. 60, 491–549 (2018).

 11. T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza, Model order reduction in fluid dynamics:
Challenges and perspectives, in Reduced Order Methods for Modeling and Computational
Reduction (Springer, 2014), pp. 235–273.

 12. D. C. Psichogios, L. H. Ungar, A hybrid neural network-first principles approach to process
modeling. AIChE J. 38, 1499–1511 (1992).

 13. I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998).

 14. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys. 378, 686–707 (2019).

 15. L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows based on physics-
constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng.
361, 112732 (2020).

 16. Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning
for high-dimensional surrogate modeling and uncertainty quantification without labeled
data. J. Comput. Phys. 394, 56–81 (2019).

 17. S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional
stochastic elliptic partial differential equations using deep neural networks. J. Comput.
Phys. 404, 109120 (2020).

 18. J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial
differential equations. J. Comput. Phys. 375, 1339–1364 (2018).

 19. M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: Learning velocity
and pressure fields from flow visualizations. Science 367, 1026–1030 (2020).

 20. A. Tartakovsky, C. O. Marrero, P. Perdikaris, G. Tartakovsky, D. Barajas-Solano,
Physics-informed deep neural networks for learning parameters and constitutive
relationships in subsurface flow problems. Water Resour. Res. 56, e2019WR026731 (2020).

 21. O. Hennigh, S. Narasimhan, M. A. Nabian, A. Subramaniam, K. Tangsali, M. Rietmann,
J. del Aguila Ferrandis, W. Byeon, Z. Fang, S. Choudhry, NVIDIA SimNet: An ai-accelerated
multi-physics simulation framework. arXiv:2012.07938 (2020).

 22. S. Cai, Z. Wang, S. Wang, P. Perdikaris, G. Karniadakis, Physics-informed neural networks
(pinns) for heat transfer problems. J. Heat Transfer 143, 060801 (2021).

 23. G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, P. Perdikaris, Machine learning
in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive
4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng.
358, 112623 (2020).

 24. F. Sahli Costabal, Y. Yang, P. Perdikaris, D. E. Hurtado, E. Kuhl, Physics-informed neural
networks for cardiac activation mapping. Front. Phys. 8, 42 (2020).

 25. L. Lu, M. Dao, P. Kumar, U. Ramamurty, G. E. Karniadakis, S. Suresh, Extraction
of mechanical properties of materials through deep learning from instrumented
indentation. Proc. Natl. Acad. Sci. U.S.A. 117, 7052–7062 (2020).

 26. Y. Chen, L. Lu, G. E. Karniadakis, L. Dal Negro, Physics-informed neural networks for
inverse problems in nano-optics and metamaterials. Opt. Express 28, 11618–11633 (2020).

 27. S. Goswami, C. Anitescu, S. Chakraborty, T. Rabczuk, Transfer learning enhanced physics
informed neural network for phase-field modeling of fracture. Theor. Appl. Fract. Mech.
106, 102447 (2020).

 28. D. Z. Huang, K. Xu, C. Farhat, E. Darve, Learning constitutive relations from indirect
observations using deep neural networks. J. Comput. Phys. 416, 109491 (2020).

 29. D. Elbrächter, P. Grohs, A. Jentzen, C. Schwab, Dnn expression rate analysis of
high-dimensional PDEs: Application to option pricing. arXiv:1809.07669 (2018).

 30. J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using
deep learning. Proc. Natl. Acad. Sci. U.S.A. 115, 8505–8510 (2018).

 31. T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, Q. Liao, Why and when can deep-but not
shallow-networks avoid the curse of dimensionality: A review. Int. J. Autom. Comput. 14,
503–519 (2017).

 32. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,
Neural operator: Graph kernel network for partial differential equations.
arXiv:2003.03485 (2020).

 33. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,
Multipole graph neural operator for parametric partial differential equations.
arXiv:2006.09535 (2020).

 34. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar,
Fourier neural operator for parametric partial differential equations. arXiv:2010.08895
(2020).

