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Categorization involves associating multiple stimuli based on 
perceptual features, functional (semantic) relations or a com-
bination of both1,2. Learned category representations help 

animals and humans to react to novel experiences because they facil-
itate extrapolation from knowledge already acquired3,4. Learning 
and recalling of categories activates a large number of brain areas, 
including sensory cortical regions, highlighting the associative 
nature of these representations5,6. However, it is unknown whether 
the formation of a neuronal category representation occurs in all of 
these activated brain areas jointly, or whether it is stored only in a 
subset of higher cortical association areas.

In primates, single-neuron correlates of category selectivity have 
been found in many cortical regions. In areas such as prefrontal cor-
tex, lateral intraparietal cortex, posterior inferotemporal cortex and 
the frontal eye fields, substantial populations of category-selective 
neurons were observed following category learning7–9. Neural cor-
relates are present at intermediate processing stages, for instance 
in inferotemporal cortex, but were found to be more perceptually 
biased compared to correlates in prefrontal cortex10,11. In contrast, 
primate sensory areas (for example, middle temporal area (MT) and 
V4) altogether show little category selectivity12,13. This brain-wide 
pattern appears similar to that of choice probability, the covariation 
of a neuron’s activity fluctuation with behavioral choice14,15, which, 
as a recent model suggested, can drive plasticity resulting in neurons 
becoming more category-selective16. This model might explain why 
there are few, if any, observations of category selectivity in lower 
visual areas, despite neurons’ often exquisite tuning for the visual 
stimuli to be categorized, such as oriented gratings17,18.

Nevertheless, certain studies indicate that sensory areas do play 
some role in category learning. Selectivity for low-dimensional 
auditory categories (for example, tone frequency) has been reported 
in auditory cortex19,20. Functional magnetic resonance imaging 
(fMRI) studies in humans point to a role of early visual areas V1–V3 
in learning to discriminate dot-pattern categories21 and iso-oriented 
bars22, suggesting that these areas might be involved in perceptual 
disambiguation of stimuli belonging to different categories. A recent 
behavioral study in humans reports a role for early, retinotopically 

organized, visual areas in a perceptually challenging category learn-
ing task that requires simultaneous weighing of multiple feature 
dimensions, that is, information integration23. While these findings 
may seem at odds with results from single-unit recordings in mon-
keys, it is possible that the contribution of visual cortex to category 
learning depends on rather subtle changes in a restricted set of neu-
rons. Such changes might serve to enhance feature selectivity sup-
porting perceptual discrimination of the stimuli to be categorized 
and would go undetected without knowing neurons’ tuning curves 
before learning.

Here we use mice to investigate how early cortical stages of 
visual information processing are involved in learning and rep-
resenting visual categories. We show that they can perform 
information-integration category learning and that this behavior 
depends, in part, on retinotopically selective visual cortex neurons. 
Using long-term two-photon calcium imaging, we detail response 
properties of large groups of neurons across nine areas of the mouse 
visual cortex throughout category learning. We find that learning 
results in newly acquired neuronal responses to choice and reward, 
but also in changes in stimulus and category tuning that support 
enhanced discrimination of learned visual categories.

Results
Mice discriminate, generalize and memorize visual categories. 
To test the ability of mice to learn visual categories, we trained eight 
male mice in a touch screen operant chamber to discriminate a set 
of 42 grating stimuli that differed in orientation and spatial fre-
quency (Fig. 1a and Extended Data Fig. 1a,b). The two-dimensional 
(2D) stimulus space was divided by a diagonal category bound-
ary into a rewarded and a non-rewarded category (Fig. 1b). Such 
information-integration categories24 are characterized by the 
requirement to weigh multiple stimulus feature dimensions, here 
spatial frequency and orientation, simultaneously. By design, the 
categorization task has a perceptual component (discrimination of 
orientation and spatial frequency) and a semantic component (mul-
tiple stimuli sharing the same meaning). Learning this task is akin 
to, for example, learning to distinguish paintings from Rembrandt 
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and Vermeer, two 17th century Dutch painters whose paintings dif-
fer in subtle features like aspects of the underlying geometry and 
lighting (see also ref. 25). First, animals were trained over a period 
of 4 to 6 d to discriminate two stimuli that were maximally distant 
from the category boundary (Fig. 1b; stage I). Once mice discrimi-
nated these initial stimuli well above chance, additional stimuli were 
introduced, progressively closer to the category boundary until the 
animals reached stage VI, in which all stimuli belonging to both cat-
egories were presented. The performance of all mice stayed above 
chance throughout, even though 40 new stimuli were added over a 
period of only 6 to 8 d.

Categorization behavior has two main components: sharp dis-
crimination of stimuli across a category boundary and generaliza-
tion of stimuli within a category. The choice behavior of trained 
mice reflected both of these components: stimuli that were closer 
to the category boundary were well discriminated (that is, stimuli 
introduced at stages III to VI; Fig. 1c and Extended Data Fig. 1c), 
while stimuli that were more distant from the category boundary 
were all chosen (or rejected) with a similar probability (that is, stim-
uli introduced at stages I to III). Mice also readily extrapolated their 
behavior to novel stimuli: the average performance on the first trials 
showing stimuli of stages V and VI did not significantly differ from 
the performance on similar first trials showing the same stimuli 
in the final training sessions of these stages (we tested only stages 
V and VI as the comparison required multiple sessions per stage; 
Fig. 1d). Altogether, our results demonstrate that mice differenti-
ate stimuli across the category boundary, generalize stimuli within 

categories and extend this behavior to stimuli that had not yet been 
encountered before.

While all mice were trained to discriminate the 2D stimulus space 
using a category boundary with an angle of 45°, the learned bound-
ary angle of individual animals often deviated somewhat from the 
trained boundary (Fig. 1e and Extended Data Fig. 1d). This phe-
nomenon is known as attentional bias or rule bias26,27 (but see also 
ref. 28 and Methods) and indicates that animals had a tendency to 
categorize according to one stimulus dimension, here grating ori-
entation. To our surprise, the observed deviation in angle from the 
trained category boundary did not significantly decrease with fur-
ther training (Extended Data Fig. 1e). Instead, the boundary angle 
gradually and slightly shifted, as reflected by a significantly higher 
similarity between consecutive days compared to periods spaced 
more than 20 d apart (Extended Data Fig. 1f). This implies that the 
mismatch between the trained and the individually learned cate-
gory boundary reflected, to some extent, a mnemonic aspect, and 
not only day-to-day inaccuracies.

Thus, mice learned to discriminate a large set of visual stimuli by 
generalizing existing knowledge using an individually learned cat-
egorization strategy, which was remembered across many days. In 
other words, mice had formed a semantic memory.

Learned visual categorization partially depends on plasticity 
in visual areas. We next implemented a head-fixed version of the 
categorization task that provided precise control over the visual 
stimulus and allowed for simultaneous two-photon microscopy. 
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Fig. 1 | Mice learn discriminating information-integration categories in a touch screen operant chamber. a, Behavioral chamber, from above. Touch 
screens (v) display visual stimuli and record screen presses; food pellet rewards (r) are delivered via a pellet feeder into a dish. A drinking bottle, house 
light, speaker, and lever are positioned on the east and south walls. b, Mean (±s.e.m.) learning curve. Gray lines represent individual animals (n = 8 mice). 
Latin numerals denote category training stages. Insets show active stimuli (black) and not-yet-introduced stimuli (gray). c, Fraction of stimuli chosen as 
a function of the stimulus’ distance to the category boundary (black lines denote the mean ± s.e.m., and gray lines represent individual mice; two-sided 
Kruskal–Wallis test, H(11) = 90.8, P = 1.17 × 10−14, post hoc two-sided Wilcoxon matched-pairs signed-rank (WMPSR) test; n = 8 mice). d, Fraction of correct 
trials for novel and familiar stimuli. ‘First’ represents the mean (±s.e.m.) performance on the first trial of newly introduced stimuli at stages V and VI (only 
for first training session of each stage). ‘Last’ represents the performance for the same stimuli but in the first trials of the last training sessions of stages 
V and VI. Gray lines represent individual mice (two mice had identical performances at 0.8; two-sided WMPSR test: W = 5, P = 0.50; n = 8 mice). e, The 
fraction of trials on which a stimulus was chosen (data from stage VI) for each mouse (M01–M08). White tiles diagonally intersecting plots stand for 
stimuli directly on the category boundary, which were not shown. The black line represents the fitted, behaviorally expressed category boundary.  
NS (not significant), P > 0.05; *P < 0.05.
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Mice were trained using similar (but not identical) stimulus spaces 
and training stages as described above (Fig. 2a, Extended Data  
Fig. 2a–c and Methods). The head-fixed task differed from the freely 
moving, touch screen task in two aspects. First, in each trial, only 
a single stimulus was shown at a specific location on the monitor.  
Second, the mouse had to explicitly report the category of the  
stimulus by licking on one of two lick spouts providing a water 
reward. Therefore, this task required the mouse to compare the 
shown stimulus to a memorized category representation. Animals 
took longer to learn the initial stimulus discrimination compared  
to the touch screen task (head-fixed, 9–25 sessions; touch screen, 
4–6 sessions), but mice were able to generalize to additional stimuli 
at nearly the same rate in both tasks (Fig. 1b and Extended Data 
Fig. 2c). At the final training stage (VI; complete stimulus set) all 
animals discriminated and generalized stimuli according to indi-
vidually learned category boundaries (Fig. 2b and Extended Data 
Fig. 2d,e). As in the touch screen task, animals also showed different 
degrees of rule bias, now favoring discrimination along the spatial 
frequency axis of the stimulus space (Methods).

As a first step in localizing the neuronal substrate of the learned 
category association, we exploited the fact that neurons in several  
areas of the visual cortex have well-defined, small receptive fields18,29. 
After mice had learned categorizing stimuli at a specific position 
in their visual field (26° azimuth), we proceeded with repeated  
sessions in which the stimulus position was pseudorandomly shifted 
horizontally in the visual field on a day-by-day basis (monitor  
positions 26°, 0° or −26° azimuth; Fig. 2c,d and Extended Data  
Fig. 2f). If visual cortex neurons were part of the learned category 

association, categorization performance of the mice should drop 
when these neurons are bypassed by presenting stimuli at locations 
outside their receptive fields23,30,31. Indeed, this is what we observed: 
performance was slightly, but significantly poorer when the categori-
zation task was carried out using shifted stimulus positions (Fig. 2e).  
Specifically, the steepness of categorization across the boundary  
was reduced (steepness of the sigmoid fit over the fraction of left 
choices; Fig. 2f) and the individually learned category boundary  
showed a larger angular deviation from the trained boundary  
when the stimulus position was shifted (Fig. 2g). As a control, eye 
position was tracked continuously, and the horizontal eye position 
did not show a systematic adjustment to shifted stimulus positions 
(Extended Data Fig. 2g–i).

In summary, while the learned categorization behavior was not 
strictly limited to the exact visual field position of the stimulus, it 
was impaired by shifting the stimulus position. This suggests that 
visual areas store at least some amount of perceptual or semantic 
information about the learned categories.

