CDDpress

REVIEW ARTICLE

www.nature.com/cdd

W) Check for updates

Organelle-specific requlation of ferroptosis

3 4,56

Xin Chen@® ', Rui Kang ™ Guido Kroemer

and Daolin Tang

13X

© The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2021

Ferroptosis, a cell death modality characterized by iron-dependent lipid peroxidation, is involved in the development of multiple
pathological conditions, including ischemic tissue damage, infection, neurodegeneration, and cancer. The cellular machinery
responsible for the execution of ferroptosis integrates multiple pro-survival or pro-death signals from subcellular organelles and
then ‘decides’ whether to engage the lethal process or not. Here, we outline the evidence implicating different organelles
(including mitochondria, lysosomes, endoplasmic reticulum, lipid droplets, peroxisomes, Golgi apparatus, and nucleus) in the
ignition or avoidance of ferroptosis, while emphasizing their potential relevance for human disease and their targetability for

pharmacological interventions.
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FACTS

® Ferroptosis is a type of regulated cell death caused by the
imbalance between the levels of oxidants and antioxidants.

® Lipid peroxidation is the central biochemical and metabolic
event leading to plasma membrane damage during ferroptosis.

® The regulation of ferroptosis involves a network involving
multiple subcellular organelles to generate signals for iron
accumulation, lipid synthesis, and lipid peroxidation.

® The direct effector of ferroptosis remains unclear.

OPEN QUESTIONS

® Are the ferroptosis-relevant damage or repair mechanisms
affecting the plasma membrane and internal, organelle-
specific membranes different?

® What are the key molecules that maintain or disrupt the
communication between subcellular organelles in ferroptosis?

® How can we develop molecular probes to dynamically
monitor ferroptosis-associated changes in organellar morphol-
ogy and function?

® Do the biogenesis and turnover of specific organelles affect
the susceptibility of cells to ferroptosis?

INTRODUCTION
Ferroptosis was originally described as a cell death pathway
occurring in cancer cells expressing mutant RAS [1]. Today, this

type of iron-dependent regulated cell death (RCD) is known to
occur in a variety of transformed or non-transformed cell lines and
in tissues [2]. Ferroptosis is morphologically and biochemically
different from apoptosis, the most studied form of RCD [3]. For
instance, ferroptosis is accompanied by cell swelling and plasma
membrane rupture, while apoptotic cells usually exhibit cell
shrinkage and plasma membrane blebbing [4]. Ferroptosis is
driven by unrestricted lipid peroxidation, which does not require
the activation of caspase (key executors of apoptosis) [5]. The
autophagic degradation pathway usually protects cells from
apoptosis, but selective autophagy (e.g., ferritinophagy [6, 7] and
lipophagy [8]) can favor ferroptosis. Altogether, ferroptosis has
unique cellular and molecular mechanism that shift the balance
between oxidants and antioxidants in favor of the oxidative
damage of plasma membrane and subcellular organelles [9]. Of
note, ferroptosis may cause inflammation due to the release of
endogenous damage-associated molecular pattern molecules
(DAMPs), resulting in the recruitment and activation of immune
cells [10-13].

Ferroptosis plays a dual role in health and disease [14-18]. On
the one hand, physiological ferroptosis might contribute to
eliminating harmful cells to maintain tissue homeostasis and
development. On the other hand, pathological ferroptosis is
increasingly recognized as a significant factor that contributes to
the pathogenesis of diseases, including, but not limited to,
cancer, neurodegenerative disorders, ischemia-reperfusion
injury, and infectious states. Although the implementation of
ferroptosis in translational medicine faces many obstacles,
certain investigational small molecule compounds (e.g., erastin,
ferrostatin-1, liproxstatin-1, and RSL3) [5, 19] or Food and Drug
Administration (FDA)/European Medicines Agency (EMA)-
approved drugs (e.g., sulfasalazine, sorafenib, zalcitabine, and
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doxorubicin) [20-22] have been used in preclinical models to
induce or inhibit ferroptosis. However, a recent study suggests
that sorafenib may not be a strong activator of ferroptotic
cancer cell death and erastin only triggers ferroptosis in certain
cancer cells [23].

All cellular organelles may sense, attenuate or amplify stress
signals [24] and thus contribute to the regulation or execution of
different types of RCD, including apoptosis and necroptosis [25].
Likely, this concept can be extended to ferroptosis as well. In this
review, we summarize the key processes of ferroptosis and discuss
how signals from different organelles modulate the ignition and
execution of ferroptotic cell death.

CENTRAL EVENTS OF FERROPTOSIS

The generation of reactive oxygen species (ROS) and subsequent
hydroxyl radical (-OH)-mediated lipid peroxidation culminating
with plasma membrane damage are the core events leading to
ferroptosis. These processes are inhibited by integrated antiox-
idant or membrane repair systems.

Oxidative damage

ROS for ferroptosis can be generated from multiple sources,
such as the iron-mediated Fenton reaction, mitochondrial
electron transport chain (ETC), nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidases (NOX), and myeloperoxidase
(MPO) [12, 26-29]. The accumulation of iron in cells is one of
the hallmarks of ferroptosis [30]. Many proteins mediate iron
uptake (e.g., transferrin [TF] [31], transferrin receptor [TFRC] [32],
and lactotransferrin [LTF] [33]), storage (e.g., ferritin [6, 7]),
utilization (e.g., iron-sulfur proteins [34]), distribution (e.g.,
CDGSH iron-sulfur domain 1 [CISD1] [35]), and export (e.g.,
solute carrier family 40 member 1 [SLC40A1] [36, 37], prominin 2
[PROM2] [38], and lipocalin 2 [LCN2] [39]), meaning that they
affect the sensitivity of cells to ferroptosis (Fig. 1a). However,
the dynamic relationship of iron metabolism and different
ROS resources in promoting ferroptosis remains poorly inves-
tigated [40].

Although oxidative DNA damage is also conducive to
ferroptosis, lipid peroxidation of polyunsaturated fatty acids
(PUFASs) plays a major role in driving lytic cell death. Accordingly,
CD36-mediated PUFA uptake [41, 42], acetyl-CoA carboxylase
(ACACQ)-dependent PUFA synthesis [43], or lipophagy-induced
PUFA production [8] might facilitate ferroptosis. The production
of oxidative metabolites of PUFA requires additional enzymes.
Long-chain acyl-CoA synthetases (ACSLs) activate fatty acids by
the addition of a coenzyme A (CoA) group and provide
substrates for specific metabolic pathways. ACSL4 [44-46] and
ACSL1 [47] are essential for arachidonic acid/adrenic acid-
mediated and linolenic acid-mediated ferroptosis, respectively.
ACSL3 is responsible for the activation of monounsaturated fatty
acids (MUFAs), which competitively inhibit PUFA-induced
ferroptosis [48]. Later, lysophosphatidylcholine acyltransferase
3 (LPCAT3) is involved in phospholipid remodeling for ferrop-
tosis [45]. Finally, different members of the lipoxygenase (ALOX)
family mediate ferroptosis through the oxygenation of PUFAs in
a cell type-dependent manner [21, 49-51]. Alternatively,
cytochrome P450 oxidoreductase (POR) transfers electrons to
oxygen and then mediates lipid peroxidation during ferroptosis
in an ALOX-independent manner [52, 53]. In addition to PUFAs,
the production of plasmalogens in peroxisomes can provide
substrates for lipid peroxidation during ferroptosis [54]. This
complex complementary pathway of lipid metabolism affects
the susceptibility to ferroptosis [55]. It is possible, yet remains to
be demonstrated, that sophisticated biochemical methods
allowing for the identification of distinct lipid peroxidation
products will facilitate a sort of “molecular diagnosis” of the
etiology of ferroptotic cell death.

