Skip to main content
letter
. 2020 Sep 15;36(10):3243–3245. doi: 10.1007/s11606-020-06204-3

Table 1.

Baseline Characteristics and Multivariable Logistic Regression Models for Affordability of Mental Health Services

Baseline Char. Unable to afford MHS
N % AOR 95% CI p > |t| % unable to afford MHS
1A
Race 14,655
  White 12,703 88.77 1.00 - - - 2.57
  Non-white 1952 11.23 1.27 0.84 1.94 0.260 3.14
Age 14,655
  18–64 6799 51.80 1.00 - - - 4.6
  65–74 4008 25.57 0.30 0.19 0.49 < 0.001 0.8
  ≥ 75 3848 22.63 0.08 0.03 0.25 < 0.001 0.22
Sex 14,655
  Male 5881 42.24 1.00 - - - 1.54
  Female 8774 57.76 1.58 1.12 2.25 0.010 3.44
Kessler score 14,655
  K6 = 0 6176 42.13 1.00 - - - 0.32
  K6 = 1–6 6203 42.71 3.50 1.74 7.02 < 0.001 1.45
  K6 = 7–12 1637 10.98 15.78 8.03 31.01 < 0.001 8.34
  K6 = 13–18 496 3.29 40.42 19.58 83.43 < 0.001 21.83
  K6 = 19–24 143 0.89 54.58 22.09 134.88 < 0.001 28.09
Insurance status 14,655
  Insured 13,912 94.88 1.00 - - - 1.95
  Uninsured 743 5.12 3.49 2.47 4.92 < 0.001 15.45
Socioeconomic status (SES) 14,655
  SES < 1.00 649 3.71 1.00 - - - 9.51
  SES 1.00–1.99 3560 19.98 1.18 0.75 1.85 0.484 4.83
  SES 2.00–3.99 4814 32.47 0.85 0.53 1.38 0.517 2.55
  SES > 4.00 5632 43.84 0.51 0.29 0.89 0.018 1.12
1B
Insurance status 14,655
  Insured 13,912 94.88 1.00 - - - 1.95
    K6 ≥ 13 vs. K6 ≤ 13 - - 7.20 4.77 10.86 < 0.001 17.91 vs. 1.33
  Uninsured 743 5.12 3.49 2.47 4.92 < 0.001 15.45
    K6 ≥ 13 vs. K6 < 13 - - 8.68 4.45 16.93 < 0.001 50.49 vs. 10.15
1C
Socioeconomic status (SES) 14,655
  SES < 1.00 649 3.71 1.00 - - - 9.51
    K6 ≥ 13 vs. K6 < 13 - 6.16 2.70 14.02 < 0.001 26.67 vs. 5.93
  SES 1.00–1.99 3560 19.98 1.18 0.75 1.85 0.484 4.83
    K6 ≥ 13 vs. K6 < 13 - - 6.56 3.85 11.18 < 0.001 26.39 vs. 3.07
  SES 2.00–3.99 4814 32.47 0.85 0.53 1.38 0.517 2.55
    K6 ≥ 13 vs. K6 < 13 - - 12.31 6.53 23.22 < 0.001 22.24 vs. 1.74
  SES ≥ 4.00 5632 43.84 0.51 0.29 0.89 0.018 1.12
    K6 ≥ 13 vs. K6 < 13 - - 9.02 3.85 21.14 < 0.001 15.12 vs. 0.88

1A represents the entire cohort. In addition to the variables shown, the model was also adjusted for highest education level attained (less than high school [referent] vs. some high school vs. high school diploma/GED vs. some college vs. college degree or greater), US geographic region (Northeast [referent] vs. Midwest vs. South vs. West), self-reported health status (excellent vs. very good vs. good vs. fair vs. poor [referent]), time from cancer diagnosis (≤ 5 years [referent] vs. ≥ 6 years), birth status (US born [referent] vs. non-US born), and comorbidity score (0 [referent] vs. 1 vs. 2 vs. 3 vs. 4 vs. 5 comorbid conditions), none of which was significant. 1B and 1C show the results of multivariable logistic regression stratified by insurance status and socioeconomic status, respectively. Each of these models was also adjusted for all of the demographic characteristics listed above