Repeated, multi-area calcium imaging throughout learning. To 
assess in detail how the neural responses in these areas changed 
with category learning, we used chronic in vivo two-photon calcium 
imaging (GCaMP6m; Methods) to repeatedly record from the same 
neurons over months (Fig. 3a). We selected field-of-view (FOV) 
regions in cortical layer 2/3 of three to five visual areas per mouse 
(that is, a subselection of areas V1 (primary visual cortex), LM 
(lateromedial), AL (anterolateral), RL (rostrolateral), AM (antero-
medial), PM (posteromedial), LI (laterointermediate), P (posterior) 
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Fig. 2 | Head-fixed category learning depends on plasticity in early visual areas. a, Head-fixed conditioning setup. A head-fixed mouse (m) is placed  
on an air-suspended Styrofoam ball, facing a computer monitor (v). Two lick spouts (r) in front of the mouse supply water rewards and record licks.  
b, The fraction of left/right choices of seven mice (data of stages II to VI). The grid (top left) shows an example stimulus space. Solid lines indicate fitted, 
individually learned category boundaries, while dashed lines indicate trained boundaries. c, Illustrations (bottom) showing systematic displacement of 
the stimulus position by repositioning the monitor. Per-stimulus category performance (top), as in b, but for different stimulus positions (averaged across 
training sessions and mice). The default stimulus position used during preceding category training was at 26° azimuth. For display purposes, the grids  
are flipped such that the stimulus-to-category mapping is similar across animals (top left, ‘lick-left’; bottom right, ‘lick-right’). d, Sigmoid fit of the  
fraction of left choices (mean ± s.e.m. across mice; n = 5), as a function of the stimulus’ distance to the category boundary for different stimulus positions. 
e, Fraction of correct trials for default (26°) and shifted (0°, −26°) stimulus positions (mean ± s.e.m. across mice, n = 5; gray lines represent individual 
mice; two-sided Kruskal–Wallis test, H(2) = 6.1, P = 0.046; post hoc one-sided WMPSR test, −26° versus 26°: W = 0, P = 0.031; 0° versus 26°: W = 0, 
P = 0.031; n = 5 mice). f, As in e, for categorization steepness (of the sigmoid fit; two-sided Kruskal–Wallis test, H(2) = 6.0, P = 0.049; post hoc one-sided 
WMPSR test, −26° versus 26°: W = 15, P = 0.031; n = 5 mice). g, As in e, for the boundary angle difference between trained and individually learned 
category boundaries (two-sided Kruskal–Wallis test, H(2) = 9.1, P = 0.011; post hoc one-sided WMPSR test, −26° versus 26°: W = 15, P = 0.031; −26° versus 0°: 
W = 15, P = 0.031; n = 5 mice). *P < 0.05.
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and POR (postrhinal); Fig. 3b), identified using intrinsic optical  
signal (IOS) imaging and low-magnification two-photon calcium  
imaging (Fig. 3b,c and Extended Data Fig. 3). This approach 
ensured that the imaged neurons responded to the retinotopic  
location of the stimulus in the behavioral paradigm.

Within the period of chronic imaging, animals were trained to 
perform stimulus discrimination and, subsequently, categorization 
of a reduced stimulus space (Fig. 3d). These stimuli were selected 
from a full set of 100 possible stimuli (ten grating orientations, five 
spatial frequencies and two directions; Fig. 3g and Methods). As 

described above, categorization behavior often showed a rule bias. 
Therefore, we chose to train these mice on a category boundary that 
better aligned with this individual bias (Fig. 3d). In baseline imaging 
sessions, before training on the initial stimuli commenced, mice did 
not yet show categorization behavior. After learning, all mice catego-
rized the stimuli in a ‘lick-left’ and a ‘lick-right’ category (Fig. 3e and 
Extended Data Fig. 4a), and again showed individual biases, favoring 
one stimulus feature over the other (Extended Data Fig. 4b).

In total, we tracked 13,019 neurons across nine visual cortical 
areas throughout the entire learning paradigm (Supplementary 
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Table 1). We focused our analyses on two baseline, out-of-task time 
points in which tuning curves were assessed, one (or if present, two) 
baseline, in-task time point(s) in which behaviorally relevant visual 
stimuli were presented and (at chance level) discriminated, one 
in-task time point after category learning and a final post-learning 
out-of-task time point. We refer to a time series of imaging sessions 
of a single area in a single mouse as a chronic recording.

Visual categorization is contingent on activity in the visual cor-
tex. While previous studies have shown that, in mice, an intact visual 
cortex is indispensable for proper visual discrimination and detec-
tion32,33, it has been demonstrated that for certain visually guided 
behaviors subcortical structures alone are sufficient34,35. To test 
whether in our paradigm visual cortex was necessary for the correct 
assignment of visual stimuli to learned categories, we unilaterally 
silenced all visual cortical areas with the GABAergic receptor ago-
nist muscimol. We found that this completely abolished the mice’s 
ability to discriminate stimuli (Fig. 3f). Importantly, the unilateral 
inactivation of visual areas with muscimol did not reliably abolish 
other task-related behaviors; three of five mice still performed a 
large number of trials (Extended Data Fig. 4c,d). Furthermore, tar-
geted inactivation of specific visual cortical areas (V1, AL and POR) 
showed that although each of these areas contributed to visual cat-
egorization, no individual area was critically necessary (Extended 
Data Fig. 5). Thus, either perceptual or semantic aspects of catego-
rization behavior, but not generalized operant behavior and motor 
behavior, were contingent on neuronal activity in visual cortical 
areas.

Throughout areas of the visual cortex, we observed neuronal 
activity in response to visual stimulation, revealing characteristic 
tuning curves for orientation and spatial frequency, which, despite 
variability in response amplitudes, were largely stable across time 
points (Fig. 3g–i). To accurately describe how neuronal responses 
across visual cortical areas change upon category learning, we 
will first address the overall number of activated neurons (Fig. 4). 
Second, we will describe the type of information encoded by such 
activated neurons (Fig. 5), and finally, we will discuss to which 
degree stimulus-driven neurons encode the learned categories 
by disentangling perceptual (orientation/spatial frequency) and 
semantic (category) components of their tuning (Fig. 6).

Learning recruits neurons in V1, PM and ventral stream areas. As 
a starting point, we explored the involvement of visual areas in cat-
egory learning by comparing, across experimental time points, the 
fractions of neurons significantly responding during the first second 
of visual stimulus presentation (Methods). This approach resulted 
in time-varying fractions of responsive neurons for chronic record-
ings in all nine visual areas (Fig. 4a and Extended Data Fig. 6a). 
These time-varying patterns can show a signature of area-specific 
functional specialization for behaviorally relevant stimuli, similar 
to specializations for visual features, as shown in mice36,37 and pri-
mates38–40. To identify such structure without an a priori bias, we 
performed k-means clustering (Methods). First, we determined the 
optimal number of clusters by comparing the inertia (within-cluster 
sum of squares) of the clustered time-varying patterns, to the mean 
inertia of 100 shuffled patterns (Fig. 4b). This indicated that the 
time-varying patterns were best divided into two groups (Fig. 4b). 
To identify the difference between these two groups, we plotted 
their average patterns. It turned out that by far the most distinct 
difference was seen at the time point after learning, where cluster 2 
showed a steep increase in the fraction of responsive neurons, while 
cluster 1 did not (Fig. 4c).

Importantly, this division of time-varying patterns of respon-
sive neurons into two clusters largely aligned with the known areal 
organization of the mouse visual system. The majority of cluster 
2 patterns came from areas V1, PM, P and POR, while cluster 1 

patterns tended to originate from areas AL, RL and AM (Fig. 4d,e). 
Based on their patterns of connectivity, mouse higher visual corti-
cal areas can be broadly subdivided into a dorsal and ventral visual 
stream41,42, akin to what has been observed in primates43. Grouping 
the areas by visual stream revealed that the cluster membership of 
chronic recordings systematically mapped onto the dorsal and ven-
tral stream areal distinction (Fig. 4f).

Next, we sought to quantitatively determine which differences in 
the fraction of responsive neurons over time led to the separation 
into the dorsal and ventral stream clusters. We hypothesized that 
the time-varying patterns reflected multiple underlying processes 
with different temporal dynamics. The hypothesized components 
were: a stable, non-time-varying fraction of responsive neurons; an 
exponential decaying fraction, reflecting long-term adaptation or 
repetition suppression;44,45 an increased fraction for in-task record-
ings, reflecting effects of in-task attentional modulation;46 and a 
learning-related increased fraction, reflecting recruitment by learn-
ing47. Using linear regression, we quantified the individual contri-
bution of each of these components, thus predicting the fraction 
of responsive neurons across the five (or six) time points of each 
chronic recording (Fig. 4g).

Investigation of the model weights revealed that the stable, 
non-time-varying fraction of responsive neurons was significantly 
larger in dorsal stream areas, indicating a larger pool of neurons 
that systematically responded during visual stimulus presenta-
tion (Fig. 4h,i). Importantly, there was also a clear difference in 
the learning-related component, which was far stronger in ventral 
stream areas compared to dorsal stream areas (Fig. 4h,i). Chronic 
recordings from V1 resembled dorsal stream areas, in that they had 
a large unchanged fraction of responsive neurons, but also ventral 
stream areas, as they were modulated by learning (Extended Data 
Fig. 6b). Area PM, which equally connects to dorsal and ventral 
stream areas42,48, behaved altogether similarly to ventral stream 
areas. We did not detect significant differences between areas or 
streams in the contribution of long-term adaptation and task mod-
ulation. In summary, visual category learning is associated with an 
increased fraction of neurons that respond during presentation of 
task-relevant stimuli, specifically in V1, PM and ventral stream 
areas.

Learning strengthens the modulation of neurons by choice and 
reward. What are the newly responsive neurons coding for? Recent 
work has shown that mouse visual cortex is functionally much more 
diverse than has been traditionally assumed; it can be driven and 
modulated by many factors beyond visual stimuli, such as running, 
reward and decisions15,47,49. We implemented a generalized linear 
model (GLM; Methods) to estimate the individual contributions of 
stimulus orientation, spatial frequency and category (that is, per-
ceptual and semantic aspects of the visual stimulus), locomotor and 
licking behavior, choice and reward to the inferred spiking activity 
of single neurons (Fig. 5a–d and Extended Data Fig. 7a). Neurons 
with significant R2 values were considered modulated by the mod-
eled factors (Methods). We limited this analysis to in-task time 
points (Fig. 3a) because many GLM factors were exclusive to those 
time points (see Supplementary Table 2 for numbers of included 
neurons).

Overall, we observed a slightly larger fraction of significantly 
modulated neurons after category learning compared to before cat-
egory learning (Extended Data Fig. 7b). The R2 values of neurons 
that were significantly modulated both before and after learning did 
not change, but neurons that were significantly modulated only after 
learning had slightly lower R2 values compared to neurons that were 
only modulated before learning (Extended Data Fig. 7c). We veri-
fied that the per-session fraction of significantly GLM-modulated 
neurons matched the fraction of responsive neurons determined in 
the previous analysis (Fig. 4). Even though the latter was calculated 
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using neuronal activity in a 1-s window after stimulus onset, while 
the GLM takes the entire trial into account, both values were 
strongly correlated (Extended Data Fig. 7d). Finally, ventral stream 
areas showed larger numbers of neurons that were significantly pre-
dictive only at one time point, while dorsal stream areas contained 
more ‘stable’ neurons (Fig. 5e,f and Extended Data Fig. 7e,f).

We quantified the unique contribution of each GLM component 
to explain the neuronal activity patterns (Methods). We analyzed 
‘stable’ neurons that were significantly, uniquely modulated in both 
time points, ‘baseline 3’ and ‘learned 1’, separately from ‘lost’ and 
‘gained’ neurons that were significantly, uniquely modulated either 
in time point ‘baseline 3’ or time point ‘learned 1’ (Fig. 5e). For each 
group (‘stable’, ‘lost’ and ‘gained’), we calculated the fractions of 
neurons that showed significant, unique modulation by each GLM 
component, for each area separately. Neurons in the ‘stable’ group 
were most prominently modulated by visual stimulus components 

(orientation, spatial frequency and category) and by running-related 
components. ‘Lost’ neurons were, in addition to being modulated 
by visual components, most strongly modulated by running activ-
ity. ‘Gained’ neurons, on the other hand, were, besides a modula-
tion by visual components, modulated by behavioral choice and, to 
some extent, reward (Fig. 5g and Extended Data Fig. 7g). As for the 
category component, only area POR showed a significantly larger 
fraction of uniquely modulated neurons after learning. The GLM 
analysis therefore revealed that the gained fraction of responsive 
neurons could be largely attributed to an increased influence of 
choice and reward (see an example in Extended Data Fig. 7h), and 
that only in area POR more neurons contributed to the category 
representation. However, the model also points to a large, stable  
and purely stimulus-driven component within the activity pattern  
of many visual cortex neurons, which we investigate in the  
following section.
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Highly choice-selective neurons in area POR gain category selec-
tivity. Identifying category-selective neurons in visual areas is com-
plicated by the fact that already before learning, neurons are tuned 
to category-defining features (such as orientation and spatial fre-
quency). Therefore, we analyzed how model-derived tuning param-
eters changed with learning (including only ‘stable’ neurons, that is, 
significantly modulated by visual stimulus components in the full 
model, before and after category learning). We calculated a category 
tuning index (CTI) based on either category-specific model compo-
nents (semantic CTI) or exclusively orientation-specific and spatial 
frequency-specific model components (feature CTI; using weights 
of the full model; Methods, Fig. 6a and Extended Data Fig. 8). The 
semantic CTI captures selectivity for categories that are shared 
across all stimuli belonging to each category and relatively indepen-
dent of orientation and spatial frequency tuning. Feature CTI, on 
the other hand, reflects category selectivity that can be explained 
directly from a neuron’s tuning to orientation and spatial frequency 

components. As the model fits neuronal responses per trial and 
frame, we note that the weights used for calculating CTI reflect both 
the amplitude and reliability of the associated neuronal response.