SPRINGER NATURE

Antioxidant defense

Tremendous progress has been made in deconvoluting enzymatic
and non-enzymatic antioxidant defense systems in ferroptosis
[56]. The most characteristic system is the system xc™ -glutathione
(GSH)-glutathione peroxidase 4 (GPX4) axis (Fig. 1b). Many
classical ferroptosis inducers (e.g., erastin and RSL3) are inhibitors
of this axis. System xc™, a glutamate/cystine transporter, consists
of solute carrier family 7 member 11 (SLC7A11) and solute carrier
family 3 member 2 (SLC3A2). System xc~ can maintain intracellular
GSH content by mediating the uptake of cystine into cells. GSH
acts as a cofactor of many antioxidant enzymes, including GPX4.
GPX4 requires GSH to reduce phospholipid hydroperoxides
(PLOOHSs) to nontoxic phospholipid alcohols (PLOHSs) [57]. During
ferroptosis, the activity or expression of SLC7A11 and GPX4 are
regulated on multiple levels. For example, SLC7A11-mediated
cystine uptake also promotes GPX4 protein synthesis through the
mechanistic target of rapamycin kinase (MTOR) pathway [58].
GPX4 protein can be stabilized by heat shock protein family A
(Hsp70) member 5 (HSPA5) [59], but destabilized by heat shock
protein 90 (HSP90) in a context-dependent manner [60]. The
transcription of SLC7A11 is upregulated or downregulated by
nuclear factor erythroid 2-like 2 (NFE2L2, best known as NRF2) [61]
or tumor protein p53 (TP53) [62], respectively. The identification of
a large number of GPX4 or SLC7A11 binding proteins further
exacerbates the complexity of the regulation of this pathway in
ferroptosis [63-66].

In addition to GSH, several intracellular antioxidants, such as
coenzyme Q10 (CoQ10), tetrahydrobiopterin (BH4), and dopa-
mine, prevent lipid peroxidation during ferroptosis. Mechanically,
apoptosis-inducing factor mitochondria-associated 2 (AIFM2/FSP1)
[67, 68] and dihydroorotate dehydrogenase (DHODH) [69] inhibit
ferroptosis through reducing cytosolic and mitochondrial ubiqui-
none (CoQ10) to generate ubiquinol, respectively. GTP cyclohy-
drolase 1 (GCHT1) is the rate-limiting enzyme for the synthesis of
BH4, which acts as a radical trapping antioxidant in inhibiting
ferroptosis [70, 71]. Dopamine enhances GPX4 protein stability,
which in turn limits lipid peroxidation in ferroptosis [72]. Distinct
from GPX4, phospholipase A2 group VI (PLA2G6, also known as
iPLA2PB) averts ferroptosis by hydrolyzing oxidized phosphatidy-
lethanolamine [73, 74]. These findings underscore the notion that
an integrated antioxidant system limits ferroptosis caused by
excessive oxidative stress.

Membrane repair or adhesion

Cell membrane disruption induces not only a rapid and massive
influx of Ca®" into the cytosol but also an efflux or release of
various endogenous proteins, such as high-mobility group box 1
(HMGBT1), which is considered as a major pro-inflammatory DAMP
[75]. Although the key effectors responsible for the formation of
plasma membrane pores have not yet been determined, the
activation of Ca®"-dependent endosomal sorting complex
required for transport-lll (ESCRT-l) machinery can promote
plasma membrane repair, thereby limiting the occurrence of
ferroptosis and the release of pro-inflammatory DAMPs (Fig. 1c)
[76-78]. In addition to ferroptosis, ESCRT-ll has a conserved
function to repair plasma membrane damage in pyroptosis and
necroptosis [79, 80]. Additional work is needed to identify whether
the membrane repair mechanisms of specific organelles (e.g.,
mitochondria or lysosomes) are involved in the defense against
ferroptosis [81]. Mounting evidence shows that cell-cell contacts
confer cell resistance to ferroptosis [28, 82, 83]. In adjacent cells,
ferroptosis may propagate in a rapid wave-like propagation [84]. It
can be speculated that specific cytoskeleton-related dynamic
changes transmit or limit the oxidative damage of plasma
membranes at the contact sites between interacting cells. The
elucidation of such hypothetical mechanisms will require the
development and standardization of spatially resolved assays for
the detection of ferroptosis-associated membrane damage.
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Fig. 1 Core mechanisms of ferroptosis. a Oxidative damage. Ferroptosis is caused by lipid peroxidation with the involvement of various
enzymes (ACSL, LPCAT4, ALOX, and POR). This is further regulated by fatty acid metabolism, including CD36-mediated PUFA uptake, ACAC-
dependent PUFA synthesis, or lipophagy-induced PUFA production. In addition, ferroptosis is activated by the iron-mediated Fenton reaction.
Therefore, ferroptosis sensitivity is highly related to iron metabolism, including iron uptake (e.g., TF, TFRC, and LTF), storage (e.g., ferritin),
utilization (e.g., NFS1), distribution (e.g., CISD1), and export (e.g., SLC40A1, PROM2, and LCN2). b Antioxidant defense. The SLC7A11-GSH-GPX4
pathway and GSH-independent pathway (CoQ10, BH4, dopamine, and PLA2G6) are the main antioxidant systems for ferroptotic cell death by
inhibiting lipid peroxidation. ¢ ESCRT-lll-mediated membrane repair or cell adhesion also inhibits ferroptosis through blocking membrane
damage induced by lipid peroxidation. Abbreviations: ACAC acetyl-CoA carboxylase, ACSL1 acyl-CoA synthetase long-chain family member 1,
ACSL3 acyl-CoA synthetase long-chain family member 3, ACSL4 acyl-CoA synthetase long-chain family member 4, AIFM2/FSP1 apoptosis-
inducing factor mitochondria-associated 2, ALOX lipoxygenase, CISD1 CDGSH iron sulfur domain 1, DHODH dihydroorotate dehydrogenase
(quinone), ESCRT-IIl endosomal sorting complex required for transport-lll, GCH1 GTP cyclohydrolase 1, GPX4 glutathione peroxidase 4, GSH
glutathione, HSP90 heat shock protein 90, HSPA5/GRP78/BIP heat shock protein family A (Hsp70) member 5, LCN2 lipocalin 2, LTF
lactotransferrin, MPO myeloperoxidase, MUFA monounsaturated fatty acid, NFE2L2/NRF2 nuclear factor erythroid 2-like 2, NOX NADPH
oxidase, PLA2G6/iPLA2f phospholipase A2 group VI, PLOOH phospholipid hydroperoxides, POR cytochrome P450 oxidoreductase, PROM2
prominin 2, PUFA polyunsaturated fatty acid, PUFA-ePL polyunsaturated ether phospholipid, PUFA-PL polyunsaturated phospholipid,
SLC3A2 solute carrier family 3 member 2, SLC7A11 solute carrier family 7 member 11, SLC40A1 solute carrier family 40 member 1, TF
transferrin, TFRC transferrin receptor, TP53 tumor protein p53.

