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A P P L I E D  P H Y S I C S

Learning the solution operator of parametric partial 
differential equations with physics-informed DeepONets
Sifan Wang1, Hanwen Wang1, Paris Perdikaris2*

Partial differential equations (PDEs) play a central role in the mathematical analysis and modeling of complex 
dynamic processes across all corners of science and engineering. Their solution often requires laborious analytical 
or computational tools, associated with a cost that is markedly amplified when different scenarios need to be 
investigated, for example, corresponding to different initial or boundary conditions, different inputs, etc. In this 
work, we introduce physics-informed DeepONets, a deep learning framework for learning the solution operator 
of arbitrary PDEs, even in the absence of any paired input-output training data. We illustrate the effectiveness of 
the proposed framework in rapidly predicting the solution of various types of parametric PDEs up to three orders 
of magnitude faster compared to conventional PDE solvers, setting a previously unexplored paradigm for modeling 
and simulation of nonlinear and nonequilibrium processes in science and engineering.

INTRODUCTION
As machine learning (ML) methodologies take center stage across 
diverse disciplines in science and engineering, there is an increased 
interest in adopting data-driven methods to analyze, emulate, and 
optimize complex physical systems. The dynamic behavior of such 
systems is often described by conservation and constitutive laws 
expressed as systems of partial differential equations (PDEs) (1). A 
classical task then involves the use of analytical or computational 
tools to solve such equations across a range of scenarios, e.g., differ-
ent domain geometries, input parameters, and initial and boundary 
conditions (IBCs). Mathematically speaking, solving these so-called 
parametric PDE problems involves learning the solution operator 
that maps variable input entities to the corresponding latent solu-
tions of the underlying PDE system. Tackling this task using tradi-
tional tools [e.g., finite element methods (2)] bears a formidable cost, 
as independent simulations need to be performed for every differ-
ent domain geometry, input parameter, or IBCs. This challenge has 
motivated a growing literature on reduced-order methods (3–9) that 
leverage existing datasets to build fast emulators, often at the price 
of reduced accuracy, stability, and generalization performance (10, 11). 
More recently, ML tools are actively developed to infer solutions of 
PDEs (12–18); however, most existing tools can only accommodate 
a fixed given set of input parameters or IBCs. Nevertheless, these 
approaches have found wide applicability across diverse applications 
including fluid mechanics (19, 20), heat transfer (21, 22), bioengi-
neering (23, 24), materials (25–28), and finance (29, 30), showcasing 
the remarkable effectiveness of ML techniques in learning black box 
functions, even in high-dimensional contexts (31). A natural ques-
tion then arises: Can ML methods be effective in building fast emu-
lators for solving parametric PDEs?

Solving parametric PDEs requires learning operators (i.e., maps 
between infinite dimensional function spaces) instead of functions 
(i.e., maps between finite dimensional vector spaces), thus defining 
a new and relatively under explored realm for ML-based approaches. 
Neural operator methods (32–34) represent the solution map of 

parametric PDEs as an integral Hilbert-Schmidt operator, whose 
kernel is parametrized and learned from paired observations, either 
using local message passing on a graph-based discretization of the 
physical domain (32, 33) or using global Fourier approximations 
in the frequency domain (34). By construction, neural operators 
methods are resolution independent (i.e., the model can be queried 
at any arbitrary input location), but they require large training data-
sets, while their involved implementation often leads to slow and 
computationally expensive training loops. More recently, Lu et al. 
(35) has presented a novel operator learning architecture coined as 
DeepONet that is motivated by the universal approximation theorem 
for operators (36, 37). DeepONets still require large annotated data-
sets consisting of paired input-output observations, but they provide 
a simple and intuitive model architecture that is fast to train, while 
allowing for a continuous representation of the target output func-
tions that is independent of resolution. Beyond deep learning ap-
proaches, operator-valued kernel methods (38, 39) have also been 
demonstrated as a powerful tool for learning nonlinear operators, 
and they can naturally be generalized to neural networks acting on 
function spaces (40), but their applicability is generally limited due 
to their computational cost. Here, we should again stress that the 
aforementioned techniques enable inference in abstract infinite-
dimensional Banach spaces (41), a paradigm shift from current ML 
practice that mainly focuses on learning functions instead of opera-
tors. Recent theoretical findings also suggest that the sample com-
plexity of deep neural networks (31, 42, 43), and DeepONets in 
particular (44), can circumvent the curse of dimensionality in cer-
tain scenarios.