We observed that, overall, semantic CTI increased after learn-
ing (pooled across all ‘stable’ visually modulated neurons; Fig. 6b 
and Extended Data Fig. 9a). This increase in semantic CTI was 
most pronounced in areas V1 and POR (Fig. 6c). However, the 
feature CTI also generally increased after learning (pooled across  
all ‘stable’ visually modulated neurons; Fig. 6d and Extended Data 
Fig. 9b), although no individual area stood out specifically (Fig. 6e).  
We quantified a neuron’s unequivocal tuning for learned catego-
ries by subtracting the feature CTI from the semantic CTI, obtain-
ing a single value that reflects whether a neuron’s tuning is better 
explained by categories or by stimulus features (ΔCTI). Pooled 
across all neurons, ΔCTI did not change after learning. However, 
specifically neurons in area POR showed increased ΔCTI values 
after category learning (Fig. 6f and Extended Data Fig. 9c). This 
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change in category tuning was restricted to in-task recordings, 
as out-of-task tuning curve measurements showed no difference 
between baseline and after learning (Extended Data Fig. 10). In 
summary, only in area POR, did neurons become overall better 
tuned to categories in comparison to their tuning for orientation 
and spatial frequency.

A recently developed model of category learning predicts that 
category selectivity emerges as a consequence of a neuron’s choice 
probability, the co-fluctuation of activity with behavioral choice16. 
To test whether our data support this idea, we calculated selectivity  
for behavioral choice from the choice-related component in the  
GLM, at the imaging time point when mice had successfully learned 
stimulus discrimination, but had not yet learned to discriminate 
categories (Fig. 6g). This measure of choice selectivity was signi
ficantly correlated with the later quantification of ΔCTI of the same  
neurons in the in-task category learning time point (Fig. 6h). 
Specifically in area POR, where we observed an overall increase 
in ΔCTI, choice selectivity of individual neurons that increased in 
ΔCTI after learning was, already before category learning, larger 
than that of neurons that decreased in ΔCTI (Fig. 6i). This suggests 

that an increased ΔCTI, and thus tuning for semantic rather than 
perceptual aspects of the categories, in area POR is facilitated by 
choice selectivity before category learning.

Discussion
Using a behavioral paradigm for information-integration category  
learning, we established that mice can perform such a task,  
discriminating and generalizing stimuli, typically showing a rule 
bias. Learned visual categorization relied in part on neurons with 
small receptive fields and could not be performed without visual 
cortical activity, but did not critically depend on a single visual 
area. We identified a broad distinction between dorsal and ventral 
stream areas, with dorsal stream areas responding more universally 
to visual stimuli, while in ventral stream areas, neurons are more 
flexibly recruited to respond during visual stimulus presentation 
after learning. Newly responsive neurons across areas were likely 
to be selective for behavioral choice and reward. Finally, we identi-
fied area POR as the first visual processing stage at which neurons 
became more tuned to a category boundary, independent from their 
change in orientation or spatial frequency tuning.
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Implicit versus explicit categorization. Besides a hierarchical dis-
tinction in the degree of category selectivity across brain areas, it has 
been proposed that the brain uses parallel, distinct neural circuits 
for solving explicit and implicit categorization problems50. Explicit 
categories are often defined by a single rule, making them eas-
ily verbalizable. Implicit categories are more procedural in nature, 
learned by trial and error, require more training and do not neces-
sarily depend on declarative memory51,52. Information-integration 
categories are a specific example of these24,53. Based on fMRI studies, 
explicit, rule-based categories are thought to depend more on activ-
ity in frontal areas of the neocortex54,55, while implicit categorization 
relies more on a distributed set of brain regions6,56, including the 
basal ganglia55 and possibly sensory cortex57. This idea is supported 
by a human behavioral study showing that rule-based categoriza-
tion—in contrast to information-integration categorization—does 
not depend on retinotopic stimulus position23. Hence, observing an 
effect of category learning in retinotopically organized visual areas 
of the neocortex may be specifically tied to having trained mice on 
information-integration categories.

Still, to what degree neural systems for explicit and implicit cat-
egorization are truly segregated is debated and could for instance 
depend on perceptual demand and task design21,58. It is, for exam-
ple, also possible that the involvement of sensory areas in our 
and other studies depends on the particular perceptual demand 
of information-integration categories and is not caused by its 
implicit nature. In addition, the reduced category space that we 
implemented in our chronic imaging experiment often resulted in 
a strong rule bias. When inspecting individually learned category 
boundaries in this experiment (Extended Data Fig. 4b), it can be 
argued that here mice learned, at least to some extent, rule-based 
categories. Therefore, it would be premature to conclude that the 
involvement of mouse visual areas in category learning is specific to 
information-integration categories.

Ventral and dorsal stream areas are differently modulated by 
learning. One of our main findings is that, after learning, a sub-
set of recordings showed an increased fraction of neurons signi
ficantly driven by in-task visual stimulus presentation. These 
recordings came predominantly from areas that, in the mouse41,42, 
display a connectivity pattern resembling that of ventral stream 
areas in higher mammals43,59,60. In mice, ventral visual stream 
neurons have been shown to preferentially tune to slowly moving 
stimuli, and they have higher spatial frequency preferences in com-
parison to neurons in dorsal stream areas36,37,48. These observations 
are thought to parallel enhanced tuning for features of complex 
objects, as observed in monkey temporal cortex38,61. Still, the type 
of features and complexity of visual stimuli that neurons in human 
and monkey temporal cortex are tuned to62,63 do not directly com-
pare to what has been observed in rodents (for example, in ref. 64). 
Beyond hierarchical differences in preferential processing of stimu-
lus features, fMRI experiments have indicated that areas early in the 
human ventral visual stream can be modulated by learning21,22,65. 
Our study, showing that mouse higher visual areas are differentially 
modulated by visual learning, thus extends the already existing  
parallel in functional organization of the visual system of lower and  
higher mammals.

An early signature of a semantic representation. The overall aim 
of our study was to provide a better understanding of how far the 
trace of a semantic memory extends to sensory regions of the brain. 
Using category learning6,66,67 with well-controlled, simple visual stim-
uli should, in principle, allow a category representation to form at 
the very first stages of visual information processing where neurons  
respond selectively to such stimuli17,18, unless there are fundamental 
limitations in cortical plasticity preventing this. We found that the 
learned category association depended, in part, on the retinotopic 

position of presented stimuli, suggesting that the category represen-
tation is partly carried by neurons having defined receptive fields  
in visual space. The approach of disentangling category tuning  
from feature tuning revealed that, indeed, neurons across all areas 
of the visual cortex updated their tuning curves for orientation  
and spatial frequency, as well as for category, such that they could 
support improved differentiation of the trained categories.

However, in visual area POR, neurons became better tuned to 
categories than could be explained by their orientation and spatial  
frequency-specific tuning. These neurons tended to be choice 
selective already before category learning had started, and the 
degree of choice selectivity covaried with the amount of category 
selectivity that was achieved after learning. This is in line with a 
recent model showing how choice selectivity can drive the tuning 
of a neuron to change from being orientation-tuned to becoming 
category-selective16. Electrophysiological and imaging experiments 
have shown that rodent area POR features diverse neural corre-
lates of visual stimuli, behavioral choice, reward and motivational 
state68,69. This diversity could result from POR’s extended network 
of anatomical connectivity, for example, with lateral higher visual 
areas42, receiving visual drive from the superior colliculus via the 
lateral posterior nucleus of the thalamus70, and reciprocally connect-
ing to the lateral amygdala71, the perirhinal and lateral entorhinal 
cortex42,72 and orbitofrontal and medial prefrontal cortex73. Possibly, 
the presence of the various functional correlates, as well as the  
anatomical connectivity pattern placing it early within the hierarchy 
of the mouse ventral visual stream42, allows for category-selective 
plasticity to occur and set POR apart from other visual areas.

Thus, it appears that plasticity in eight of the nine recorded 
visual areas was limited to neurons predominantly shifting 
their feature tuning in support of categorization, even though 
we observed many choice-modulated neurons in all local net-
works (Fig. 5g), suggesting that choice selectivity alone does not 
explain category tuning. Could it be that plasticity in the eight 
non-category representing areas is bound by some factor, other 
than the proposed choice correlation (see above), limiting the 
speed and range of tuning curve changes? While vastly specula-
tive, one possible mechanism explaining this could be a difference 
in how broadly neurons in these areas sample their functional 
inputs, either locally74 or long range. If a neuron in, for example, 
area LM would have more like-to-like connectivity compared to a 
POR neuron, the LM neuron would be more strongly bound to its 
functional properties compared to the POR neuron. Future work 
on local and inter-area functional and anatomical connectivity 
might reveal such differences in connectivity motifs.

In summary, we find that area POR has a neural representation 
that increases in size after learning, and is biased to reflect categories 
(that is, semantic information), rather than orientation and spatial 
frequency tuning (that is, perceptual information). We propose that 
this elementary category representation propagates from area POR, 
via parahippocampal regions and basal ganglia, to (pre)frontal cor-
tex75, there forming a highly selective and context-specific learned 
category representation12,76. Thus, the representation of semantic 
information emerges early—albeit not at the first processing stage—
in the ventral stream of the mouse visual system.
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Methods
Mice. All experimental procedures were conducted according to institutional 
guidelines of the Max Planck Society and the regulations of the local government 
ethical committee (Beratende Ethikkommission nach §15 Tierschutzgesetz, 
Regierung von Oberbayern). Adult male C57BL/6 mice ranging from 6 to 10 weeks 
of age at the start of the experiment were housed individually or in groups in  
large cages (type III and GM900, Tecniplast) containing bedding, nesting material  
and two or three pieces of enrichment such as a tunnel, a triangular-shaped 
house and a running wheel (Plexx). In a subset of experiments (stimulus-shift 
experiment, n = 3; local cortical inactivation experiment, n = 3), we used mice  
(12 to 15 weeks old; two female and one male) that expressed the genetically encoded  
calcium indicator GCaMP6s in excitatory neurons (B6;DBA-Tg(tetO-GCaMP6s) 
2Niell/J (Jax, 024742) crossed with B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ (Jax, 
007004))77,78. All mice were housed in a room having a 12-h reversed day/night 
cycle, with lights on at 22:00 and lights off at 10:00 in winter time (23:00 and 11:00 
in summer time), a room temperature of ~22 °C and a humidity of ~55%. Standard 
chow and water were available ad libitum except during the period spanning 
behavioral training, in which access to either food or water was restricted  
(for a detailed procedure see ref. 79).

Head bar implantation and virus injection. A head bar was implanted under 
surgical anesthesia (0.05 mg per kg body weight fentanyl, 5.0 mg per kg body 
weight midazolam, 0.5 mg per kg body weight medetomidine in saline, injected 
intraperitoneally) and analgesia (5.0 mg per kg body weight carprofen, injected 
subcutaneously (s.c.); 0.2 mg ml−1 lidocaine, applied topically) using procedures 
described earlier79. Next, a circular craniotomy with a diameter of 5.5 mm was 
performed over the visual cortex and surrounding higher visual areas. The location 
and extent of V1 was determined using IOS imaging37,80,81 and the locations of 
higher visual areas were extrapolated based on the acquired retinotopic maps and 
literature36,37,82,83. A bolus of 150 nl to 250 nl of AAV2/1-hSyn-GCaMP6m-GCG-
P2A-mRuby2-WPRE-SV40 (ref. 84) was injected at 50 nl min−1 in the center of 
V1 and into four to six higher visual areas at a depth of 350 μm below the dura 
(viral titers were 1.24 × 1013 and 1.02 × 1013 GC per ml). Following virus injection, 
the craniotomy was closed using a cover glass with a diameter of 5.0 mm (no. 1 
thickness) and sealed with cyanoacrylate glue and a thin edge of dental cement. 
Animals recovered from surgery under a heat lamp and received a mixture of 
antagonists (1.2 mg per kg body weight naloxone, 0.5 mg per kg body weight 
flumazenil and 2.5 mg per kg body weight atipamezole in saline, injected s.c.). 
Postoperative analgesia (5.0 mg per kg body weight carprofen, injected s.c.) 
was given on the next 2 d. In some animals, we performed a second surgery 
(following procedures as described above) to remove small patches of bone growth 
underneath the window.