ROLE OF DIFFERENT ORGANELLES IN FERROPTOSIS organelles, including mitochondria, lysosomes, endoplasmic

Ferroptosis is a strictly regulated process that requires multiple reticulum (ER), lipid droplets (LDs), peroxisomes, Golgi apparatus,
modulators involved in a series of complex signals in different and nucleus (Table 1).

Cell Death & Differentiation (2021) 28:2843 - 2856 SPRINGER NATURE
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Table 1. Role of subcellular organelles in ferroptosis.
Organelle Stimulus Morphological and functional changes  Organelle-specific regulators
Mitochondria Erastin Swollen mitochondria AIFM1, CISD1, CISD2, DHODH,
Glutamate Decrease in cristae ETC complex, FH, FXN, GLS2, GPX4, IDH2, ISCU, LONP1
Doxorubicin Mitochondrial membrane potential | MFN1, MFN2, MGST1, MPC1, NFS1, PDK4, POLG, SOD2, TFAM, VDAC
Zalcitabine Mitochondrial membrane permeability 1
Mitochondrial ROS 1
Mitochondrial lipid peroxidation 1
Mitochondrial iron 1
Mitochondrial DNA stress 1
Lysosome Erastin Lysosomal cathepsins 1 ATG, CTSB, PSAP, SMPD1
Glutamate Lysosomal lipid peroxidation 1
Lysosomal iron 1
Lysosomal nitric oxide
ER Erastin Viscosity of ER t AGPAT3, EIF2AK3, SCD, SLC39A7/ZIP7, STING1
RSL3 Lipid peroxidation 1
ER stress 1
MUFA synthesis |
Zinc transport from ER to cytosol
LD RSL3 Formation of LDs 1 RAB7A, TPD52, FAF2
Orlistat Lipophagy 1
Peroxisome Erastin Plasmalogen synthesis 1 AGPS, FAR1, PEDS1, PEX
RSL3
ML210
Golgi complex Brefeldin A Golgi dispersal Unknown
AMF-26
Golgicide A
Nucleus Erastin DNA oxidative damage 1 AIFM1, CTSB, FANCD2, HMGB1, PIR, TP53
RSL3 DNA damage and repair 1
AGPAT3 1-acylglycerol-3-phosphate O-acyltransferase 3, AGPS Alkylglycerone phosphate synthase, AIFM1/AIF Apoptosis-inducing factor mitochondria-
associated 1, ATG Autophagy-related gene, CISD7 CDGSH iron sulfur domain 1, CISD2 CDGSH iron sulfur domain 2, CTSB cathepsin B, DHODH Dihydroorotate
dehydrogenase (quinone), EIF2AK3/PERK Eukaryotic translation initiation factor 2 alpha kinase 3, ER Endoplasmic reticulum, ETC Electron transport chain,
FANCD2 FA complementation group D2, FART Fatty acyl-CoA reductase 1, FH Fumarate hydratase, FXN Frataxin, GLS2 Glutaminase 2, GPX4 Glutathione
peroxidase 4, HMGB1 High-mobility group box 1, IDH2 Isocitrate dehydrogenase (NADP[+]) 2, ISCU Iron-sulfur cluster assembly enzyme, LDs Lipid droplets,
LONPT Lon peptidase 1, mitochondrial, MFN1 Mitofusin 1, MFN2 Mitofusin 2, MGST1 Microsomal glutathione S-transferase 1, MPC1 Mitochondrial pyruvate
carrier 1, PDK4 Pyruvate dehydrogenase kinase 4, PEDS1/TMEM189 Plasmanylethanolamine desaturase 1, PEX Peroxisomal biogenesis factor, PIR Pirin, POLG DNA
polymerase gamma, catalytic subunit, PSAP Prosaposin, RAB7A Member RAS oncogene family, SCD/SCD1 Stearoyl-CoA desaturase, SLC39A7/ZIP7 Solute carrier
family 39 member 7, SMPD1/ASM Sphingomyelin phosphodiesterase 1, SOD2 Superoxide dismutase 2, STING1/TMEM173 Stimulator of interferon response
cGAMP interactor 1, TFAM Transcription factor A, mitochondrial, TP53 Tumor protein p53, TPD52 Tumor protein D52, VDAC Voltage-dependent anion channel.
Mitochondria Mitochondrial ROS. In the process of oxidative phosphorylation,

Ferroptotic cells usually exhibit swollen mitochondria, accompanied
by a decrease in cristae, dissipation of the mitochondrial membrane
potential, as well as an increase in mitochondrial membrane
permeability [5], indicating that mitochondrial dysfunction has
occurred. However, the role of mitochondria in ferroptosis is
controversial. Early study suggests that mitochondria are not
required for ferroptosis because when human osteosarcoma 143B
cells are depleted of mitochondrial DNA (mtDNA), which are known
as p° cells, it has no effect on the pro-ferroptotic effects of SLC7A11
inhibitor erastin [5]. It is important to note that cells lacking mtDNA
do have mitochondria. Thus, these results are reminiscent of the
initially fallacious interpretation of results involving p° cells that were
fully susceptible to apoptosis induction (“no need for mitochondria
in apoptosis”) [85] that were later reinterpreted to mean that the
close-to-obligatory contribution of mitochondrial membrane per-
meabilization to apoptosis does not require mtDNA [86, 87]. Cells
that eliminate mitochondria through parkin RBR E3 ubiquitin protein
ligase (PRKN)-mediated mitophagy are less sensitive to ferroptosis
triggered by cystine starvation or erastin, but are more sensitive to
ferroptosis induced by GPX4 inhibitors [26, 88, 89]. Increasing
evidence indicates that mitochondria play a significant role in
promoting ferroptosis through context-dependent metabolic
effects. Altogether, it appears plausible that mitochondrial biogen-
esis, dynamics, and turnover affect the number and quality of
mitochondria, thereby fine-tuning the activity of ferroptosis
inducers.