While the aforementioned methodologies have demonstrated 
early promise across a range of applications (45–49), their applica-
tion to solving parametric PDEs faces two fundamental challenges. 
First, they require a large corpus of paired input-output observations. 
In many realistic scenarios, the acquisition of such data involves the 
repeated evaluation of expensive experiments or costly high-fidelity 
simulators, thus generating sufficient large training datasets that may 
be prohibitively expensive. Ideally, one would wish to be able to 
train such models without any observed data at all (i.e., given only 
knowledge of the PDE form and its corresponding IBCs). The sec-
ond challenge relates to the fact that, by construction, the methods 
outlined above can only return a crude approximation to the target 
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solution operator in the sense that the predicted output functions 
are not guaranteed to satisfy the underlying PDE. Recent efforts 
(16, 50–53) attempt to address some of these challenges by design-
ing appropriate architectures and loss functions for learning dis-
cretized operators (i.e., maps between high-dimensional Euclidean 
spaces). Although these approaches can relax the requirement for 
paired input-output training data, they are limited by the resolution of 
their underlying mesh discretization and, consequently, need modi-
fications to their architecture for different resolutions/discretizations 
to achieve consistent convergence [if at all possible, as demonstrated 
in (32)].

In this work, we aim to address the aforementioned challenges 
by exploring a simple yet remarkably effective extension of the 
DeepONet framework (35). Drawing motivation from physics-
informed neural networks (14), we recognize that the outputs of a 
DeepONet model are differentiable with respect to their input co-
ordinates, therefore allowing us to use automatic differentiation 
(54, 55) to formulate an appropriate regularization mechanism for 
biasing the target output functions to satisfy the underlying PDE 
constraints. This yields a simple procedure for training physics-
informed DeepONet models even in the absence of any training 
data for the latent output functions, except for the appropriate IBCs 
of a given PDE system. By constraining the outputs of a DeepONet 
to approximately satisfy an underlying governing law, we observe 
substantial improvements in predictive accuracy (up to one to two 
orders of magnitude reduction in predictive errors), enhanced 
generalization performance even for out-of-distribution prediction 
and extrapolation tasks, as well as enhanced data efficiency (up to 
100% reduction in the number of examples required to train a 
DeepONet model). Hence, we demonstrate how physics-informed 
DeepONet models can be used to solve parametric PDEs without 
any paired input-output observations, a setting for which existing 
approaches for operator learning in Banach spaces fall short. More-
over, a trained physics-informed DeepONet model can generate 
PDE solutions up to three orders of magnitude faster compared to 
traditional PDE solvers. Together, the computational infrastructure 
developed in this work can have broad technical impact in reducing 
computational costs and accelerating scientific modeling of complex 

nonlinear, nonequilibrium processes across diverse applications in-
cluding engineering design and control, Earth System science, and 
computational biology.

RESULTS
The proposed physics-informed DeepONet architecture is summa-
rized in Fig. 1. Motivated by the universal approximation theorem 
for operators (35, 36), the architecture features two neural networks 
coined as the “branch” and “trunk” networks, respectively; the 
automatic differentiation of which enables us to learn the solution 
operator of arbitrary PDEs. The associated loss functions, perform
ance metrics, computational cost, hyperparameters, and training 
details are discussed in the Supplementary Materials. In the following, 
we demonstrate the effectiveness of physics-informed DeepONets 
across a series of comprehensive numerical studies for solving various 
types of parametric PDEs. A summary of the different benchmarks 
considered is presented in Table 1. It is worth emphasizing that, in 
all cases, the proposed deep learning models are trained without any 
paired input-output data, assuming only knowledge of the governing 
equation and its corresponding initial or boundary conditions.