Visual stimuli for information-integration categorization. Visual 
information-integration categories were constructed from a 2D stimulus space 
of orientations and spatial frequencies, in which the category boundary was 
determined by a 45° diagonal line6,53,58,85. In experiments with freely moving mice, 
the category space consisted of stationary square-wave gratings of approximately 
7 cm in diameter, having one of seven orientations equally spaced by 15° between 
the cardinal axes, and seven spatial frequencies (0.03, 0.035, 0.04, 0.05, 0.07, 0.09 
and 0.11 cycles per degree, as seen from a distance of 2.5 cm). Stimuli exactly 
on the diagonal category boundary were left out, resulting in two categories 
with 21 stimuli each (Fig. 1b). In the touch screen task, animals tended to weigh 
orientation over spatial frequency, which is possibly the result of greater variability 
in perceived spatial frequency than orientation during the approach to the screen.

In experiments with head-fixed mice, visual stimuli consisted of sinusoidal 
drifting gratings presented in a 32° diameter patch and extended by 4° wide faded 
edges, on a gray background. The stimulus was positioned in front of the mouse 
with its center at 26° azimuth and 10° elevation. In experiments without chronic 
imaging, stimuli had one of seven orientations spaced by 20°, and one of six spatial 
frequencies (0.04, 0.06, 0.08, 0.12, 0.16 and 0.24 cycles per degree) and drifted with 
1.5 cycles per degree in a single direction. The category space was always centered 
on one of the cardinal orientations (for example, centered on 180° resulted in a 
stimulus range from 120° to 240°). The category boundary had an angle of 45° 
and was placed such that no stimuli were directly on the boundary (Fig. 2b). In 
these experiments, animals tended to weigh spatial frequency more strongly than 
orientation, which could indicate that the differences in spatial frequency were 
perceived as more salient.

For experiments in which the stimulus position was altered, the center of the 
computer monitor was repositioned from the default setting (right of the mouse, 
26° azimuth) to a position straight in front of the mouse (0° azimuth) or left of 
the mouse (−26° azimuth; Fig. 2c). The monitor rotated on a swivel arm that was 
secured below the mouse such that the foot point (the point closest to the eye) was 
always in the center of the monitor. In addition, we verified that at each position 
the monitor was equidistant to the mouse. The relative position of the stimulus on 
the computer monitor and all other features were kept constant.

For chronic imaging, most stimulus parameters were identical to experiments 
without imaging. The complete stimulus space consisted of a full 360° range of 
orientations spaced by 18° (two directions of motion per orientation) and five 

spatial frequencies (either 0.06, 0.08, 0.12, 0.16 and 0.24 cycles per degree or 0.04, 
0.06, 0.08, 0.12 and 0.16 cycles per degree). For each mouse, the category space 
was selected to contain six consecutive orientations (spaced by 18°) and the full 
range of five spatial frequencies, centered on one of the cardinal orientations (for 
example, centered on 180° resulted in a range from 135° to 215°). However, the 
stimuli were reduced in number; only the stimuli furthest from the boundary 
(initial stimuli) and closest to the category boundary (category stimuli) were used 
in the behavioral task (Fig. 3g). The reduced category space was implemented 
to consist of fewer stimuli, such that each stimulus would have a larger number 
of presentations (trials), thus facilitating a precise assessment of stimulus and 
category selectivity in the neural data. The angle of the category boundary in 
chronic imaging experiments was adjusted for rule bias to 23° (or 67° in two mice) 
to aid the animals that were biased to follow information of a particular stimulus 
dimension (see Extended Data Fig. 4b for the individual category space of each 
chronically imaged mouse).

Touch screen operant chamber. Conditioning of freely moving animals was 
done in a modular touch screen operant chamber (MED Associates), which 
was operated using commercial software (K-LIMBIC) and was placed in a 
sound-attenuating enclosure86–88. The north wall of the operant chamber consisted 
of a touch screen with two apertures in which visual stimuli were presented, and 
a small petri dish that served as receptacle for a food pellet (equivalent to regular 
chow; TestDiet 5TUM). The south wall housed a lamp, a speaker and a retractable 
lever, and the east wall of the chamber held a water bottle.

Animals were pretrained in three stages. First, food-restricted mice were 
habituated to the experimental environment for a single, 20-min session, during 
which they were placed in the operant chamber and in which the food pellet 
receptacle contained 20–30 food pellets. In the next stage, the animals were 
exposed to a rudimentary trial sequence. After a 30–60-s intertrial interval, two 
visual stimuli were presented in the apertures of the touch screen monitor. The 
stimuli differed in both spatial frequency and orientation. Touching one of the two 
stimuli (the rewarded stimulus) led to delivery of a food pellet in the receptacle 
(food tray), while touching the other stimulus had no effect. If the mouse did not 
touch the rewarded stimulus within ~30 s from stimulus onset, the trial timed 
out and the next intertrial interval started. This stage lasted for two to four daily 
sessions (each lasting 1–1.5 h), until the mouse performed at least 50 rewarded 
trials. In the final pretraining stage, the lever was introduced. The trial sequence 
was almost identical to the previous stage, except now the trial started with lever 
extrusion instead of visual stimulus presentation. The visual stimuli were only 
presented after the mouse had pressed the lever. If the mouse failed to press the 
lever within ~30 s, the trial timed out (without visual stimulus presentation) and 
the sequence proceeded with the next intertrial interval.

Mice switched to the operant training paradigm as soon as they performed 
over 50 rewarded trials in the last pretraining stage. The trial sequence was very 
similar to the pretraining sequence, a 30–60-s intertrial interval was followed by 
lever extrusion (Extended Data Fig. 1b). When the mouse pressed the lever, it was 
retracted, and two visual stimuli were presented in the apertures of the touch screen. 
One stimulus was selected from the rewarded category and one stimulus was selected 
from the non-rewarded category such that they mirrored each other’s position 
across the center of the category space. If the mouse touched the screen within the 
aperture where the rewarded stimulus was presented, a food pellet was delivered in 
the receptacle. If the mouse touched the non-rewarded stimulus, the trial ended and 
proceeded to the next intertrial interval. Because the intertrial interval already lasted 
30–60 s, no additional time-out or other punishment was implemented.

Finally, after mice had learned discriminating the first set of two stimuli 
(>70% correct), we introduced four additional stimuli, one step closer to the 
category boundary. The original stimuli were also kept in the stimulus set. If there 
was a reduction in performance, animals were trained for a second day on this 
new stimulus set. Over the next 3 d, we introduced six, eight and ten additional 
stimuli. The set of ten stimuli was trained for 2–3 d, after which we added the 
final 12 stimuli and the animals discriminated the full information-integration 
categorization space (Fig. 1b).

Head-fixed operant conditioning. Head-restrained conditioning was performed 
in a setup described in ref. 79. In brief, the mouse was placed with its head fixed, 
on an air-suspended Styrofoam ball89,90, facing a computer monitor (Fig. 2a). The 
computer monitor was placed with its center at 26° azimuth and 0° elevation. The 
monitor extended 118° horizontally and 86° vertically, and pixel positions were 
adapted to curvature-corrected coordinates37. Two lick spouts were positioned in 
front of the mouse within reach of the tongue91. The setup recorded licks on each 
spout, as well as the running speed on the Styrofoam ball using circuits described 
in ref. 79. Water rewards were delivered through each lick spout by gravitational 
flow using a fully opening pinch valve (NResearch). The setup was controlled by 
a closed-loop MATLAB routine using Psychophysics Toolbox extensions92 for 
showing visual stimuli, and in addition, all signals were continuously recorded 
using a custom-written LabView routine.

Before head-fixed training, animals were habituated by handling, exposure to 
the Styrofoam ball and by drinking water from a handheld lick spout. After the 
habituation period, animals underwent head-fixed pretraining in two stages.
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Pretraining phase 1 consisted of trials in which animals were trained to lick 
for reward on a single lick spout. Each trial in this training phase started with 
an intertrial interval of 2 s, followed by a period during which the mouse had to 
withhold from running and licking for 0.5 ± 0.05 s (a no-lick, no-run period). 
Next, stimulus presentation commenced, with the stimulus randomly selected 
from the full set of stimuli (all combinations of five different spatial frequencies 
and ten different orientations, moving in two directions; ‘Visual stimuli for 
information-integration categorization’). Stimulus presentation lasted 0.9 ± 0.1 s. 
After stimulus presentation, and a 0.1-s delay, there was a period in which the 
mouse could make a response (response window), lasting 10 s. The first lick on the 
lick spout within the response window resulted in immediate delivery of a water 
reward. The trial would count as correct and the trial sequence proceeded into the 
intertrial interval of the next trial. If the mouse did not make a lick, the response 
window would time out, the trial counted as a miss and the trial sequence also 
proceeded into the intertrial interval. The goal of this stage was to familiarize the 
mouse with the general sequence of withholding licking and running, stimulus 
presentation and licking for reward. Animals were typically kept in this stage for 
4–6 d, and during these days the intertrial interval was gradually lengthened to 5 s.

Pretraining phase 2 consisted of the same basic trial structure as phase 1, but 
had two available lick spouts. During phase 2, the no-lick, no-run period was 
increased to 0.7 ± 0.1 s, stimulus presentation was lengthened to 1.5 ± 0.1 s and the 
delay between stimulus offset and response window was increased to 0.2 ± 0.1 s. 
The presented stimulus was chosen randomly from the same set as in phase 1, but 
now only one of the two lick spouts was randomly assigned for reward delivery 
(there was no relation between the stimulus and the rewarded lick spout). Water 
reward was given after the mouse had licked the predetermined lick spout. If the 
mouse licked the other spout, it had no effect on the trial flow; that is, the mouse 
could still lick the other spout and obtain the reward within the period of the 
response window. Pretraining phase 2 lasted until the animal performed >50 
trials per day, and at least until the period of out-of-task baseline imaging ended 
(duration ranging between 7 and 17 d).

Following pretraining, animals were initially trained using two stimuli, one 
requiring a lick response on the left lick spout and one on the right lick spout. 
These training sessions implemented the same trial structure as pretraining phase 
2 (Extended Data Fig. 2b), but now the stimuli indicated the side of the lick spout 
that would give a drop. For the first three to five training sessions, licks on the 
incorrect spout did not alter the trial flow (these sessions are marked as ‘shaping’ 
in the timeline in Extended Data Fig. 2a). After these initial shaping sessions, a lick 
on the incorrect spout during the response window period resulted in a time-out 
stimulus (black bar, 8° high and 106° wide, centered on the computer monitor), 
which was presented for the duration of the 2-s time-out. Time-out stimuli were 
not shown during imaging. After initial stimuli were discriminated with more 
than 70% correct, we gradually introduced more stimuli for categorization. As 
long as performance stayed above 65% correct trials, we added stimuli that were, 
each time, one step closer to the category boundary until the full categories were 
discriminated.

During pretraining phase 2 and subsequent training, an automated lick-side 
bias-correction algorithm directed the setup to increase the number of trials 
having the active lick spout on the side that the animal did not prefer (see ref. 79). 
This algorithm was stopped as soon as the animal showed signs of above-chance 
stimulus discrimination and was never implemented during sessions in which 
imaging was performed during the behavioral task. In a subset of experiments, we 
initially displaced the retinotopic position of the stimuli to the left and the right 
sides of the monitor (−16 and +16° azimuth) in such a way that it matched the 
side of the active lick spout where the response should be made. This was done 
to facilitate learning of the ‘lick-left’/‘lick-right’ association. This training stage 
is marked ‘shifted’ in the timeline depicted in Extended Data Fig. 2a. After mice 
reached the criterion using this position-shifted paradigm, we gradually shifted 
all stimuli to the center position and proceeded with the imaging of the time point 
‘stimulus discrimination’ only when stable high performance was maintained 
without stimulus shifts.

In a subset of experiments (three of five mice from the experiment in which  
the monitor position was altered and in experiments presented in Extended Data 
Fig. 5), we connected the above-described lick-side bias-correction algorithm to 
a servo system that could micro-adjust the left/right position of the lick spouts. 
While online adjustments of the lick spout position were not made often, this 
method of physically opposing the lick spout position to the side bias could correct 
the left/right licking behavior of mice that occasionally defaulted to respond only 
on a single lick spout. These online adjustments, however, could not in any way 
affect behavioral performance or category-specific choices of the mouse.