SPRINGER NATURE

mitochondria are an important source of ROS in most mammalian
cells. Local ROS generation does not only lead to mitochondrial
damage, but also affects the redox status of the rest of the cell.
Because mitochondrial ROS mainly induce apoptosis, they were
initially thought not to be involved in ferroptosis [5, 19]. However,
later studies suggest that increased mitochondrial ROS promote
ferroptosis, a process that can be inhibited by mitochondrial-
targeted antioxidants or enzymes, as shown in several comple-
mentary studies (Fig. 2a). First, C11-BODIPY 581/591 (a fluorescent
radio probe for detecting lipid peroxidation) staining and
quantitative analysis of malondialdehyde (MDA, an end product
of lipid peroxidation) show that lipid ROS are increased in
mitochondria during erastin- or doxorubicin-induced ferroptosis in
human fibrosarcoma HT1080 cells, mouse embryonic fibroblasts
(MEFs), or cardiomyocytes [26, 90]. The accumulation of mito-
chondrial lipid ROS may be partly explained by depletion of
mitochondrial GSH during ferroptosis [91]. Thus, mitochondria-
targeted ROS scavengers, such as MitoTEMPO and mitoquinone,
can inhibit ferroptosis in various cell types, including cancer cells,
cardiomyocytes, hippocampal neuronal cells, and MEFs [22, 92].
Second, several mitochondrial antioxidant enzymes play a
significant role in inhibiting ferroptosis. GPX4 can be localized in
the cytosol and mitochondrial intermembrane space [93-95], and
its mitochondrial form plays a role in mitigating mitochondria
oxidative damage during cell death, including ferroptosis [90].
Superoxide dismutase 2 (SOD2/MnSOD), a member of the iron/

Cell Death & Differentiation (2021) 28:2843 - 2856
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Fig.2 Role of mitochondria in ferroptosis. a Mitochondrial ROS. GPX4, SOD2, and MGST1 are mitochondria-associated antioxidant proteins,
which play a major role in protecting mitochondria from oxidative damage during ferroptosis. In addition, mitochondrial DHODH limits
ferroptosis through the reduction of CoQ10 to ubiquinol. Mitochondrial oxidative damage induces the release of AIFM1, which promotes
ferroptosis through its translocation to the nucleus. The STING1-MFN1/2 pathway triggers ferroptosis by inducing mitochondrial fusion and
subsequent ROS production. b Mitochondrial iron. Iron can be transported to the mitochondria via SLC25A37 and SLC25A28 and used to
synthesize heme/Fe-S, or it can be stored in ferritin in mitochondria. Heme is catalyzed by HMOX1 and decomposes into Fe?", and acts as a
key cofactor of ETC by which heme promotes ferroptosis. The inhibition of iron-sulfur cluster assembly proteins, including NFS1, FXN, and
ISCU, can enhance ferroptosis by the activation of an IREB2-mediated iron-starvation response. Fe-S proteins CISD1 and CISD2 inhibit
ferroptosis by decreasing intracellular iron levels. ¢ Mitochondrial DNA (mtDNA). POLG (DNA polymerase) and DGUOK (deoxynucleoside
synthesis enzyme) are required for mtDNA replication. The inhibition of POLG by zalcitabine and TFAM degradation induce mtDNA stress,
which activates GAS-STING1 pathway-dependent autophagy to mediate ferroptosis. d The TCA cycle transfers electrons to the ETC, which
releases ROS to induce ferroptosis. The TCA cycle also enhances ferroptosis by promoting ACAC-mediated fatty acid synthesis. This effect is
inhibited by PDK4-mediated glucose metabolism or enhanced by GLS2-mediated glutaminolysis. In addition, the suppression of MPC1 also
enhances ferroptosis partly through increasing glutaminolysis. Abbreviations: ACAC acetyl-CoA carboxylase, AIFM1/AIF apoptosis-inducing
factor mitochondria-associated 1, ALOX lipoxygenase, CGAS cyclic GMP-AMP synthase, CISD1 CDGSH iron sulfur domain 1, CISD2 CDGSH iron
sulfur domain 2, DGUOK deoxyguanosine kinase, DHODH dihydroorotate dehydrogenase (quinone), ETC electron transport chain, FH
fumarate hydratase, FXN frataxin, GLS2 glutaminase 2, GPX4 glutathione peroxidase 4, HMOX1/HO1 heme oxygenase 1, IDH2 isocitrate
dehydrogenase (NADP[+]) 2, IREB2/IRP2 iron-responsive element binding protein 2, ISCU iron-sulfur cluster assembly enzyme, LONP1 Lon
peptidase 1, mitochondrial, MFN1 mitofusin 1, MFN2 mitofusin 2, MGST1 microsomal glutathione S-transferase 1, MPC1 mitochondrial
pyruvate carrier 1, NADH dihydronicotinamide adenine dinucleotide, PDH pyruvate dehydrogenase, PDK4 pyruvate dehydrogenase kinase 4,
PLOOH phospholipid hydroperoxide, POLG DNA polymerase gamma, catalytic subunit, PUFA polyunsaturated fatty acid, ROS reactive oxygen
species, SLC25A28/mitoferrin-2 solute carrier family 25 member 28, SLC25A37/mitoferrin-1 solute carrier family 25 member 37,
SOD2 superoxide dismutase 2, STING1/TMEM173 stimulator of interferon response cGAMP interactor 1, TFAM transcription factor A,
mitochondrial.
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manganese superoxide dismutase family located in the mitochon-
drial matrix of eukaryotes as well as in various prokaryotes, also
has the ability to prevent mitochondrial ROS-induced ferroptosis
in non-small cell lung cancer cells [96]. In addition, microsomal
glutathione S-transferase 1 (MGST1), an antioxidant enzyme
located predominantly in mitochondria and ER, limits lipid
peroxidation and ferroptosis by binding to ALOX5 [97]. Third,
similar to its role in extramitochondrial membranes, the mito-
chondrial CoQ10 effectively prevents ferroptosis [69]. Mitochon-
drial DHODH mediates the oxidation of dihydroorotate to orotate,
a process coupled to the reduction of CoQ10 to ubiquinol, and
limits mitochondrial lipid peroxidation and ferroptosis caused by
GPX4 downregulation [69]. Fourth, mitochondrial oxidative
damage induces the release of certain mitochondrial apoptosis
regulators, such as apoptosis-inducing factor mitochondria-
associated 1 (AIFM1, a factor initially involved in caspase-
independent apoptosis [98]), which promotes ferroptosis through
its translocation to the nucleus in mouse hippocampal HT22 cells
or MEFs [99, 100], highlighting a molecular link between apoptosis
and ferroptosis. However, CRISPR-mediated knockout of AIFM1
cannot rescue ferroptosis induced by GPX4 deletion in MEFs [67].
Unlike mitochondrial fission that promotes apoptosis [101],
mitochondrial fusion favors mitochondrial oxidative damage and
subsequent ferroptosis through the stimulator of interferon
response cGAMP interactor 1 (STING1)-mitofusin 1/2 (MFN1/2)
pathway [102]. Since mitochondrial ROS induce apoptosis by
releasing mitochondrial proteins (such as AIFM1 and the caspase
activators cytochrome c¢ [CYCS] and SMAC/DIABLO), it may be
expected that mitochondrial ROS-mediated ferroptosis is coupled
to the release of cytotoxic mitochondrial proteins as well.
Nevertheless, deficient oxidative phosphorylation or consumption
of adenosine triphosphate (ATP) by uncoupled mitochondria
might contribute to ferroptosis as well. Hence, further studies of
mitochondrial derangements accompanying ferroptosis are
warranted.