 35. L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell.
3, 218–229 (2021).

 36. T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Trans.
Neural Netw. 6, 911–917 (1995).

 37. A. D. Back, T. Chen, Universal approximation of multiple nonlinear operators by neural
networks. Neural Comput. 14, 2561–2566 (2002).

 38. H. Kadri, E. Duflos, P. Preux, S. Canu, A. Rakotomamonjy, J. Audiffren, Operator-valued
kernels for learning from functional response data. J. Mach. Learn. Res. 17, 1–54 (2016).

 39. M. Griebel, C. Rieger, Reproducing kernel hilbert spaces for parametric partial differential
equations. SIAM-ASA J. Uncertain. Quantif. 5, 111–137 (2017).

 40. H. Owhadi, Do ideas have shape? plato’s theory of forms as the continuous limit of
artificial neural networks. arXiv:2008.03920 (2020).

 41. N. H. Nelsen, A. M. Stuart, The random feature model for input-output maps between
banach spaces. arXiv:2005.10224 (2020).

 42. C. Schwab, J. Zech, Deep learning in high dimension: Neural network expression rates
for generalized polynomial chaos expansions in uq. Anal. Appl. 17, 19–55 (2019).

 43. S. Wojtowytsch, W. E, Can shallow neural networks beat the curse of dimensionality?
A mean field training perspective. IEEE Trans. Artif. Intell. 1, 121–129 (2021).

 44. S. Lanthaler, S. Mishra, G. E. Karniadakis, Error estimates for deeponets: A deep learning
framework in infinite dimensions. arXiv:2102.09618 (2021).

 45. S. Cai, Z. Wang, L. Lu, T. A. Zaki, G. E. Karniadakis, DeepM&Mnet: Inferring the
electroconvection multiphysics fields based on operator approximation by neural
networks. arXiv:2009.12935 (2020).

 46. C. Lin, Z. Li, L. Lu, S. Cai, M. Maxey, G. E. Karniadakis, Operator learning for predicting
multiscale bubble growth dynamics. arXiv:2012.12816 (2020).

 47. B. Liu, N. Kovachki, Z. Li, K. Azizzadenesheli, A. Anandkumar, A. Stuart, K. Bhattacharya, A
learning-based multiscale method and its application to inelastic impact problems.
arXiv:2102.07256 (2021).

 48. P. C. Di Leoni, L. Lu, C. Meneveau, G. Karniadakis, T. A. Zaki, Deeponet prediction of linear
instability waves in high-speed boundary layers. arXiv:2105.08697 (2021).

 49. Z. Mao, L. Lu, O. Marxen, T. A. Zaki, G. E. Karniadakis, DeepM&Mnet for hypersonics:
Predicting the coupled flow and finite-rate chemistry behind a normal shock using
neural-network approximation of operators. arXiv:2011.03349 (2020).

 50. Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks.
arXiv:1707.03351 (2017).

 51. N. Geneva, N. Zabaras, Modeling the dynamics of PDE systems with physics-constrained
deep auto-regressive networks. J. Comput. Phys. 403, 109056 (2020).

 52. Y. Chen, B. Dong, J. Xu, Meta-mgnet: Meta multigrid networks for solving parameterized
partial differential equations. arXiv:2010.14088 (2020).

 53. D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, S. Hoyer, Machine learning
accelerated computational fluid dynamics. arXiv:2102.01010 (2021).

 54. A. Griewank, On automatic differentiation, in Mathematical Programming: Recent
Developments and Applications (Kluwer Academic Publishers, 1989), pp. 83–108.

 55. A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation
in machine learning: A survey. J. Mach. Learn. Res. 18, 1–43 (2018).

 56. M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal,
R. Ramamoorthi, J. T. Barron, R. Ng, Fourier features let networks learn high frequency
functions in low dimensional domains. arXiv:2006.10739 (2020).