Solving a parametric ordinary differential equation
We begin with a pedagogical example involving the antiderivative 
operator. The underlying governing law corresponds to an initial 
value problem described by the following ordinary differential 
equation (ODE)

	​​  ds(x) ─ dx ​   =  u(x ),  x  ∈  [0, 1]​	 (1)

	​ s(0 ) = 0​	 (2)

Here, we aim to learn the solution operator mapping any forcing 
term u(x) to the ODE solution s(x) using a physics-informed DeepONet. 
The model is trained on random realizations of u(x) generated by 
sampling a Gaussian random field (GRF) as detailed in the Supple-
mentary Materials, while prediction accuracy is measured in new 

Branch net

Trunk net

DeepONet

PDE

BC & IC

Losss
Minimize

Fig. 1. Making DeepONets physics informed. The DeepONet architecture (35) consists of two subnetworks, the branch net for extracting latent representations of input 
functions and the trunk net for extracting latent representations of input coordinates at which the output functions are evaluated. A continuous and differentiable rep-
resentation of the output functions is then obtained by merging the latent representations extracted by each subnetwork via a dot product. Automatic differentiation 
can then be used to formulate appropriate regularization mechanisms for biasing the DeepONet outputs to satisfy a given system of PDEs. BC, boundary conditions; 
IC, initial conditions.
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unseen realizations that are not used during model training. Results 
for one representative input sample u(x) from the test dataset are 
presented in Fig. 2. It is evident that an excellent agreement can be 
achieved between the physics-informed DeepONet predictions and 
the ground truth. More impressively, below, we show that physics-
informed DeepONets can also accommodate irregular input func-
tions by using an appropriate neural network architecture, such as a 
Fourier features network (56) for their trunk. As shown in Fig. 2, 
the predicted solutions s(x) and their corresponding ODE residuals 
u(x) obtained by a physics-informed DeepONet with a Fourier feature 
trunk network are in excellent agreement with the exact solutions 
for this benchmark. Additional systematic studies and visualizations 
are provided in the Supplementary Materials (see figs. S1 to S11 and 
tables S6 to S10). On the basis of these observations, we may also 
conclude that physics-informed DeepONets can be regarded as a 
class of deep learning models that greatly enhance and generalize the 
capabilities of physics-informed neural networks (57), which are 
limited to solving ODEs and PDEs for a given set of input parameters 
that remain fixed during both the training and prediction phases 
(see tables S7 and S8 for a more detailed comparison).

It is also worth pointing out that the trained physics-informed 
DeepONet is even capable of yielding accurate predictions for 
out-of-distribution test data. To illustrate this, we create a test dataset 
by sampling input functions from a GRF with a larger length scale 
of l = 0.2 (recall that the training data for this case is generated using 
l = 0.01). The corresponding relative L2 prediction error averaged 
over 1000 test examples is measured as 0.7%. Additional visualiza-
tions of the model predictions for this out-of-distribution prediction 
task can be found in the Supplementary Materials (fig. S9).

Diffusion-reaction dynamics
Our next example involves an implicit operator described by a non-
linear diffusion-reaction PDE with a source term u(x)

	​​  ∂ s ─ ∂ t ​  =  D ​ ​∂​​ 2​ s ─ 
∂ ​x​​ 2​

 ​ + k ​s​​ 2​ + u(x ) , (x, t ) ∈ (0, 1] × (0, 1]​	 (3)

assuming zero IBCs, while D = 0.01 is the diffusion coefficient and 
k = 0.01 is the reaction rate. Here, we aim to learn the solution 
operator for mapping source terms u(x) to the corresponding PDE 

solutions s(x). The model is trained on random realizations of u(x) 
generated by sampling a GRF as detailed in the Supplementary 
Materials, while prediction accuracy is measured in new unseen 
realizations that are not used during model training.