Mitochondrial iron. Extracellular iron is taken up by cells and can
be imported into mitochondria via the mitochondrial iron importer
solute carrier family 25 member 37 (SLC25A37, also known as
mitoferrin-1) and solute carrier family 25 member 28 (SLC25A28,
also known as mitoferrin-2). Mitochondrial Fe® " can be used to
synthesize heme and Fe-S clusters, or stored in mitochondrial
ferritin. In contrast, excessive mitochondrial iron can mediate the
production of ROS or cause abnormal enzyme activity. Impaired
mitochondrial iron metabolism leads to ferroptosis (Fig. 2b). First,
heme directly induces ferroptosis in primary neurons or in human
monocytic cells [103, 104], and this process can be further dually
regulated by cytosolic or mitochondrial heme oxygenase 1
(HMOX1), likely in a cell type-dependent manner [105, 106].
Second, the component of iron-sulfur cluster assembly machinery,
such as NFS1 cysteine desulfurase, frataxin (FXN), and iron-sulfur
cluster assembly enzyme (ISCU), generally play an anti-ferroptotic
role in various conditions. For example, the suppression of NFS1
activates the iron-responsive element binding protein 2 (IREB2,
also known as IRP2)-mediated iron-starvation response and
sensitizes lung cancer cells to ferroptosis [34, 107]. The suppression
of FXN also induces the accumulation of free iron, thereby
enhancing erastin- or alcohol-induced ferroptosis in cancer or live
cells [108, 109]. FXN deficiency is related to Friedreich’s ataxia and
can be relieved by ferroptosis inhibitors [110]. In addition, the
overexpression of ISCU attenuates dihydroartemisinin-induced
ferroptosis by regulating iron metabolism and mitochondrial
function [111]. Third, mitochondrial iron exporters, such as CISD1
and CDGSH iron sulfur domain 2 (CISD2), inhibit ferroptosis by
protecting mitochondria against lipid peroxidation in cancer cells
[35, 112, 113]. Fourth, similar to cytoplasmic ferritin, mitochondrial
ferritin increases iron storage and protects against ferroptosis in
human neuroblastoma SH-SY5Y cells or primary human
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macrophages caused by erastin or hypoxia [114, 115]. Together,
these findings help identify new proteins to clarify the pathways
involved in mitochondrial iron homeostasis during ferroptosis.

mtDNA. mtDNA is a circular double-stranded DNA condensed
into nucleoids due to the interaction with mitochondrial
transcription factor A (TFAM). In mammals, the DNA polymerase
gamma, catalytic subunit (POLG) is required for mtDNA replica-
tion. Various mitochondrial stresses, including bioenergetic and
environmental factors, can lead to mtDNA release into the
cytoplasm. The released mtDNA activates a plethora of innate
immune responses, especially the cyclic GMP-AMP synthase
(CGAS)-STINGT-dependent DNA sensing pathway, which can
initiate a type | interferon response, autophagy, or cell death
[116, 117]. It is widely accepted that mtDNA damage is an initial
signal of cell death. Zalcitabine, an antiviral drug that targets POLG
to induce Lon peptidase 1, mitochondrial (LONP1)-dependent
TFAM degradation, has been shown to induce ferroptosis in
human pancreatic cancer cells through the induction of mtDNA
release and subsequent STING1-related autophagic cell death
(Fig. 2¢) [21]. Deoxyguanosine kinase (DGUOK) is a rate-limiting
enzyme for mitochondrial deoxynucleoside salvage pathway
enzymes involved in precursor synthesis for mtDNA replication.
A loss-of-function mutation of DGUOK can cause hepatic mtDNA
depletion syndrome with enhanced ferroptosis sensitivity (Fig. 2c)
[118]. However, mtDNA-depleted human osteosarcoma 143B cells
(p° cells) display sensitivity to erastin-induced ferroptosis that is
equivalent to that of parental cells [5], contrasting with the
observation that they contain higher levels of ALOX for lipid
peroxidation to induce apoptosis [119]. Thus, unknown defense
mechanisms might limit ALOX activity in p° cells in response to
ferroptosis activators, but not other cell death inducers.

The tricarboxylic acid cycle. The tricarboxylic acid (TCA) cycle is a
mitochondrial matrix-located enzymatic pathway that interfaces
with various metabolic pathways in the cytosol. It uses acetyl-CoA
produced from glucose as a starting material, and transfers
electrons to the ETC through a series of redox reactions, thus
allowing ATP production by oxidative phosphorylation. The
energy sensor AMP-activated protein kinase (AMPK) regulated
by the cellular ADP:ATP ratio plays a dual role in ferroptosis
according to its phosphorylated substrate [43, 120]. The TCA cycle
enzyme fumarate hydratase (FH) catalyzes the reversible hydration
of fumarate to malate. FH-mutant renal cancer cells are less
sensitive to cystine starvation-induced ferroptosis [26]. However,
FH knockout sensitizes renal cancer cells to erastin-induced cell
death [121]. Inhibitors of the mitochondrial ETC complexes I/1I/11l/
IV selectively inhibit ferroptosis caused by cysteine starvation or
erastin, rather than the GPX4 inhibitor RSL3 [26, 122]. These
findings raise questions about the subcellular localization of
erastin and RSL3, and erastin has indeed been shown to target
voltage-dependent anion channels (VDACs) in mitochondria [123].
Nevertheless, ROS from mitochondrial ETC affords considerable
flexibility in the regulation of ferroptotic cell death (Fig. 2d).
Glutaminolysis can fuel the TCA cycle by producing glutamate
from glutamine via glutaminase (GLS). Mitochondrial GLS2, but
not cytosolic GLS1, is responsible for glutaminolysis-associated
ferroptosis [31, 124]. The suppression of mitochondrial pyruvate
carrier 1 (MPC1) also increases vulnerability to ferroptosis partly by
increasing glutaminolysis in erlotinib-resistant cancer cells [125].
Whether GLS2 and MPC1 have direct antagonistic effects on the
induction of ferroptosis remains to be investigated.
Mitochondrial isocitrate dehydrogenase (NADP[+]) 2 (IDH2)
catalyzes the conversion of isocitrate to a-ketoglutarate (aKG),
which is the first oxidative decarboxylation of the TCA cycle. The
downregulation of IDH2 sensitizes cancer cells to erastin-induced
ferroptosis through decreasing the mitochondrial NADPH pool
[126]. Acetyl-CoA produced from the TCA cycle or glucose-
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mediated pyruvate oxidation in mitochondria can be used for fatty
acid synthesis and elongation in the cytosol [127]. In contrast,
pyruvate dehydrogenase kinase 4 (PDK4) inhibits glucose-
mediated susceptibility to ferroptosis by limiting pyruvate
oxidation and subsequent fatty acid synthesis in pancreatic
cancer cells [128]. The anaplerotic conversion of glutamate to
aKG provides an additional way for fatty acids to be synthesized
for amplifying ferroptosis in cancer and non-malignant cells [26].
Thus, the TCA cycle provides an interconnected redox hub for the
integration of metabolic signals from glycolysis and amino acid
catabolism to generate ferroptosis-favoring PUFAs (Fig. 2d). Future
metabolic flux analyses might unveil new mechanisms and
feedback loops that participate to the mitochondrial regulation
of ferroptosis.