Time points of image acquisition. Imaging sessions were performed throughout 
the experiment and differed in several aspects. Each imaging time point was 
acquired over multiple days, with a different visual cortical area imaged on each 
day. For each mouse, the same subset of cortical areas was imaged at every imaging 
time point throughout the experiment. Thus, each time point contained the 
same complete cycle through all areas (Fig. 3a). We acquired imaging data using 
two different visual stimulation protocols, one for in-task imaging and one for 
out-of-task imaging.

Out-of-task imaging sessions were acquired at two baseline imaging time 
points, during the period of pretraining. In addition, one out-of-task time point 
was acquired at the end of the chronic imaging experiment (Fig. 3a). Out-of-task 
imaging sessions were always acquired after the behavioral session had been 
completed, thus the animal was in a satiated state. In these imaging sessions, the 
setup was kept in the same configuration as during behavioral training, except 
for that the lick spouts were moved out of the mouse’s view. The imaging sessions 
started with 15 min of darkness, followed by ~15 s of gray screen (50% luminance, 
allowing the animals to adapt to the screen brightness). Next, stimuli were 
presented, interleaved by periods of a gray screen. The stimuli were presented in 
eight blocks containing all 100 unique stimuli (all combinations of ten orientations, 
moving in two directions and five spatial frequencies). The order of stimulus 
presentation was shuffled within each block individually.

In-task imaging sessions started with 12 min of darkness, followed by ~15 s of 
gray screen (50% luminance) during which the mouse usually received a few drops 
of water to indicate that the task was about to start. After this pre-task period, the 
visual categorization task started and lasted for 35 min. At the end of the imaging 
session, there was another period of 12 min darkness and a 3-min period in which 
a water reward was given roughly every 20 s, on either the left or the right lick 
spout (pseudorandom side assignment per reward). In-task imaging sessions 
were performed at three distinct time points (Fig. 3a). The first in-task imaging 
time point was acquired during the baseline period, directly after pretraining 
was finished. At these time points, both the initial and the category stimuli were 
included in the stimulus set. If the animal made a mistake in such a session (that is, 
a lick on the incorrect side), no punishment or time-out was implemented (that is, 
the animal could still obtain a reward by making a lick on the other spout). In three 
animals, we performed a full repeat of the in-task baseline imaging time point. 
The second in-task imaging time point was acquired after the animal had reached 
the criterion on the visual discrimination task. At this time, only the initial stimuli 
were shown. Incorrect choices were always followed by a time-out, but without the 
visual time-out stimulus being shown. The final in-task imaging time point was 
acquired after the animal performed above chance on the category learning task. 
This task included only the category stimuli.

Muscimol inactivation. At the end of the chronic imaging time series, five mice 
underwent two experiments on consecutive days, in which visual cortical areas 
were inactivated, or a control manipulation was performed. The order of cortical 
inactivation and the control experiment was counterbalanced across mice. Under 
isoflurane anesthesia (3% induction and 1.5% maintenance in O2), the chronically 
implanted cranial window was opened and the surface of the exposed cortex 
was treated for 20 min with a solution containing 5 mM muscimol in aCSF93. 
Subsequently, the cortex was covered with 0.75% agarose (in aCSF) containing 
5 mM muscimol, and sealed with a cover glass. The mouse was allowed to recover 
for approximately an hour. During the behavioral experiment following this 
manipulation, we performed calcium imaging of L2/3 and L5 neurons in primary 
visual cortex to confirm cortical inactivation. The control experiment was executed 
in the exact same way, except that muscimol was not added to the aCSF.

For the targeted inactivation of specific visual cortical areas, three mice 
that were extensively trained on the information-integration category task 
underwent a series of muscimol (inactivation) and saline (control) injections into 
retinotopically determined visual cortical areas (V1, AL and POR). In all mice, 
inactivation and control conditions were interleaved by one day of behavioral 
training without manipulation (for timeline, see Extended Data Fig. 5a). Mice 
were lightly anesthetized with isoflurane (3% for induction and 1.2–1.5% for 
maintenance in O2), the chronically implanted window was opened and either 
a 25-nl solution of 5 mM muscimol in saline or 25 nl saline was injected 300 µm 
below the cortical surface. The injection parameters were calibrated to result in a 
spread of the injected solution approximately 700 µm radially from the injection 
center (Extended Data Fig. 5b). Injections targeted at area AL were done slightly 
more anterolaterally such that they likely also affected area RL, but not area LM. 
Injections targeted at area POR likely inactivated areas LI and LM also. Following 
the injection, the cortex was sealed with a cover glass. After approximately an hour 
of recovery, categorization behavior was tested.

Intrinsic signal imaging. IOS imaging was performed according to methodology 
described before80. For IOS imaging during window implantation surgery, we 
illuminated the exposed, cleaned skull, within the 7-mm-diameter central opening 
of the head bar. We centered an approximately 5 × 5-mm FOV on stereotaxic 
coordinates of V1 and focused the image on the surface of the exposed skull using 
green light (540 nm). For IOS imaging through an implanted cranial window, 
we centered the FOV on the window and focused the image on the dural and 
pial blood-vessel pattern. Next, we changed the illumination wavelength to 
740 nm (emission filter of 740 nm, full-width half-maximum value of 10 nm) 
and moved the focal plane down to approximately 800 μm below the skull 
surface, which was an estimated 300–400 μm below the pial surface. Images were 
acquired using a Teledyne DALSA Dalstar CCD camera and a Matrox frame 
grabber. Data processing and storage were done using a custom-written image 
acquisition and analysis program in MATLAB (MathWorks). During the period 
of image acquisition, we presented visual stimuli on a curvature-corrected37, 
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gamma-corrected, LCD monitor (DELL; 59.9 cm wide and 33.8 cm high). 
The monitor background luminance was kept at 50% gray values, which was 
equiluminant to the visual stimuli when averaged over a larger area.

For discrete retinotopic maps81, the visual stimulus was a square-wave grating 
(0.04 cycles per degree), drifting at two cycles per second in eight directions in a 
semi-random sequence (500 ms per direction). The stimulus was presented for a 
duration of 6 s in a square or rectangular aperture of a specific retinotopic size (that 
depended on the number of apertures (patches) used for mapping). We typically 
used four or six patches for IOS imaging during window implantation surgery, 
thus presented the stimuli in a 2 × 2 or 2 × 3 vertical/horizonal grid. When imaging 
through an already-implanted cranial window, we typically used 12 (3 × 4), 15 
(3 × 5) or 24 (4 × 6) patches. Stimulus presentations were interleaved by a 12-s 
inter-stimulus interval.

For continuous retinotopic maps37,94, we presented a checkerboard stimulus 
in a wide rectangular aperture spanning 20° on one axis and the full width/
height of the monitor on the other axis. The checkerboard pattern consisted of 
a grid of full-contrast black and white patches, ~12° in size, repositioned and 
contrast inverted every 166 ms. The aperture in which the checkerboard was 
displayed drifted continuously across the screen. Each of the four cardinal drift 
directions looped either 10–20 times at a drift speed of 3–4° per second or 40–50 
times at a drift speed of 15–20° per second, with a 30-s pause in between sets of 
drift-direction loops.

Two-photon calcium imaging. In vivo two-photon calcium imaging95 was performed 
with a customized commercially available Bergamo II (Thorlabs) two-photon laser 
scanning microscope96 using a pulsed femtosecond Ti:Sapphire laser (Mai Tai HP 
Deep See, Spectra-Physics) and controlled by ScanImage 4 (ref. 97). The calcium 
indicator GCaMP6m98 and the structural marker mRuby2 (ref. 99) were both excited 
with a wavelength of 940 nm. Emitted photons were filtered for reflected laser light 
(720/25 short-pass filter), spectrally separated using a dichroic beamsplitter (FF560) 
and two band-pass filters (500–550 nm for GCaMP6m; 572–642 nm for mRuby2) 
and detected using two GaAsP photomultiplier tubes. Laser power was kept between 
18 and 35 mW, depending on the depth of imaging and the quality of the chronic 
window. Images were acquired from two alternating planes, 40 μm apart, using a ×16 
0.8-NA objective (Nikon) mounted on a piezoelectric stepper (Physik Instrumente). 
The xy image dimensions were 325 × 250 μm (512 × 512 pixels), and each image plane 
was acquired at a rate of ~15 Hz (total frame rate of ~30 Hz).

Image processing. The background signal of the photomultiplier tubes was 
measured at the start of each imaging stack, and the mean background signal 
level was subtracted from the entire stack (dark noise subtraction). Lines in 
the images were scanned bidirectionally and an inadvertent line shift was 
corrected for by calculating the maximum cross-correlation of lines scanned in 
each direction. Image planes from acquired stacks were realigned to correct for 
in-plane movement artifacts, using an algorithm that calculates the maximum 
cross-correlation of the Fourier transforms of two images100.

Within-session and across-session region of interest identification. To assist 
with image annotation, we produced a high signal-to-noise average image for each 
channel from the resulting stack as well as a maximum projection image using a 
running average of 5 s. In addition, we calculated a ΔF/F stimulus locked-response 
image in which brightness of the pixels indicated the stimulus-induced increase 
in fluorescence relative to baseline, for that pixel. The outlines of neuronal regions 
of interest (ROIs) from five mice were annotated manually by using the average 
image of each channel, but with assistance of the maximum projection and the 
ΔF/F response image. Annotations were made by one of three experimenters, and 
subsequently adjusted by a single experimenter using a custom-written MATLAB 
(MathWorks) program.

These manually annotated image stacks were used to train two multilayered 
convolutional neural networks programmed using Tensorflow101 and Python3, 
which were then used to annotate the imaging stacks for five additional mice 
(https://github.com/pgoltstein/NeuralNetImageAnnotation/). One network 
annotated the centers of neurons (5 × 5-pixel centroid region) and the other 
annotated the complete somata of neurons on a pixel-by-pixel basis. We used 
the average image of both imaging channels, as well as the ΔF/F response image 
as source data for the annotation. The input layer of the network supplied a 
33 × 33-pixel FOV around each single pixel, thus its dimensions were 33 × 33 
pixels by three channels. The network had four 3 × 3 convolutional layers with 
2 × 2 max-pooling applied to each of these layers, and 16, 32, 64 and 128 channels 
in each layer, respectively. The last convolutional layer was connected to a fully 
connected layer containing 512 units, and the fully connected layer in turn 
connected to two output layer units, one indicating that the pixel was part of the 
ROI center or body, and one unit indicating the inverse. All layers consisted solely 
of rectifying linear units.

The network was trained by minimizing the softmax cross-entropy using the 
Adam optimizer102 on repeated batches of 2,000 samples, drawn equally from the 
training data (512 × 512 pixels from 122 images from five mice). Regularization 
during training was implemented by dropout in the fully connected layer with a 
probability of 0.5. Each network was trained using a learning rate varying between 
10 × 10−3 and 10 × 10−5. The centroid-detecting network was trained on 10.6 × 106 

samples, and the cell-body-detecting network was trained on 96.1 × 106 samples. 
Cross-validated pixel-wise performance was determined using 122 different 
annotated images of the same mice. The centroid-detecting network performed 
at 87.5% correct (precision of 0.95, recall of 0.79) and the cell-body-detecting 
network performed at 86.6% correct (precision of 0.88, recall of 0.84). Next, 
an algorithm identified centers of individual cells from the network-centroid 
annotations and used the network-body annotations to detect the outlines of these 
cells. Network annotations were further corrected by a single experimenter using a 
custom-written MATLAB(MathWorks) program.

Before further processing, we removed overlap between annotations using an 
algorithm. In addition, we removed all (parts of) annotations that, due to motion 
artifacts, shifted out of the FOV for more than 0.1% of the stack. We aligned 
annotations of all stacks from a single chronic recording using a custom-written 
MATLAB (MathWorks) program that matched ROIs across imaging sessions 
using an affine transform and allowed additional manual control over alignment 
parameters. Neurons that shared more than 50% overlap of the cell-body pixels 
were defined as a putative matched group. Finally, we manually inspected and 
corrected all matched groups that were present in all chronic recordings for 
continuity, missed annotations or false-positive annotations.