The top panels of Fig. 3 show the comparison between the pre-
dicted and the exact solution for a random test input sample. More 
visualizations for different input samples can be found in the Sup-
plementary Materials (fig. S12). We observe that the physics-informed 
DeepONet predictions achieve an excellent agreement with the cor-
responding reference solutions. Furthermore, we provide a com-
parison against the conventional DeepONet formulation recently put 
forth by Lu et al. (35). This case necessitates observations of paired 
input-output pairs [u(x), s(x, t)] to be provided as training data, as 
no physical constraints are leveraged during model training. The 
mean and SD of relative L2 errors of the conventional DeepONet 
and physics-informed DeepONet over the test dataset are visualized 
in the bottom panel of Fig. 3. The average relative L2 error of 
DeepONet and physics-informed DeepONet are ∼1.92 and ∼0.45%, 
respectively. In contrast to the conventional DeepONet that is trained 
on paired input-output measurements, the proposed physics-informed 
DeepONet can yield much more accurate predictions even without 
any paired training data (except for the specified IBCs). In our ex-
perience, predictive accuracy can be generally improved by using a 
larger batch size during training. A study of the effect of batch size 
for training physics-informed DeepONets can be found in the Sup-
plementary Materials (figs. S13 and S16). A series of convergence 
studies aiming to illustrate how predictive accuracy is affected by 
the number of input sensor locations m and different neural net-
work architectures is also presented in the Supplementary Materials 
(fig. S14).

Burgers’ transport dynamics
To highlight the ability of the proposed framework to handle non-
linearity in the governing PDEs, we consider the one-dimensional 
(1D) Burgers’ benchmark investigated in Li et al. (34)

	​​  ds ─ dt ​ + s ​ ds ─ dx ​ − ν ​ ​d​​ 2​ s ─ 
d ​x​​ 2​

 ​  =  0, (x, t) ∈ (0, 1) × (0, 1]​	 (4)

	​ s(x, 0 ) = u(x ), x  ∈  (0, 1)​	 (5)

with periodic boundary conditions

	​ s(0, t ) = s(1, t)​	 (6)

	​​  ds ─ dx ​ (0, t) = ​ ds ─ dx ​ (1, t)​	 (7)

where t ∈ (0,1), the viscosity is set to  = 0.01, and the initial con-
dition u(x) is generated from a GRF ∼𝒩(0,252(− + 52I)−4), satis-
fying the periodic boundary conditions.

Our goal here is to use the proposed physics-informed DeepONet 
model to learn the solution operator mapping initial conditions u(x) 
to the full spatiotemporal solution s(x, t) of the 1D Burgers’ equa-
tion. To this end, the model is trained on random realizations of 
u(x) generated by sampling a GRF as detailed in the Supplementary 
Materials, while prediction accuracy is measured in new unseen 
realizations that are not used during model training.

Table 1. Summary of benchmarks for assessing the performance of 
physics-informed DeepONets across various types of parametric 
differential equations. The reported test error corresponds to the 
relative L2 prediction error of the trained model, averaged over all 
examples in the test dataset (see eq. S20). 

Governing law Equation form Random input Test error

Linear ODE ​​ds(x) _ dx ​  =  u(x)​ Forcing terms 0.33 ± 0.32%

Diffusion 
reaction ​​∂ s _ ∂ t ​  =  D ​ ​∂​​ 2​ s _ 

∂ ​x​​ 2​
​ + k ​s​​ 2​ + u(x)​ Source terms 0.45 ± 0.16%

Burgers’ ​​∂ s _ ∂ t ​ + s ​ ∂ s _ ∂ x​ − ν ​​∂​​ 2​ s _ 
​x​​ 2​

 ​  =  0​
Initial 

conditions 1.38 ± 1.64%

Advection ​​∂ s _ ∂ t ​ + u ​ ∂ s _ ∂ x​  =  0​
Variable 
coefficients 2.24 ± 0.68%