Lysosomes

Lysosomes are acidic membrane-bound organelles that contribute
to ferroptosis through three mechanisms: (i) the activation of
autophagy, (ii) the release of lysosomal cathepsins, and (iii) the
accumulation of lysosomal iron or nitric oxide.

Macroautophagy (to which we refer as ‘autophagy’) is a
lysosome-dependent degradation pathway characterized by the
formation of double-membrane bound vesicles called autophago-
somes, which are hierarchically executed by the sequential
contribution of autophagy-related (ATG) proteins [129]. The
knockdown of ATG genes, such as ATG3, ATG5, ATG7, ATG13,
BECN1 (also known as ATG6), and microtubule-associated protein
1 light chain 3 B (MAP1LC3B, also known as ATG8), inhibits
ferroptosis in many cancer cells [6, 7, 130]. However, the
knockdown of ATG2A promotes ferroptosis in human cervical
cancer Hela cells by increasing Fe*" uptake [131]. Several selective
autophagy pathways promote ferroptosis by removing different
cargoes (Fig. 3a). First, nuclear receptor coactivator 4 (NCOA4)-
mediated ferritinophagy [6, 7] and the sequestosome 1 (SQSTM1/
p62)-mediated autophagic degradation of SLC40A1 [37] promote
ferroptosis by increasing intracellular Fe?" levels. Second, the
lipophagy-dependent degradation of LDs increases free fatty acid
supplies for subsequent lipid peroxidation during ferroptosis [8].
Third, the SQSTM1-mediated autophagic degradation of aryl
hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1), a
process known as clockophagy, facilitates ferroptosis induction
through increasing intracellular levels of PUFA [132]. Fourth,
chaperone-mediated autophagy (CMA) facilitates GPX4 degrada-
tion, resulting in an increase in lipid peroxidation that favors
ferroptosis [60]. This process is further enhanced by the activation
of sphingomyelin phosphodiesterase 1 (SMPD1, also known as
ASM), a lysosomal enzyme that plays a major role in sphingolipid
metabolism [133]. Although these data support the notion that
ferroptosis is an autophagy-dependent form of cell death, the
specific pathways used only for this process remain to be
characterized [134, 135]. In particular, the question arises whether
there would be some kind of specificity in the mechanism of
selective autophagy and lipid metabolism that favor ferroptosis
[136, 137].

An increased lysosomal membrane potential is the initial signal
of lysosome-dependent cell death driven by various cell death
stimulations. Recently, the release of lysosomal cathepsins,
especially cathepsin B (CTSB), has been considered to be
contributing to ferroptosis (Fig. 3b). The activation of signal
transducer and activator of transcription 3 (STAT3) is required for
the upregulation and subsequent lysosomal release of CTSB [138].
CTSB mediates ferroptosis through at least two potential
mechanisms. First, CTSB translocates from lysosomes to the
nucleus, causing DNA damage and subsequent STING1-
dependent ferroptosis [139]. CTSB can also act as a specific
histone H3 protease and cleave H3 for ferroptosis [140]. In
addition to inhibitors of lysosomal function (e.g., bafilomycin A1,
ammonium chloride, pepstatin A, and CA-074Me), genetic
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blockade of cathepsin limits erastin-induced ferroptosis in cancer
cells and MEFs [139, 140].

Other mechanisms of lysosomal-dependent ferroptosis involve
the accumulation of lysosomal iron or nitric oxide (Fig. 3c)
[141, 142]. This process is responsible for the dichloroacetate-
induced inhibition of stemness in colorectal cancer cells [143], the
loss of lysosomal protein prosaposin (PSAP)-mediated neuronal
death [144], or nonthermal plasma-activated Ringer’s lactate-
triggered ferroptosis in malignant mesothelioma cells [145]. As a
defense mechanism, the activation of nuclear transcription factor
EB (TFEB) can inhibit lysosomal-dependent ferroptosis by inducing
antioxidant superoxide dismutase 1 (SOD1) gene expression [146].
CD44-mediated iron uptake in endocytic vesicles replenishes
lysosomal iron, leading to increased sensitivity to ferroptosis [147].
Together, the crosstalk between the lysosome and the nucleus can
establish a feedback mechanism for the modulation of ferroptosis.
It is not clear whether lysosomal exocytosis results in membrane
remodeling and repair during ferroptosis.

Endoplasmic reticulum

Under normal conditions, the endoplasmic reticulum (ER) is the
central organelle for the synthesis and processing of proteins as
well as lipid secretion [148]. ER stress triggers an unfolded protein
response to restore protein homeostasis, but can also trigger cell
death when cells fail to restore homeostasis [149]. ER stress plays a
dual role in ferroptosis (Fig. 4a). For example, erastin can induce a
significant ER stress response by activating the eukaryotic
translation initiation factor 2A (EIF2A)/activating transcription
factor 4 (ATF4) pathway, which determines cell fate [20]. On one
hand, ATF4-mediated HSPAS5 expression prevents the degradation
of GPX4, thereby increasing the resistance of pancreatic cancer
cells or glioma cells to ferroptosis caused by gemcitabine or
dihydroartemisinin [59, 150]. ATF4-mediated SLC7A11 upregula-
tion is also implicated in ferroptosis resistance in human glioma
cells [151]. On the other hand, the ATF4-mediated transcriptional
expression of GSH-degrading enzyme ChaC glutathione-specific
gamma-glutamylcyclotransferase 1 (CHAC1) enhances artesunate-
or cystine starvation-induced ferroptosis in breast cancer cells
[152, 153]. Thus, the diversity of ATF4 target genes confer ATF4
multiple biological functions in ferroptosis. The ER stress response
also contributes to artesunate- or erastin-induced ferroptosis via
the activation of autophagic degradation [154]. In stark contrast,
ER stress-associated Ca”" influx triggers ESCRT-IIl accumulation in
plasma membranes to prevent membrane damage during
ferroptosis [76, 77]. Notably, ferrostatin-1 might exert its anti-
ferroptotic effect through its accumulation in the ER, rather than in
lysosomes and mitochondria [88]. Quantitative measurements by
two-photon phosphorescent lifetime imaging revealed that the
viscosity of the ER increases during erastin-induced ferroptosis
[155]. These two studies further support the involvement of the ER
in regulating ferroptosis.