Neuronal region of interest signal extraction. For each ROI, we calculated a 
GCaMP6m and mRuby2 fluorescence signal by taking the mean of all pixels 
within the ROI, for each channel separately. In addition, we calculated a local 
neuropil signal, a measure of local fluorescence intensity, over a circular region 
surrounding the ROI (2–33-μm ring). Using these signals, we first compensated 
for non-cell-specific fluorescence bleeding into the ROI signals by subtracting 
the neuropil signal time series, multiplied by 0.7 from the raw fluorescence time 
series, a method known as neuropil correction98,103,104. The median of the neuropil 
time series (multiplied by 0.7) was added, to offset the lower baseline fluorescence 
signals resulting from neuropil correction. Next, we compensated for small 
fluctuations in fluorescence that followed changes in the axial position of cells (for 
example, due to slow drift or motion artifacts) by calculating the ratio (R) between 
the green and red channel, as both channels should be affected equally by such 
out-of-plane motion105.

For each frame, an R0 value was calculated from the lowest 25% values in a 
60-s window around that frame. The ΔR/R value was calculated by subtracting the 
R0 value from the fluorescence value (R) of a frame and dividing the remainder 
over the R0 value (adapted from ref. 106). To further remove artifacts, the resulting 
GCaMP6m ΔR/R fluorescence time series was processed using the constrained 
FOOPSI algorithm107,108, which fits the calcium ΔR/R time series with a biologically 
plausible model and provides an inferred spike time series for each neuron with 
high temporal resolution that was used in all following analyses. Visualized traces 
of inferred spike activity were smoothed with a five-frame flat kernel.

Analysis of behavioral data. Behavioral performance was reported as the fraction 
of correct trials. In the touch screen task, this was quantified as the number of 
trials in which the mouse touched the correct (rewarded) stimulus, divided by 
the total number of trials in which the mouse made a touch response. In the 
‘lick-left’/’lick-right’ task (head-fixed), this was quantified as the number of trials 
in which the animal licked on the correct lick spout, divided by the total number 
of trials in which the mouse made a lick response. Steepness of categorization, a 
function of the distance of stimuli to the category boundary, was determined from 
the steepness parameter of a fitted sigmoid curve.

While information-integration categories were trained with a systematic 
boundary requiring the linear integration of the two stimulus features, orientation and 
spatial frequency, not all mice bisected the stimulus space using the trained boundary 
angle. The boundary angle, as behaviorally expressed by the animal, was calculated 
by fitting a 2D plane through a three-dimensional space having orientation and 
spatial frequency on the x and y axes, respectively, and performance on the z axis. The 
behaviorally expressed boundary was defined as the intersection of the fitted plane 
with the plane z = 0.5. For category spaces with a reduced number of stimuli (as used 
in the chronic imaging experiment), the behaviorally expressed boundary vector was 
calculated using a support vector machine.

During behavioral experiments in which we shifted the stimulus position, 
we tracked the positions of both eyes using infrared cameras (The Imaging 
Source). We manually annotated the outlines of the eyes and pupils in a set of 
sample images using DeepLabCut109,110 and used the software to further annotate 
the movies (see Extended Data Fig. 2g for examples). The pupil diameter was 
calculated as the average distance between each of four sets of opposing markers 
on the pupil outline. Horizontal eye position was calculated as the distance from 
the center of the pupil (the mean of the x and y coordinates of the eight markers 
on the pupil outline) to the marker on the left side of the outline of the eye. Both 
pupil diameter and horizontal eye position were normalized to the width of the 
eye, defined as the distance between the left and right marker on the outline of the 
eye. Similarly, during two control experiments, we tracked features of the mouth of 
the mouse (see example annotated video frames in Extended Data Figs. 10f,i). We 
quantified the variable ‘relative mouth opening’ as the distance between the central 
marker on the upper-left jaw and the anterior marker on the lower jaw, normalized 
to the distance between the central markers on the upper-left and upper-right jaws 
(Extended Data Figs. 10f,i).
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Image analysis. Discrete retinotopic stimulation was analyzed for each 
retinotopically specific patch individually. The intrinsic signal response per pixel 
was quantified as percentage decrease during stimulus presentation (mean signal 
from 1 s to 6 s after stimulus onset) relative to baseline (mean signal from −6 s 
to −1 s before stimulus onset). The 2D maps of the IOS response per trial were 
averaged and smoothed to result in a single average intrinsic signal response map 
for each retinotopic stimulus position. These average maps were normalized to 
values of between 0 and 1, to compensate for lower signal strength of patches in the 
eccentricity of the visual field. From the individual average maps, a single image 
was constructed by assigning every pixel a color, based on the patch that elicited 
maximum activity (each retinotopic stimulus position was associated with a  
unique color).

Periodic visual stimulation was analyzed as described in ref. 37,94. In brief, the 
time series of each pixel in the continuous acquisition was low-pass filtered at 
four times the slowest stimulus-repetition frequency. The phase and power of the 
intrinsic signal at the stimulus-repetition frequency were determined for each pixel 
using a Fourier transform. Retinotopic maps detailing visual-response amplitude 
and preferred azimuth and elevation were subsequently produced by recalculating 
the phase to a position in monitor space and scaling the image by the signal power. 
Finally, equi-elevation and equi-azimuth lines were overlaid on a wide-field image 
of the cortical blood-vessel pattern.

HLS maps were calculated on a pixel-by-pixel basis from calcium imaging 
time series. First, a baseline fluorescence map was calculated by averaging all 
images acquired in the intertrial intervals preceding a visual stimulus presentation. 
Similarly, a stimulus fluorescence map was calculated for each stimulus 
individually by averaging all images acquired in the period from visual stimulus 
onset to 0.5 s after stimulus offset. A ΔF/F response map was subsequently 
calculated by subtracting the baseline from each stimulus map and dividing the 
remainder over the baseline map. For each pixel, the color (hue) was selected based 
on the stimulus that gave the largest ΔF/F response. The brightness (lightness) of 
each pixel was determined by the ΔF/F response amplitude to the best stimulus. 
Color intensity (saturation) was determined by calculating the resultant length of 
the stimulus-averaged ΔF/F responses, sorted from largest to smallest, mapped 
onto a circular space. This resulted in a value of 1.0 when only a single stimulus 
elicited a response, displaying full color saturation of the pixel. The resultant length 
was 0.0 when all stimuli drove equal ΔF/F response amplitudes, resulting in a white 
pixel. Multiple HLS maps detailing retinotopic position preference (for example, 
center versus surround of the visual field) were stitched together using coordinates 
from the microscope’s motor position controller, to produce a wide FOV HLS map 
with cellular resolution (Fig. 3b and Extended Data Fig. 3).

Fraction of responsive neurons. For each imaging session, we quantified the 
fraction of responsive neurons using inferred spiking activity in the first second 
of visual stimulus presentation of trials featuring stimuli that were part of the 
reduced category space (the 1-s period was chosen because it contained relatively 
few running and licking events, and no rewards occurred). If the recording was 
an out-of-task imaging time point, in which each stimulus was repeated eight 
times, we performed a Mann–Whitney U test comparing the 1-s period just 
before stimulus onset to the 1-s period directly after stimulus onset. The following 
responsiveness criteria were applied for each stimulus: (1) the non-parametric test 
indicated a significant difference (P < 0.05) and (2) the peak inferred spike rate 
difference was at least 0.01. A neuron was classified as being responsive, when 
these criteria were met for at least a single stimulus of the reduced category space 
(containing ten stimuli).

In-task time points were analyzed slightly differently, because the chance of 
detecting responsive neurons scaled with the variable number of trials that the 
animals performed. We used subsampling to allow a direct comparison of the 
fraction of responsive neurons with the out-of-task time points. For each stimulus, 
we randomly sampled eight trials from the total number of trials, performed 
the same testing criteria as described above, and repeated the procedure 100 
times, resulting in 100 estimates of the stimuli that a neuron was responsive to. 
From these data, we calculated the probability of the neuron being significantly 
responsive to at least one stimulus by dividing the number of subsamples with at 
least one significant stimulus over the total of 100 repeats.

Thus, each method resulted in a single vector listing the probability, per 
neuron, that it significantly responded to at least one visual stimulus. The 
out-of-task sessions resulted in binary entries reflecting probabilities of zero and 
one. The in-task sessions resulted in vectors having values on the interval (0, 1),  
reflecting probabilities that neurons were significantly responsive on a more 
continuous scale, as derived from subsampling. By averaging this vector, we obtain 
in both cases the probability of observing that a randomly chosen neuron from that 
session is significantly responsive, which, importantly, is equivalent to the overall 
fraction of responsive neurons per session.

The time-varying patterns of the fraction of responsive neurons across imaging 
time points (Fig. 4a and Extended Data Fig. 6a) were normalized to the range 
from 0 to 1, and grouped into clusters using the k-means clustering algorithm 
(scikit-learn). For different values of k (2 to 8), we compared the cluster inertia 
(within-cluster sum of squares) of the actual data to the mean cluster inertia of 
100 shuffles (Fig. 4b). The difference between the real and shuffled cluster inertia 
indicates clustering performance and suggested that the data were best grouped 

into two clusters (Fig. 4b). Performing the same analysis, but with an artificial 
third cluster included, accurately detected three clusters. Furthermore, while the 
k-means algorithm has a random initialization step, multiple runs of the same 
analysis resulted in the same cluster groupings.

Using linear regression, we aimed to identify four components making up 
the time-varying pattern of fraction responsive neurons (as visually depicted in 
Fig. 4g). The components were: (1) a stable, non-time-varying fraction (baseline), 
which was assigned the value 1 at each time point; (2) an exponentially decaying 
fraction, having the value 1 for the first time point, 0.5 for the second, and so on; 
(3) a task modulation component having the value 1 for the in-task time points 
and 0 otherwise; and (4) a learning associated component having a value of 1 
for all the post-category learning time points and 0 otherwise. We calculated 
the contribution of each time-varying component, by applying an NNLS fitting 
algorithm (SciPy) on the time-varying fractions of responsive neurons of each 
individual chronic recording. In general, the linear model fitted the time-varying 
fraction of responsive neurons well (R2 = 0.77 ± 0.21 s.d.; n = 39 chronic recordings), 
and each regressor made a unique contribution to the explained variance 
(decay, ΔR2 = 0.254 ± 0.056 (s.e.m.); task, ΔR2 = 0.408 ± 0.052 (s.e.m.); learning, 
ΔR2 = 0.095 ± 0.035 (s.e.m.); we did not quantify the unique contribution of  
base, as it is the intercept and cannot be shuffled; see below for a detailed 
explanation of ΔR2).

Encoding model. To determine how individual task-related and other measured 
covariates influenced a neuron’s inferred spiking activity, we used a generalized 
linear model (GLM; encoding model) to predict the inferred spikes of each neuron 
per imaging frame15,19,111–113. Regressors for discrete events such as stimulus onset 
were represented by a boxcar function, while regressors for continuous parameters 
such as running speed were represented by scalar values for each imaging frame. 
All regressors were smoothed with a Gaussian kernel (σ = 0.5 s) and repeated over 
a defined range with 0.5-s steps (see Supplementary Table 3 and Fig. 5a,b for all 
individual regressors and their ranges).

Stimulus-onset aligned regressors encoded the stimulus parameters: 
orientation, spatial frequency and trained category. In addition, a regressor (task) 
encoded whether or not the mouse made a response in that trial, that is, fitting 
activity related to task engagement. One regressor set aligned to running onset 
(run), the first imaging frame in a trial in which running speed exceeded 1 cm 
per second. We implemented two choice-related regressor sets: one aligning with 
the first sequence of three licks in a row on the side where the mouse would also 
choose to lick in the response window (choice left/right 1), the other aligning 
with the first lick during the response window (choice left/right 2), which was the 
decisive lick in the behavioral paradigm. One regressor set (reward) aligned to 
reward occurrence, and one (T.O.) to the moment that the time-out was given. Two 
continuous regressor sets were constructed from the per-imaging-frame lick rate of 
the mouse, that is, lick rate (left) and lick rate (right), and one continuous regressor 
set reflected the running speed of the mouse. Finally, we added a constant offset to 
the model.

All regressor sets were combined in a single design matrix (Fig. 5a). The 
response variable, inferred spike activity, was smoothed with a Gaussian kernel 
(σ = 0.5 s). The data were subsequently divided in individual trials, only including 
data that were in range of at least one trial-aligned discrete regressor set. Model 
parameters were fit on a subset of trials (70%) using NNLS fitting (SciPy) and L1 
regularization (where L1 = 0.1 × size of response variable). This specific L1 value 
was determined by comparing trained model fitted R2 values with cross-validated 
R2 values using a wide range of possible L1 values (Extended Data Fig. 7a). Model 
performance was expressed as R2 (equations 1–3, where N equals the number 
of imaging frames in the to-be-predicted response variable y, and pi is the 
frame-by-frame model prediction). Cross-validated model performance (R2) was 
calculated on the remaining 30% of trials.