Eikonal ∥ ∇ s∥2 = 0 Domain 
geometries 0.42 ± 0.11%
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The average relative L2 error of the best trained model is ∼1.38% 
(see figs. S17 to S19). The physics-informed DeepONet achieves the 
comparable accuracy compared to Fourier operator methods (34), 
albeit the latter has been only tested for a simpler case corresponding 

to  = 0.1 and requires training on a large corpus of paired input-
output data. Furthermore, visualizations corresponding to the worst 
example in the test dataset are shown in the top panels of Fig. 4. 
One can see that the predicted solution achieves a good agreement 

Fig. 2. Solving a one-dimensional parametric ODE. (A and B) Exact solution and residual versus the predictions of a trained physics-informed DeepONet for a representative 
input function sampled from a GRF with length scale l = 0.2. (C and D) Exact solutions and corresponding ODE residuals versus the predictions of a trained physics-
informed DeepONet with Fourier feature embeddings (56) for a representative input function sampled from a GRF with length scale l = 0.01. The predicted residual u(x) 
is computed via automatic differentiation (55).

Fig. 3. Solving a parametric diffusion-reaction system. (Top) Exact solution versus the prediction of a trained physics-informed DeepONet for a representative exam-
ple in the test dataset. (Bottom) Mean and SD of the relative L2 prediction error of a trained DeepONet (with paired input-output training data) and a physics-informed 
DeepONet (without paired input-output training data) over 1000 examples in the test dataset. The mean and SD of the relative L2 prediction are ∼1.92 ± 1.12% (DeepONet) 
and ∼0.45 ± 0.16% (physics-informed DeepONet), respectively. The physics-informed DeepONet yields ∼80% improvement in prediction accuracy with 100% reduction 
in the dataset size required for training. Tanh, hyperbolic tangent; ReLU, rectified linear unit.
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against the reference solution, with a the relative L2 error of 3.30%. 
Here, we must also emphasize that a trained physics-informed 
DeepONet model can rapidly predict the entire spatiotemporal solu-
tion of the Burgers equation in ∼10 ms. Inference with physics-
informed DeepONets is trivially parallelizable, allowing for the 
solution of 𝒪(103) PDEs in a fraction of a second, yielding up to 
three orders of magnitude in speed up compared to a conventional 
spectral solver (58), see the bottom panel of Fig. 4.

Despite the promising results presented here, we must note the 
need for further methodological advances toward enhancing the ac-
curacy and robustness of physics-informed DeepONets in tackling 
PDE systems with stiff, turbulent, or chaotic dynamics. For example, 
we have observed that the predictive accuracy of physics-informed 
DeepONets degrades in regions where the PDE solution exhibits 
steep gradients; a behavior that is pronounced as the viscosity 
parameter in the Burgers equation is further decreased (see fig. S20 
and table S11 for more details and quantitative results). We conjec-
ture that these issues can be tackled in the future by designing of 
more specialized architectures that are tailored to the dynamic be-
havior of a given PDE, as well as more effective optimization algo-
rithms for training.

Advection equation
This example aims to investigate the performance of physics-informed 
DeepONets for tackling advection-dominated PDEs; a setting for 
which conventional approaches to reduced-order modeling faces 
significant challenges (7, 10, 11). To this end, we consider a linear 
advection equation with variable coefficients

	​​  ∂ s ─ ∂ t ​ + u(x ) ​ ∂ s ─ ∂ x ​  =  0, (x, t ) ∈ (0, 1) × (0, 1)​	 (8)

with the IBC

	​ s(x, 0 ) = f(x)​	 (9)

	​ s(0, t ) = g(t)​	 (10)

where f(x) = sin  (x) and ​​g(t ) = sin  ​(​​ ​π _ 2 ​ t​)​​​​. To make the input 
function u(x) strictly positive, we let ​u(x ) = v(x ) − ​min​ x​​ v(x ) + 1​, 
where v(x) is sampled from a GRF with a length scale l = 0.2. The 
goal is to learn the solution operator G mapping variable coefficients 
u(x) to associated solutions s(x, t) (see the Supplementary Materials 
for more details).