Several ER proteins play a broad role in regulating ferroptosis
sensitivity. For example, STING1, a transmembrane protein on the
ER, is reported to translate the oxidative response of nuclear or
mitochondrial structures into a ferroptotic response (Fig. 4b).
STING1 depletion attenuates acute pancreatitis and KRAS-driven
pancreatic tumor formation in mice that are prone to ferroptosis
due to a high-iron diet or genetic GPX4 deletion in pancreatic
acinar cells [156]. The oxidized nucleobase 8-hydroxyguanine (8-
OHQG) released by ferroptotic cells has been identified as a ligand
for active STING1-dependent innate immunity in macrophages
[156]. Mitochondrial damage caused by zalcitabine or erastin can
trigger STING1-dependent ferroptosis in pancreatic cancer cells
through convoluted pathways involving autophagy or mitochon-
drial fusion [21, 102]. As a negative feedback mechanism,
unrestricted lipid peroxidation might reduce the transport of
STING1 from the ER to the Golgi complex and the subsequent
immune response by its carbonylation [157]. These findings
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factor EB.

underscore the multifunctional role of STING1
ferroptosis.

ER proteins can block ferroptosis, as exemplified by stearoyl-CoA
desaturase (SCD). The biosynthesis of MUFA requires SCD, which
competitively inhibits PUFA-mediated ferroptosis [48]. The expres-
sion of SCD is regulated by multiple factors, including transcription
factors, kinases, hypoxia, and nutrition signals (Fig. 4c) [158]. For
example, sterol regulatory element-binding transcription factor 1
(SREBF1, also known as SREBP1), a nuclear transcription factor
regulating lipid metabolism, acts as a ferroptosis repressor by the
induction of SCD expression [159, 160]. Ferroptosis inhibition by
the SREBP1-SCD pathway can also result from the activation of pro-
survival phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT-
MTOR signaling in MDA-MB-453 and BT474 human breast cancer
cells [159]. Lactate formed during anaerobic glycolysis inhibits the

in mediating
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phosphorylation of AMPK, thereby activating the SREBP1-SCD
pathway to inhibit ferroptosis in liver cancer cells [160]. The co-
mutation of serine/threonine kinase 11 (STK11) and Kelch-like ECH-
associated protein 1 (KEAP1) results in ferroptosis resistance in lung
cancer cells partly through the upregulation of SCD [161].
Additionally, the nuclear protein F-box and WD repeat domain
containing 7 (FBW7) can inhibit SCD expression in pancreatic
cancer cells through blockade of nuclear receptor subfamily 4
group A member 1 (NR4A1) [162]. Thus, the combination of SCD
inhibitors and ferroptosis inducers might be a potential strategy for
anticancer treatment that warrants to be explored.

In addition to iron, zinc ions have the ability to induce
ferroptosis [163]. Solute carrier family 39 member 7 (SLC39A7,
also known as ZIP7), a resident ER protein that mediates zinc
transport from the ER to cytosol, is a promoter of ferroptosis
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(Fig. 4d) [163]. The inhibition of SLC39A7 triggers the expression of
ER stress-associated genes, such as homocysteine-inducible ER
protein with ubiquitin-like domain 1 (HERPUD1), which drives
ferroptosis resistance [163]. These findings not only uncover an
unexpected role for ER stress in mediating zinc-induced ferrop-
tosis, but also challenge the current notion that ferroptosis is
exclusively dominated by iron-dependent redox reactions. Since
mitochondria can form contacts with the ER to regulate vital
cellular homoeostatic functions [164], researchers should investi-
gate these connections in ferroptosis.

Lipid droplets

Lipid droplets (LDs) serve as storage organelles for neutral lipids,
such as triacylglycerol and sterol esters. LDs are also in dynamic
contact with other organelles (such as mitochondria, the ER,
peroxisomes, and lysosomes) to facilitate the exchange of lipids,
metabolites, and ions [165]. It is widely accepted that increasing
the formation of LDs protects cells from PUFA-induced lipotoxicity
and ER stress [166, 167]. The number of LDs increases in the early
stages, but decreases in the final stages, of ferroptosis. The
balance between the degradation and storage of LDs affects the
sensitivity to ferroptosis. For example, RAB7A-mediated lipophagy
increases intracellular PUFA production, thereby enhancing RSL3-
induced ferroptosis in liver cancer cells. In contrast, tumor protein
D52 (TPD52)-mediated lipid storage might limit ferroptosis by
sequestering toxic oxidized lipids [8]. Exogenous PUFAs induces
LD formation and accumulates in LDs, resulting in enhanced lipid
ROS and ferroptosis in cervical (SiHa), colorectal (HCT-116), and
hypopharyngeal (FaDu) cancer cells [168]. Moreover, Fas-
associated factor family member 2 (FAF2), a molecule regulating
LD formation and homeostasis, is downregulated in orlistat-
induced ferroptosis in A549 and H1299 lung cancer cells,
supporting the anti-ferroptotic role of LDs [169]. These observa-
tions highlight an urgent need to uncover the mechanisms of the
LD dynamics in ferroptosis. In addition, lipolysis (the hydrolysis of
triacylglycerol) occurs on the surface of LDs, releasing fatty acids
for bioenergetic or anabolic reactions. Several enzymes, such as
patatin-like phospholipase domain containing 2 (PNPLA2, also
known as ATGL) and lipase E, hormone-sensitive type (LIPE, also
known as HSL), play crucial roles in lipolysis [170], but their precise
roles in ferroptosis remain to be uncovered.