SSresidual =
N∑

i=1
(pi − yi)2 (1)

SStotal =
N∑

i=1
(yi − ȳ)2 (2)

R2
= 1 −

SSresidual
SStotal

(3)

Regressor sets were assigned into seven subgroups (Supplementary Table 3) 
and subgroup unique contribution to the explained variance was calculated by 
subtracting the R2 value of the model with regressors belonging to that subgroup 
shuffled, from the R2 of the full model, thus resulting in a ΔR2 value, similar to 
what is described in ref. 113. The ΔR2 would assume a value of 0 if all the variance 
that the subgroup explains can also be explained by any combination of regressors 
from other subgroups. A positive value for ΔR2 reflects the degree of explained 
variance that can only be explained by this specific subgroup. For the subgroups 
that were most central to our analysis (that is, stimulus, orientation/spatial 
frequency, category, choice and reward), we calculated the maximum variance 
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inflation factor114 across all kernels of each model regressor, for every in-task 
chronic recording. We found that the value of the variance inflation factor never 
exceeded 5, and typically ranged between 1 and 4.

R2 values were compared to values of the same model fitted on trial-shuffled 
data to establish whether they were significantly above chance, using the following 
procedure. Chance-level model performance was determined by fitting the model 
to a trial identity response variable that was shuffled (thus keeping confounders 
like the nonspecific within-trial temporal structure and offsets the same in the 
shuffled model). Both the non-shuffled and shuffled model fits were repeated 100 
times. We used a non-parametric bootstrap procedure115 to estimate the mean and 
95% confidence interval of the cross-validated R2 values of both the shuffled and 
non-shuffled models. An R2 value was considered significant if (1) the mean of the 
shuffled R2 value was below the lower 95% confidence interval of the non-shuffled 
R2 value, and (2) the mean of the non-shuffled R2 value was above the upper 95% 
confidence interval of the shuffled R2 value.

A semantic CTI was calculated from weights of the left-category and 
right-category regressor sets (equation (4); where w̄L is the mean of all left-category 
regressor weights across the cross-validation trials, and w̄R is the same for 
right-category weights). Feature CTI was calculated from the weights of the 
orientation and spatial frequency-specific regressors selectively (equation (5)).

Semantic CTI = w̄L − w̄R

w̄L + w̄R
(4)

Feature CTI =
∑L

l
(
w̄oril + w̄sfl

)
−

∑R
r
(
w̄orir + w̄sfr

)
∑L

l
(
w̄oril + w̄sfl

)
+

∑R
r
(
w̄orir + w̄sfr

) (5)

Here, L is the number of left-category stimuli and R is the number of 
right-category stimuli. w̄oril is the mean of all orientation regressor weights across 
cross-validations for left-category stimulus l and w̄sfl is the mean of all spatial 
frequency regressor weights across cross-validations for left-category stimulus l. 
w̄orir and w̄sfr are the same, but for the right category (Fig. 6a).

Statistics. Statistical analyses were performed using Python (3.7.10), Numpy 
(1.16.4) and Scipy (1.5.2). No statistical methods were used to predetermine 
sample sizes, but our sample sizes are similar to those reported in previous 
publications47,69,113. No data were excluded from the experiment involving touch 
screen operant chambers. We excluded five animals from the experiment involving 
head-fixed conditioning because they did not reach criterion on the stimulus 
discrimination task, three animals because their performance dropped to chance 
level during category learning, and one animal because it refused to lick on the 
left lick spout. We excluded three animals from the chronic imaging experiment 
because their cranial windows did not allow imaging at the time point of category 
learning. Data collection and analysis were not performed blind to the conditions of 
the experiments. All data are presented as mean (±s.e.m.) unless otherwise noted. 
Frequency observations were compared using a chi-squared test. Tests for normality 
of distributions were not conducted, as the number of observations was often 
below ten, and testing for normality would be underpowered. Thus, behavioral and 
imaging data were compared using non-parametric tests: a WMPSR test for paired 
samples, a Mann–Whitney U test for independent samples, and a Kruskal–Wallis 
test, followed by post hoc WMPSR tests or Mann–Whitney U tests, when more 
than two groups were compared. Significance of R2 values of individual neurons was 
determined using non-parametric bootstrap procedures as described above.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data supporting this study are available on https://gin.g-node.org/pgoltstein/
category-learning-visual-areas/.