As shown in Fig. 5, the trained physics-informed DeepONet is 
able to achieve an overall good agreement with the reference PDE 
solution, although some inaccuracies can be observed in regions 
where the solution exhibits steep gradients (similarly to the Burgers’ 
example discussed above; see additional visualizations presented in 
fig. S21). The resulting relative L2 prediction averaged over all 
examples in the test dataset is 2.24%, leading to the conclusion 
that physics-informed DeepONets can be effective surrogates for 
advection-dominated PDEs.

Eikonal equation
Our last example aims to highlight the capability of the proposed 
physics-informed DeepONet to handle different types of input 
functions. To this end, let us consider a 2D eikonal equation 
of the form

	​​ ∥ ∇ s(x ) ​∥​ 2​​  =  1​  
s(x ) = 0, x  ∈  ∂ Ω

​​	 (11)

Fig. 4. Solving a parametric Burgers’ equation. (Top) Exact solution versus the prediction of the best-trained physics-informed DeepONet. The resulting relative L2 
error of the predicted solution is 3%. (Bottom) Computational cost (s) for performing inference with a trained physics-informed DeepONet model [conventional or modified 
multilayer perceptron (MLP) architecture], as well as corresponding timing for solving a PDE with a conventional spectral solver (58). Notably, a trained physics-informed 
DeepONet model can predict the solution of 𝒪(103) time-dependent PDEs in a fraction of a second, up to three orders of magnitude faster compared to a conventional 
PDE solver. Reported timings are obtained on a single NVIDIA V100 graphics processing unit (GPU).
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where x = (x, y) ∈ ℝ2 denotes 2D spatial coordinates, and  is an 
open domain with a piece-wise smooth boundary ∂. A solution to 
the above equation is a signed distance function measuring the dis-
tance of a point in  to the closest point on the boundary ∂, i.e.

	​​ s(x) = ​{​​​
d(x, ∂ Ω)

​ 
if x  ∈  Ω

​  
− d(x, ∂ Ω)

​ 
if x  ∈ ​ Ω​​ c​

​​​	

where d( · , · ) is a distance function defined as

	​ d(x, ∂ Ω ) ≔ ​ inf​ 
y∈∂Ω

​​ d(x, y)​	 (12)

Signed distance functions (SDFs) have recently sparked increased 
interest in the computer vision and graphics communities as a tool 
for shape representation learning (59). This is because SDFs can 
continuously represent abstract shapes or surfaces implicitly as their 
zero-level set, yielding high-quality shape representations, inter-
polation, and completion from partial and noisy input data (59). In 
this example, we seek to learn the solution map from a well-behaved 
closed curve  to its associated signed distance function, i.e., the solution 
of the eikonal equation defined in Eq. 11. As a benchmark we consider 
different airfoil geometries from the University of Illinois--Urbana-
Champaign (UIUC) database (60), a subset of which is used to train 
the model (see the Supplementary Materials for more details).

The trained DeepONet model is then capable of predicting the 
solution of the eikonal equation for any given input airfoil geometry. 
To evaluate its performance, we visualize the zero-level set of the 

learned signed distance function and compare it with the exact air-
foil geometry. As shown in Fig. 6, the zero-level sets achieve a good 
agreement with the exact airfoil geometries. One may conclude that 
the proposed framework is capable of achieving an accurate approxi-
mation of the exact signed distance function. Additional systematic 
studies and quantitative comparisons are provided in the Supple-
mentary Materials (see figs. S23 to S25).