Peroxisomes

Peroxisomes are organelles that generate ROS and reactive
nitrogen species (RNS) through pro-oxidant enzymes, such as
xanthine dehydrogenase (XDH) and nitric oxide synthase 2 (NOS2)
[171]. Conversely, peroxisomes also contain antioxidant enzymes,
such as catalase (CAT), SOD1, peroxiredoxin 5 (PRDX5), and
glutathione S-transferase kappa 1 (GSTK1) [172]. Nonetheless, a
recent study showed that peroxisome-mediated lipid synthesis
rather than ROS or RNS generation promotes ferroptosis [54]. In
particular, ether lipids are synthesized through a well-
characterized process that begins in peroxisomes and finishes in
the ER [54]. Within peroxisomes, the enzymes fatty acyl-CoA
reductase 1 (FAR1) and alkylglycerone phosphate synthase (AGPS)
catalyze the biosynthesis of the ether lipid precursor 1-O-alkyl-
glycerol-3-phosphate (AGP). The is then delivered to the ER where
it is acylated and dehydrogenated to form plasmalogens. The
knockdown of peroxisome resident enzymes FAR1 and AGPS, or
ER resident enzyme 1-acylglycerol-3-phosphate O-acyltransferase
3 (AGPAT3), diminishes the sensitivity of the cells to ferroptosis
induced by GPX4 inhibition [54]. Consistently, the knockdown of
peroxisomal biogenesis factors (PEXs), including PEX3, PEX10,
PEX16, and PEX19, limits the production of polyunsaturated ether
phospholipids (PUFA-ePLs), especially plasmalogens [54, 173].
Moreover, plasmanylethanolamine desaturase 1 (PEDS1, also
known as TMEM189), which introduces the characteristic vinyl
ether double bond into plasmalogens [174], limits ferroptosis
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through downregulating FAR1 protein levels [173]. These findings
support the key role of peroxisome-driven PUFA-ePLs in
modulating susceptibility to ferroptosis [175]. However, neurons
from plasmalogen-deficient (PEX7 knockout) mice are more
susceptible to ROS-mediated damage [176], indicating that ether
phospholipids might act as endogenous antioxidants as well. In
addition to lipid synthesis and redox balance, peroxisomes are
also involved in the biosynthesis and signaling of steroid and
peptide hormones [177], which in turn might indirectly impinge
on the regulation of ferroptosis.

Golgi apparatus

The Golgi apparatus, a membranous organelle, has important
functions in processing and sorting lipids and proteins for
secretion or cellular use. Pharmacological Golgi stress inducers
(e.g., AMF-26/M-COPA, brefeldin A, and golgicide A) trigger
ferroptosis in Hela cells, and this can be avoided by over-
expression of SLC7A11 or GPX4, as well as the depletion of ACSL4
[178], indicating that Golgi-dependent ferroptosis requires classi-
cal ferroptotic regulators. The induction of ferroptosis by brefeldin
A is also influenced by the availability of extracellular cystine [178].
The transsulfuration pathway (a source of cysteine for GSH in cells)
can protect cells against brefeldin A-induced ferroptosis [178].
Although the exact mechanism of Golgi stress-induced ferroptosis
is still poorly understood, it is suspected that Golgi dispersal might
induce the loss of antioxidant molecules (e.g., CoQ10) [179].
Regardless, the sorting and transportation of cellular cargos in the
entire cell by the Golgi apparatus might be impaired during
ferroptosis, hence exemplifying yet another pathway in which
disrupted protein homeostasis contributes to cell death.

Nucleus

In a previous review, we discussed the contribution of various
transcription factors to the regulation of ferroptosis [180]. Here, we
will focus on the discussion of non-transcriptional aspects of the
nuclear implication in ferroptosis. Although early studies did not
detect any obvious morphological changes in the nucleus,
oxidative damage of nuclear DNA is a biochemical correlate of
ferroptosis, which is associated with nuclear DAMP (e.g., HMGB1)
release [10]. Several DNA damage response pathways, such as
TP53, ataxia telangiectasia mutated (ATM), and FA complementa-
tion group D2 (FANCD2), play a context-dependent role in
inhibiting or promoting ferroptosis. For example, TP53 activation
can promote ferroptosis by the downregulation of SLC7A11 in
breast cancer cells [62], whereas TP53 loss can trigger ferroptosis
by activating the dipeptidyl peptidase 4 (DPP4)-dependent NOX
pathway in colon cancer cells [27]. Radiotherapy-activated ATM
transcriptionally represses SLC7A11 expression to promote
ferroptosis in HT1080 cells [181]. FANCD2-mediated DNA repair
inhibits erastin-induced ferroptosis in bone marrow cells [182]. The
iron-binding protein pirin (PIR) is a nuclear redox-sensor, which
limits autophagy-dependent ferroptosis by retaining HMGB1 in
the nucleus [183]. In contrast, the translocation of lysosomal CTSB
[139, 140] or mitochondrial AIFM1 [99, 100] to the nucleus can
cause local damage and induce ferroptotic cell death. Thus, the
translocation of different proteins between nuclear and extra-
nuclear compartments profoundly affects the susceptibility of cells
to ferroptosis. Future proteomic studies should provide a
systematic and refined analysis of such ferroptosis-relevant
translocation events.

CONCLUSIONS AND PERSPECTIVES

Selected metabolic changes, such as iron accumulation and lipid
peroxidation, are considered as the biochemical hallmarks of
ferroptosis [30]. Different organelles are involved in this
metabolic cascade, which eventually leads to the rupture of
the plasma membrane. Unlike other types of RCD, the specific
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effector of ferroptosis is still unknown. One hypothesis is that
toxic lipids might directly mediate ferroptosis without the
involvement of pore-forming proteins [2]. The production of
toxic lipids involves a dynamic pathway, which connects lipid
synthesis, degradation, storage, transformation, utilization, and
peroxidation [55]. This process is further regulated by organelle-
specific signals and pathways. Thus, multiple antioxidant
systems and membrane repair pathways can synergistically
antagonize organelle damage and ferroptosis induced by
oxidative stress [19, 67-70, 103, 184, 185]. However, the
contribution of exogenous (e.g., ferrostatin-1 and liproxstatin-
1) or endogenous antioxidants (e.g., GSH, CoQ10, BH4, and
dopamine) to specific organelles has largely not been verified.
Apparently, all major organelles of the cell may modulate the
‘decision’ phase during which the threshold for lethal mem-
brane peroxidation is reached or avoided. Moreover, several
major organelles, in particular mitochondria and lysosomes, may
contribute to the lethal process as a result of their membrane
permeabilization, hence liberating hydrolytic enzymes and
increasing the entropy of the cellular system.

Although significant advances have been made in our under-
standing of the machinery of ferroptosis [186], several basic
questions must be answered before the development of specific
ferroptosis-related therapies may be envisaged. Are the
ferroptosis-relevant damage or repair mechanisms affecting the
plasma membrane and internal, organelle-specific membranes
different? What are the key molecules that maintain or disrupt the
communication between subcellular organelles in ferroptosis?
How can we develop molecular probes to dynamically monitor
ferroptosis-associated changes in organellar morphology and
function? Do the biogenesis and turnover of specific organelles
affect the susceptibility of cells to ferroptosis? And finally, which
strategies may guide the identification of subtle modulators of
ferroptosis that act on peculiar, ideally cell type or organ-specific,
receptors and hence can be used for the therapeutic avoidance of
excessive ferroptosis or, on the contrary, for its selective induction
in cancer cells? Elucidating the role of organelle-specific mem-
branes in ferroptosis would be an attractive research area in the
future.
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