 57. M. Raissi, H. Babaee, P. Givi, Deep learning of turbulent scalar mixing. Phys. Rev. Fluids 4,
124501 (2019).

 58. T. A. Driscoll, N. Hale, L. N. Trefethen, Chebfun guide (2014).
 59. J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, DeepSDF: Learning

Continuous Signed Distance Functions for Shape Representation, Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 165–174.

 60. M. S. Selig, Uiuc airfoil data site (1996).
 61. S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of fourier feature networks:

From regression to solving multi-scale pdes with physics-informed neural networks.
arXiv:2012.10047 (2020).

 62. S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient pathologies in
physics-informed neural networks. arXiv:2001.04536 (2020).

https://arxiv.org/abs/2012.07938
https://arxiv.org/abs/1809.07669
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2006.09535
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2005.10224
https://arxiv.org/abs/2102.09618
https://arxiv.org/abs/2009.12935
https://arxiv.org/abs/2012.12816
https://arxiv.org/abs/2102.07256
https://arxiv.org/abs/2105.08697
https://arxiv.org/abs/2011.03349
https://arxiv.org/abs/1707.03351
https://arxiv.org/abs/2010.14088
https://arxiv.org/abs/2102.01010
https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2012.10047
https://arxiv.org/abs/2001.04536

Wang et al., Sci. Adv. 2021; 7 : eabi8605 29 September 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

9 of 9

 63. S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: A neural tangent kernel
perspective. arXiv:2007.14527 (2020).

 64. L. McClenny, U. Braga-Neto, Self-adaptive physics-informed neural networks using a soft
attention mechanism. arXiv:2009.04544 (2020).

 65. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: Composable
transformations of Python+NumPy programs (2018).

 66. J. D. Hunter, Matplotlib: A 2D graphics environment. IEEE Ann. Hist. Comput. 9, 90–95
(2007).

 67. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming
with numpy. Nature 585, 357–362 (2020).

 68. C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, Adaptive
Computation and Machine Learning (MIT Press, 2006).

 69. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv:1412.6980 (2014).
 70. C. Finn, P. Abbeel, S. Levine, International Conference on Machine Learning (PMLR, 2017),

pp. 1126–1135.
 71. A. Iserles, in A First Course in the Numerical Analysis of Differential Equations (Cambridge

Univ. Press, 2009), no. 44.
 72. E. Haghighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning

framework for inversion and surrogate modeling in solid mechanics. Comput. Methods
Appl. Mech. Eng. 379, 113741 (2021).

 73. S. Wang, P. Perdikaris, Long-time integration of parametric evolution equations with
physics-informed deeponets. arXiv:2106.05384 (2021).

 74. S. M. Cox, P. C. Matthews, Exponential time differencing for stiff systems. J. Comput. Phys.
176, 430–455 (2002).

Acknowledgments: We thank the developers of the software that enabled our research,
including JAX (65), Matplotlib (66), and NumPy (67). Funding: This work received support from
DOE grant DE-SC0019116, AFOSR grant FA9550-20-1-0060, and DOE-ARPA grant DE-
AR0001201. Author contributions: S.W. and P.P. conceptualized the research and designed
the numerical studies. S.W. and H.W. implemented the methods and conducted the numerical
experiments. P.P. provided funding and supervised all aspects of this work. All authors contributed
in writing the manuscript. Competing interests: The authors declare that they have no
competing interests. Data and materials availability: All data needed to evaluate the conclusions
in the paper are present in the paper and/or the Supplementary Materials. All code and data
accompanying this manuscript are publicly available at https://doi.org/10.5281/zenodo.5206676
and https://github.com/PredictiveIntelligenceLab/Physics-informed-DeepONets.

Submitted 5 April 2021
Accepted 3 August 2021
Published 29 September 2021
10.1126/sciadv.abi8605

Citation: S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial
differential equations with physics-informed DeepONets. Sci. Adv. 7, eabi8605 (2021).

https://arxiv.org/abs/2007.14527
https://arxiv.org/abs/2009.04544
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2106.05384
https://doi.org/10.5281/zenodo.5206676
https://github.com/PredictiveIntelligenceLab/Physics-informed-DeepONets