DISCUSSION
This paper presents physics-informed DeepONets, a novel deep 
learning framework for approximating nonlinear operators in 
infinite-dimensional Banach spaces. Leveraging automatic differ-
entiation, we present a simple yet remarkably effective mechanism 
for biasing the outputs of DeepONets toward physically consistent 
predictions, allowing us to realize significant improvements in pre-
dictive accuracy, generalization performance, and data efficiency 
compared to existing operator learning techniques. An even more 
intriguing finding is that physics-informed DeepONets can learn the 
solution operator of parametric ODEs and PDEs, even in the ab-
sence of any paired input-output training data. This capability is 
introducing a new radical way of simulating nonlinear and non-
equilibrium phenomena across different applications in science and 
engineering up to three orders of magnitude faster compared to 
conventional solvers.

Given the prominent role that PDEs play in the mathematical 
analysis, modeling, and simulation of complex physical systems, the 

Fig. 5. Solving a parametric advection equation. Exact solution versus the prediction of a trained physics-informed DeepONet for a representative example in the 
test dataset.

Fig. 6. Solving a parametric eikonal equation (airfoils). (Top) Exact airfoil geometry versus the zero-level set obtained from the predicted signed distance function for 
three different input examples in the test dataset. (Bottom) Predicted signed distance function of a trained physics-informed DeepONet for three different airfoil geometries 
in the test dataset.
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physics-informed DeepONet architecture can be broadly applied in 
science and engineering since PDEs are prevalent across diverse 
problem domains including fluid mechanics, electromagnetics, quan-
tum mechanics, and elasticity. However, despite the early promise 
demonstrated here, numerous technical questions remain open and 
require further investigation. Motivated by the successful application 
of Fourier feature networks (56), it is natural to ask the following: 
For a given parametric governing law, what is the optimal features 
embedding or network architecture of a physics-informed DeepONet? 
Recently, Wang et al. (61) proposed a multiscale Fourier feature 
network to tackle PDEs with multiscale behavior. Such an architec-
ture may be potentially used as the backbone of physics-informed 
DeepONets to learn multiscale operators and solve multiscale para-
metric PDEs. Another question arises from the possibility of achieving 
improved performance by assigning weights in the physics-informed 
DeepONet loss function. It has been shown that these weights play 
an important role in enhancing the trainability of constrained neural 
networks (62–64). Therefore, it is natural to ask the following: What 
are the appropriate weights to use for training physics-informed 
DeepONets? How to design effective algorithms for accelerating 
training and ensuring accuracy and robustness in the predicted 
outputs? We believe that addressing these questions will not only 
enhance the performance of physics-informed DeepONets but also 
introduce a paradigm shift in how we model and simulate complex, 
nonlinear, and multiscale physical systems across diverse applica-
tions in science and engineering.

METHODS
DeepONets (35) present a specialized deep learning architecture that 
encapsulates the universal approximation theorem for operators (36). 
Here, we illustrate how DeepONets can be effectively applied to 
learning the solution operator of parametric PDEs. Here, the termi-
nology “parametric PDEs” refers to the fact that some parameters of 
a given PDE system are allowed to vary over a certain range. These 
input parameters may include, but are not limited to, the shape of 
the physical domain, the initial or boundary conditions, constant or 
variable coefficients (e.g., diffusion or reaction rates), source terms, 
etc. To describe such problems in their full generality, let (𝒰, 𝒱, 𝒮) 
be a triplet of Banach spaces and 𝒩 : 𝒰 × 𝒮 → 𝒱 be a linear or non-
linear differential operator. We consider general parametric PDEs 
taking the form

	​ 𝒩(u, s ) = 0​	 (13)

where u ∈ 𝒰 denotes the parameters (i.e., input functions) and s ∈ 
𝒮 denotes the corresponding unknown solutions of the PDE system. 
Specifically, we assume that, for any u ∈ 𝒰, there exists an unique 
solution s = s(u) ∈ 𝒮 to 13 (subject to appropriate IBCs). Then, we 
can define the solution operator G : 𝒰 → 𝒮 as

	​ G(u ) = s(u)​	 (14)

