Skip to main content
. 2021 Sep 16;9:710810. doi: 10.3389/fpubh.2021.710810

Table 4.

Regression estimation results of three models.

OLS SLM SEM
Estimate Standard error Estimate Standard error Estimate Standard error
Intercept term −1.0775** 0.3489 −1.1898** 0.3424 −1.009** 0.3546
City level 3.4198** 0.4153 3.5789** 0.4088 3.3914** 0.3993
Number of medical colleges 2.0067** 0.1690 2.0133** 0.1650 1.9341** 0.1627
Urbanization rate 0.0160** 0.0069 0.0136** 0.0068 0.0122* 0.0070
Permanent population 0.0024** 0.0003 0.0023** 0.0003 0.0024** 0.0003
Population density 0.0003* 0.0003 0.0003 0.0002 0.0004** 0.0002
GDP per capita 7e-006** 0.0002 6.47e-006** 3.25e-006 9.31e-006** 3.40e-006
Altitude 3e-006 0.0001 5.0548e-005 0.0001 −9.0097e-006 0.0001
λ 0.2374** 0.7461
ρ 01331** 0.4468
R 2 0.8203 0.8253 0.8266
AIC 1,324.1943 1,314.66 1,312.9
Moran's I (error) 3.2361**
LM (lag) 9.9004**
Robust LM (lag) 3.1209*
LM (error) 8.7240**
Robust LM (error) 2.0446
Lagrange Multiplier (SARMA) 11.8449**
Log likelihood −648.33 −648.45
LR 9.0251** 8.7832**
**

Represents 5% significance level,

*

Represents 10% significance level; binary queen contiguity weight matrix is used.