Code availability
The Python code used for data analysis and production of figures is available on 
https://github.com/pgoltstein/category-learning-visual-areas/. Custom-written 
MATLAB and Python routines used for data collection and data preprocessing are 
available upon reasonable request.
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Extended Data Fig. 1 | Category learning in a touch screen operant chamber. a, Training stages of category learning using touch screen operant chambers 
(Methods). b, Sequence of events in a single trial. ITI: Intertrial interval. c, Time between lever press and screen press, as a function of the stimulus’ 
distance to the category boundary. Bars show mean (±s.e.m.; n=8 mice), gray lines show data of individual animals. d, Example showing category 
boundary angles. The dashed line indicates the trained category boundary and the solid line indicates the individually learned category boundary. The 
boundary angle is defined as the absolute minimum angle between the two lines. e, Mean (±s.e.m.) boundary angle of all mice, for the first five (daily) 
training sessions of stage ‘VI’ and the last five sessions of stage ‘VI’ (two-sided WMPSR test, W=9, P=0.25; n=8 mice). Gray lines show individual mice. 
f, Between-session change in boundary angle (Δboundary angle; mean ±s.e.m.) as a function of how closely sessions were spaced in time (Δsession; 
two-sided Kruskal-Wallis test, H(24)=57.1, P=1.6·10−4; n=8 mice). Gray line shows the same data, but with shuffled session order (two-sided Kruskal-Wallis 
test, H(24)=31.6, P=0.14; n=8 mice). All panels: NS (not significant) P>0.05, *** P<0.001).
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Extended Data Fig. 2 | Category learning in a head-fixed operant conditioning setup. a, Timeline showing training stages for head-fixed category learning 
(Methods). b, Trial sequence. c, Mean (±s.e.m.; n=8 mice) learning curve for head-fixed category learning. Gray represents individual animals. Category 
training stages are marked by Latin numerals. Insets show example stimulus spaces, with stimuli that were included at each stage in full contrast and 
not-yet-introduced stimuli in gray (stages II-IV are not shown). d, Mean (±s.e.m.; n=8 mice) response time of the first lick after stimulus onset, as a 
function of the stimulus’ distance from the category boundary. e, Fraction of left choices (mean ±s.e.m.; n=8 mice), as a function of the stimulus’ distance 
from the category boundary. Gray represents individual mice, averaged across all training sessions of stage VI. f, As in (e), but for mice performing  
the task at different stimulus positions (n=5). Colors indicate the position of the monitor at which mice performed the task (default position 26°).  
g, Example images from eye tracking cameras. Red dots show automated annotations made using DeepLabCut109,110. h, Horizontal normalized pupil position 
(Methods) during stimulus presentation, for stimulus positions −26° (monitor shifted) and 26° (default position). Gray represents individual mice,  
bars show mean ±s.e.m. (one-sided WMPSR test, left eye: W=2, P=0.094; right eye: W=2, P=0.094; n=5 mice). i, as (h), for pupil diameter (one-sided 
WMPSR test, left eye: W=0, P=0.031; right eye: W=15, P=0.031; n=5 mice). Note that, as in humans116, the ipsilateral pupil contraction (that is, the pupil 
reflex on the side where the monitor is positioned) is stronger than the contralateral contraction. All panels: NS (not significant) P>0.05; * P<0.05.
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Extended Data Fig. 3 | Imaging locations for three example mice. a, Tiled, low-magnification two-photon microscopy images showing the cortical 
blood vessel pattern overlaying mRuby2 fluorescence (three single-mouse examples were chosen from the dataset of 10 mice). White squares (labeled 
with area names) demarcate the locations of imaging regions that were followed throughout the experiment. Scale, 500 μm. b, Corresponding, tiled 
low-magnification images as in (a), but showing the azimuth and elevation map of primary and higher visual areas. Hue indicates the preferred stimulus 
(0°, 25° and 50° azimuth), lightness reflects the ΔF/F response amplitude and saturation indicates selectivity. c, Color-coded response maps, as in (b), 
showing the neuronal response to stimuli presented in the center of the monitor (25° azimuth, 10° elevation; approximately the position of the stimulus in 
the behavioral task) versus stimuli presented at surrounding positions on the monitor. Legends in the top row show the color code for preferred stimulus.
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Extended Data Fig. 4 | Categorization of the reduced-size stimulus space in the chronic imaging experiment. a, Learning curve (black, mean ±s.e.m., 
gray, individual mice; n=10) showing performance during baseline, initial stimulus discrimination and category learning. Stimuli are displayed in insets 
below the data (stimuli included in the corresponding stage of training are shown in black, non-included stimuli are shown in gray). Note that the animals 
took longer to learn initial stimulus discrimination compared to Fig. 1b and Extended Data Fig. 2c, which is possibly a consequence of the extended 
pre-exposure to visual stimuli during pretraining and in baseline imaging time points. b, Stimulus categorization of the 10 mice in the chronic imaging 
experiment. Color indicates the fraction left/right choices per stimulus (red, right; blue, left). Dashed lines, trained category boundary. Solid lines, 
individually learned category boundary. Note that the fitted boundaries might be less accurately fitted as compared to the stimulus spaces in Figs. 1 and 2, 
likely because of the lower number of stimuli adjacent to the boundary. c, Mean (±s.e.m.) number of performed (non-missed) trials under aCSF (control) 
and muscimol (inactivation) conditions (one-sided WMPSR test, W=15, P=0.031; n=5 mice). d, As (c), for the latency to the first lick after stimulus onset 
(one-sided WMPSR test, W=6, P=0.69; n=5 mice). All panels: NS (not significant) P>0.05, * P<0.05.
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Extended Data Fig. 5 | Inactivation of visual cortical areas. a, Timeline showing the sequence of training sessions alternating between baseline (no 
injection), inactivation (muscimol injection) and control (saline injection) experiments. Injections were targeted at V1, POR and AL (inactivation of AL 
likely also affected RL and possibly LM, inactivation of POR likely also affected LI and LM; Methods). b, Tiled HLS map for preferred orientation. Left, 
maximum spatial extent of the inhibitory effect of a muscimol injection into V1, roughly 1.4 mm in diameter. White arrow, injection location. Right, control, 
saline injection. Data were acquired ~130 and ~150 minutes after injection, respectively. Scale bar, 200 µm. c, HLS maps for preferred category, acquired 
during task performance, showing neuronal responses in inactivation, control and flanking baseline experiments. White arrow, injection location. Scale 
bar, 100 µm. d, Top row, data of experiments targeting V1. Left, per condition, the mean per-stimulus category choice (blue, left; red, right). Black lines, 
trained (dashed), and fitted, learned (solid), category boundaries. Individual mouse’s stimulus-to-category mappings were flipped for visualization (right 
top, ‘lick-right’; left bottom, ‘lick-left’). Middle, per condition, the fraction of left choices as function of the stimulus’ distance to the category boundary (left 
plot, individual mice; right plot, averaged sigmoidal fits). Right, mean (±s.e.m.) performance for each condition. Gray lines show individual mice (n=3). The 
data point ‘Baseline’ is the mean of the three baseline experiments flanking the inactivation and control experiment. Middle and bottom rows, experiments 
with injections targeted to areas POR and AL. Across the three areas, performance was lower after cortical inactivation as compared to the control 
condition (Δperformance, V1: 9.6%, POR: 6.7%, AL: 6.4%; s.d. across three mice and three areas: ±6.0%).
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Extended Data Fig. 6 | Analysis of significant stimulus- and task-responsive neurons, shown for each higher visual area individually. a, Bar plots 
depicting the mean (±s.e.m.) fraction of responsive neurons at each chronic imaging time point (n=39 chronic recordings from 10 mice). The white 
section of the bar indicates the fraction of neurons that had a significant response to only one of the stimuli, the colored section shows the fraction that 
responded significantly to two or more of the stimuli. Gray lines indicate data of individual chronic recordings (that is per area-mouse combination). Time 
points labeled ‘TC’ are out-of-task imaging sessions, time points labeled ‘Task’ are in-task imaging sessions. The vertical dashed line separates the time 
points before (baseline) and after category learning. Note that the second, in-task baseline time point was not imaged in a subset of experiments. Top row, 
right, areal color code overlaid on a schematic map of mouse higher visual areas (based on37). b, Linear model fitted weights (mean ±s.e.m.) indicating 
the strength by which each component contributed to the fraction of responsive neurons (n=39 chronic recordings from 10 mice). Colored bars show data 
grouped by individual areas using the color scheme in (a). Black dots indicate data of individual chronic recordings.
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Extended Data Fig. 7 | Linear model performance. a, Parameter tuning of the L1 value. The curves show the mean of the (larger than 0) R2 values 
across all neurons from ‘baseline 3’ and ‘learned 1’ as a function of the L1 value. Green,: full model, blue, mean of 7 cross validations. The arrow indicates 
a subtle bump (global maximum) just before the cross-validated R2 value starts to decrease, which is the optimal L1 value. b, Fraction of significantly 
modulated neurons (Methods). ‘B3’, time point ‘baseline 3’, ‘L1’, ‘learned 1’. Gray represents individual imaging regions (two-sided WMPSR test, W=195, 
P=0.0039; n=40 chronic recordings). c, Left, the R2 values of neurons (mean per imaging session) that were significantly modulated in both ‘baseline 
3’ and ‘learned 1’ (‘stable’ neurons). Gray, individual imaging regions. Dark-gray shaded area, distribution of individual neuron R2 values. Right, as left, 
for ‘lost’ and ‘gained’ neurons (two-sided WMPSR test, ‘stable’: W=322, P=0.24; ‘gained’ vs ‘lost’: W=221, P=0.011; n=40 chronic recordings from 10 
mice). d, Per imaging session, the fraction of significantly modulated neurons, obtained by the linear model, plotted against the fraction of significantly 
responsive neurons (based on the first second of stimulus-driven inferred spiking activity; Fig. 4 and Extended Data Fig. 6). Pearson correlation, r=0.7572, 
two-sided P=1.05·10−15; n=78 imaging sessions from 10 mice. e, The mean (±s.e.m.) fraction of ‘stable’, ‘lost’ and ‘gained’ neurons for dorsal and ventral 
stream associated areas (two-sided Mann-Whitney U test, ‘stable’: U=50, P=0.027; ‘lost’: U=51, P=0.030; ‘gained’: U=76, P=0.26; ndorsal=12, nventral=15 
chronic recordings from 10 mice). f, Fraction of ‘stable’, ‘lost’ and ‘gained’ neurons for each imaged area (mean ±s.e.m.; n=40 chronic recordings from 10 
mice). Gray dots, chronic recordings from individual mice. g, The mean difference in ΔR2 before and after learning, of neurons that showed a significant 
unique contribution of a specific regressor group (y axis), per area (x axis). White asterisks, significant difference before and after learning (two-sided 
Mann-Whitney U test, P<0.05; Bonferroni corrected for 63 comparisons). h, Example tuning curve (area POR, mouse M16) for all 10 category stimuli of 
a single neuron (solid lines, blue, left category; pink, right category). Dotted black lines, spatial frequency kernels (y axis), solid black lines, orientation 
kernels (x axis). Right, all non-stimulus-related kernels (Methods; Supplementary Table 3). Scale bar, vertical, 0.02 inferred spikes, horizontal, 2 s. All 
panels: NS (not significant) P>0.05, * P<0.05, ** P<0.01.
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Extended Data Fig. 8 | GLM weights as a function of time from stimulus onset for three example areas. Data from V1, AL and POR neurons that 
were significantly modulated by the visual stimulus regressors. a, Mean stimulus-aligned inferred spike activity of neurons that were significantly 
stimulus-modulated in the encoding model, shown for all 10 stimuli that were part of the learned categories. Across neurons and mice, the stimulus space 
was flipped such that the preferred category of each neuron was positioned left-top (gray/black solid traces), and the non-preferred category was at the 
right-bottom (gray/black dotted traces). The schematic on the right indicates the fitting of a GLM, resulting in weighted kernels describing how individual 
components of the task and the mouse’s behavior best predict the neurons’ inferred spike activity patterns. Scale bars, vertical, 0.5 inferred spikes/s, 
horizontal, 3 s. b, The mean (±s.e.m.) weight kernel associated with the preferred (solid lines) and non-preferred (dotted lines) category, averaged 
across neurons. The kernels were calculated using exclusively the category-specific regressors (labeled ‘Category’, left), or the orientation and spatial 
frequency-specific regressors (labeled ‘Feature’, right). The in-task baseline session (‘baseline 3’) is depicted in gray, the in-task session after categories 
were learned (‘learned 1’) is shown in black. The kernel frames were spaced 500 ms apart in time. c, Columns show semantic CTI, feature CTI and ΔCTI 
per kernel frame (mean ±s.e.m.; Methods; Fig. 6a).
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Extended Data Fig. 9 | Scatter plots of semantic CTI, feature CTI and ΔCTI before and after learning. a, Gray dots show the semantic CTI of all neurons 
that were significantly stimulus-modulated before and after learning, as determined using the GLM analysis (‘stable’ neurons). Black squares and error 
bars show the mean (±s.e.m.; two-sided WMPSR test, W=86171, P=1.83·10−4; n=645 neurons from 10 mice). The x axis shows semantic CTI before 
learning (‘baseline 3’) and the y axis shows semantic CTI after learning (‘learned 1’). b, As (a), for feature CTI (two-sided WMPSR test, W=93043, 
P=0.019; n=645 neurons from 10 mice). c, As (a), each panel now shows the ΔCTI of a single visual cortical area (two-sided WMPSR test, V1: W=4914, 
P=1.61; n=149 neurons from 7 mice; LM: W=3305, P=3.86; n=119 neurons from 4 mice; AL: W=1809, P=0.46; n=96 neurons from 4 mice; RL: W=6545, 
P=0.68; n=175 neurons from 6 mice; AM: W=431, P=4.90; n=43 neurons from 2 mice; PM: W=26, P=7.38; n=10 neurons from 3 mice; LI: W=24, P=6.16; 
n=10 neurons from 2 mice; POR: W=155, P=9.85·10−4; n=43 neurons from 6 mice; P values are Bonferroni corrected for 8 comparisons). Note that area P 
is not shown because it did not contain ‘stable’ neurons.
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Extended Data Fig. 10 | Tuning curves and operant motor responses measured out-of-task. a, Top row: Stimulus-aligned inferred spiking activity for all 
three out-of-task time points, averaged across all V1 neurons that were significantly modulated by visual stimuli in the GLM analysis at in-task time points 
‘baseline 3’ and ‘learned 1’ (‘stable’ neurons; Fig. 5) and showed preferential responses to left category stimuli. Bottom row, as top row, for ‘stable’ neurons 
preferring right category stimuli. Orientation/spatial frequency grids were flipped and shifted such that categories mapped onto the same grid positions. 
Blue, left category; pink, right category. Scale bars, vertical, 0.5 inferred spikes/s, horizontal, 3 s. b, As (a), for area POR. c, Per area, the differential 
(‘learned 2’ minus the average of ‘baseline 1’ and ‘baseline 2’) Euclidean distance of the preferred stimulus to the category boundary (calculated using 
equal weighted steps for orientation and spatial frequency) for ‘stable’ neurons. Bars, mean (±s.e.m.; n=635 neurons from 10 mice). d, As (c), for circular 
variance117 of the orientation tuning curves (n=635 neurons from 10 mice). e, As (c), for sparseness118 of the two-dimensional orientation/spatial frequency 
tuning curves (n=635 neurons from 10 mice). f, Example video frame showing the mouth of a mouse. Annotations were made using DeepLabCut109,110. 
Green, upper jaw; orange, lower jaw. Annotations defined the position of the lower jaw relative to the upper jaw (LJP) and the width of the upper jaw (JW). 
g, Stimulus-aligned relative opening of the mouth (quantified as the LJP/JW). Stimuli were organized by orientation (horizontal) and spatial frequency 
(vertical), left and right category stimuli are shown in blue and pink. Scale bars, vertical, 0.05 LJP/JW, horizontal, 2 s. h, Relative opening of the mouth 
(LJP/JW) for stimuli that were not part of a category (left), part of the left category (middle) and part of the right category (right). Upper row, individual 
stimulus presentations (gray) and their mean (black or color). Lower row, mean (±s.e.m.) across stimulus presentations. Stimulus onset was at 0 s, and 
lasted 2.5 s. i-k, As (f-h), for a second mouse.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Data were collected using Matlab versions 2014 to 2017 and LabView versions 2012 and 2016. The software 'Scanimage version 4' (Vidrio 

Technologies) was used to acquire two-photon microscopy data. Visual stimuli were presented using Psychophysics Toolbox extensions 

(version 3). Other software was custom written and will be shared upon request, noting that this is not production environment ready code 

and will require knowledge of the Matlab and LabView platforms.

Data analysis Data analysis was done using Matlab versions 2015 to 2017 and Python version 3.7.10 (using Numpy version 1.16.4 and Scipy version 1.5.2). 

Analysis code from external sources for image registration (dftregistration.m version 2007), spike inference (constrained_foopsi.m version 

2015), artificial neural networks (Tensorflow version 0.7) and video tracking (Deeplabcut version 2.2) is cited in the Methods section. Custom 

written Matlab and Python routines used for data collection and data preprocessing are available upon reasonable request. The Python code 

used for data analysis and producing figures is available on https://github.com/pgoltstein/category-learning-visual-areas.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Data supporting this study are available on https://gin.g-node.org/pgoltstein/category-learning-visual-areas). 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications 

(see e.g. refs 47,113).

Data exclusions No data were excluded from the experiment involving touch screen operant chambers. We excluded five animals from the experiment 

involving head-fixed conditioning because they did not reach criterion on the stimulus discrimination task, three animals because their 

performance dropped to chance level during category learning, and one animal because it refused to lick on the left lick spout. We excluded 

three animals from the chronic imaging experiment because their cranial windows did not allow imaging at the time point of category 

learning.

Replication We have replicated the basic behavioral category learning experiment, which we initially carried out using a touch screen operant chamber 

paradigm, by subsequently employing a head-fixed two-alternative choice task. Basic head-fixed category learning experiments were acquired 

in two batches, in each batch approximately 50% to 70% of all animals reached the final task and performed well. Experiments probing the 

retinotopic selectivity of the learned association were performed in two batches, each showing the same effect. For the imaging data, we 

have approached the finding of areal specialization using two different analysis approaches. One focusing on the average response of neurons 

during stimulus presentation, and one approach using a linear model to fit and predict the neuronal responses across the entire trial in detail. 

The results of these analyses corresponded well to each other. However, the entirety of the chronic imaging experiment, as well as the 

cortical inactivation experiment, has only been performed once and was thus not replicated: The main reason being that this would have 

taken another two-three years to complete.

Randomization The information integration stimulus spaces and category boundaries were assigned randomly to individual animals, under the condition that 

all permutations of stimulus spaces and category boundaries were used roughly equally across animals.

Blinding Experimenters were not blinded to experimental conditions, as the experimental conditions required specific actions from the experimenter 

(such as selecting the stimulus space, positioning the computer monitor, and/or imaging cells in a specific visual area). Analyses were not 

explicitly performed in a blinded fashion, but the scale of the dataset resulted in the experimenter being unaware of group assignment of 

individual data points during non-automatized procedures (such as ROI selection and matching).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We used adult male C57Bl/6 mice ranging from 6 to 10 weeks of age at the start of the experiment, except for in a subset of 

experiments (stimulus-shift experiment, n=3; local cortical inactivation experiment, n=3). There we used mice that express GCaMP6s 

in excitatory neurons (B6;DBA-Tg(tetO-GCaMP6s)2Niell/J, Jax #024742, crossed with B6.Cg-Tg(Camk2a-tTA)1Mmay/DboJ, Jax 

#007004; Mayford et al., 1996; Wekselblatt et al., 2016). These mice (two female, one male) were between 12 and 15 weeks of age 

at the onset of the experiment.
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Wild animals No wild animals were used in this study.

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All experimental procedures were done according to institutional guidelines of the Max Planck Society and the regulations of the 

local government ethical committee (Beratende Ethikkommission nach §15 Tierschutzgesetz, Regierung von Oberbayern). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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