Following the original formulation of Lu et al. (35), we represent the 
solution map G by an unstacked DeepONet G, where  denotes all 
trainable parameters of the DeepONet network. As illustrated in 
Fig. 1, the unstacked DeepONet is composed of two separate neural 
networks referred to as the branch and trunk networks, respectively. 
The branch network takes u as input and returns a features embedding 

[b1, b2, …, bq]T ∈ ℝq as output, where u = [u(x1), u(x2), …, u(xm)] 
represents a function u ∈ 𝒰 evaluated at a collection of fixed loca-
tions ​​{​x​ i​​}​i=1​ m  ​​. The trunk network takes the continuous coordinates y 
as inputs and outputs a features embedding [t1, t2, …, tq]T ∈ ℝq. To 
obtain the final output of the DeepONet, the outputs of the branch 
and trunk networks are merged together via a dot product. More 
specifically, a DeepONet G prediction of a function u evaluated at 
y can be expressed by

	​​ G​ θ​​(u ) (y ) = ​ ∑ 
k=1

​ 
q
  ​​ ​​​b​ k​​(u(​x​ 1​​ ) , u(​x​ 2​​ ) , … , u(​x​ m​​ ) )  ​​  

branch

​ ​ ​​​ t​ k​​(y) 
⏟

​​ 
trunk

​ ​​	 (15)

where  denotes the collection of all trainable weight and bias 
parameters in the branch and trunk networks.

Notice that the outputs of a DeepONet model are continuously 
differentiable with respect to their input coordinates. Therefore, 
one may use automatic differentiation (54, 55) to formulate an 
appropriate regularization mechanism for biasing the target output 
functions to satisfy any given differential constraints.

Consequently, we may then construct a “physics-informed” 
DeepONet by formulating the following loss function

	​ ℒ(θ ) = ​ℒ​ operator​​(θ ) + ​ℒ​ physics​​(θ)​	 (16)

where

	​​ ℒ​ operator​​(θ ) = ​  1 ─ NP ​ ​ ∑ 
i=1

​ 
N

 ​​​ ∑ 
j=1

​ 
P
 ​​ ​∣ ​G​ θ​​(​u​​ (i)​ ) (​y​u,j​ (i) ​ ) − G(​u​​ (i)​ ) (​y​u,j​ (i) ​ ) ∣​​ 

2
​​	 (17)

​​ℒ​ physics​​(θ ) = ​  1 ─ NQm ​ ​ ∑ 
i=1

​ 
N

 ​​​ ∑ 
j=1

​ 
Q

 ​​​ ∑ 
k=1

​ 
m

 ​​ ​∣ 𝒩(​u​​ (i)​(​x​ k​​ ) , ​G​ θ​​(​u​​ (i)​ ) (​y​r,j​ (i)​ ) ) ∣​​ 
2
​​	 (18)

Here, ​​{​u​​ (i)​}​i=1​ 
N

  ​​ denotes N separate input functions sampled from 𝒰.  
For each u(i), ​​{​y​u,j​ (i) ​}​j=1​ 

P
  ​​ are P locations that are determined by the data 

observations, initial or boundary conditions, etc. Besides, ​​{​y​r,j​ (i)​}​j=1​ 
Q

  ​​ is 
a set of collocation points that can be randomly sampled in the do-
main of G(u(i)). As a consequence, ℒoperator() fits the available solu-
tion measurements while ℒphysics() enforces the underlying PDE 
constraints. Contrary to the fixed sensor locations of ​​{​x​ i​​}​i=1​ m  ​​, we re-

mark that the locations of ​​{​y​u,j​ (i) ​}​j=1​ 
P
  ​​ and ​​{​y​r,j​ (i)​}​j=1​ 

Q
  ​​ may vary for different 

i, thus allowing us to construct a continuous representation of the 
output functions s ∈ 𝒮. More details on how this general framework 
can be adapted the different PDE systems presented in Results—
including the choice of neural network architectures, formulation 
of loss functions, and training details—are provided in the Supple-
mentary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi8605
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