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Abstract

Aging is associated with the highest risk for morbidity and mortality to chronic or metabolic 

diseases, which are present in fifty percent of the elderly. Improving metabolic and immune 

function of the elderly would improve quality of life and reduce risk for all other diseases. Tissue 

resident macrophages and the NLRP3 inflammasome are established drivers of inflammaging 

and metabolic dysfunction. Energy sensing-signaling pathways connect sterile and metabolic 

inflammation with cellular senescence and tissue dysfunction. We discuss recent advances in the 

immunometabolism field. Common themes revealed by recent publications include the alterations 

in metabolic signaling (SIRTUIN, AMPK or mTOR pathways) in aged immune cells, the impact 

of senescence on inflammaging and tissue dysfunction and the age-related changes in metabolic 

tissues, especially adipose tissue, as an immunological organ. Promising gerotherapeutics are 

candidates to broadly target nutrient and energy sensing, inflammatory and senescence pathways, 

and have potential to improve healthspan and treat age-related diseases.

Introduction

Age is the greatest risk factor for chronic diseases such as metabolic disease, cancer 

and neurodegenerative diseases [1]. The pillars of aging, including inflammation and 

metabolism, define key mechanistic areas of research that are critical to the aging process 

and age-related diseases [2]. Inflammaging, described as the accumulating chronic low

grade inflammation with age, drives age-related pathology including metabolic disease, 

autoimmunity and frailty [3]. In metabolic tissues, inflammaging leads to excess adiposity, 

impaired metabolism, impaired lipolytic signaling and reduced metabolic flexibility. Recent 

work has identified direct links of inflammaging and metabolic dysfunction to cellular 
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senescence. Although further work is still needed to clarify how immunosenescence is a part 

of cellular senescence, this research identifies intersecting points of immunometabolism, 

immunosenescence and inflammaging at the molecular or cellular level and within critical 

tissues for a greater understanding of age-related diseases.

Cellular senescence is a cell state where irreversible cell cycle arrest is elicited via 

various cellular stresses or macromolecular damage [4]. Senescent cells accumulate with 

age, especially in metabolic tissues such as white adipose tissue (AT) and liver, and this 

accumulation inhibits lifespan and healthspan [5,6]. The characteristics of senescent cells 

include an inability to proliferate, with activation of p53/p21 or pRb/p16 pathway, and 

production of a high level of senescence associated secretory products (SASPs), such as 

IL-1β, IL-6 and MCP-1 [4,7,8]. Their accumulation can be driven by increased expression 

of inhibitory molecules permitting escape from immunosurveillance and suboptimal 

cytotoxicity from aged immune cells [9,10]. The SASPs not only mediates activation 

of tissue resident cells, immune cell infiltration, but also alters nicotinamide adenine 

dinucleotide (NAD) metabolism, a central metabolite in energy metabolism [4,11]. SASP 

factors stimulate expression of CD38, a NADase on the surface of cells including immune 

cells, which are responsible for the decline of NAD in aging [11-13]. Interestingly, 

cellular senescence can be modulated by differential NAD metabolic changes. High NAD+/

NADH ratio mediated by the high mobility group A proteins (HMGA) - nicotinamide 

phophoribosyltransferase (NAMPT) axis increases glycolysis, mitochondrial respiration 

and SASP in oncogene-induced senescence [14]. In contrast, mitochondrial dysfunction

mediated senescence is partly attributed to lower NAD+/NADH levels and sustained 

activation of the NAD-AMPK signaling pathway [15]. The family of SIRTUIN proteins, 

NAD+ dependent deacetylases, are downregulated in senescent non-immune cells and aged 

immune cells and also have been identified to drive cellular senescence [13,16].

The SASP, SIRTUINS and NAD metabolism also provide new links to inflammaging, 

especially those induced by the NLRP3 inflammasome, a canonical sensor of a wide-range 

of damage signals (damageassociated molecular patterns: DAMPs) that accumulate with 

aging (Figure 1). SASP production by senescent cells is regulated by the inflammasome 

and IL-1 signaling; furthermore, certain SASP factors themselves may act as DAMPs 

[12]. The NLRP3 inflammasome, is highly expressed in tissue resident macrophages, and 

it’s activation by DAMPs results in NF-κB activation, NLRP3 inflammasome complex 

formation, and caspase 1-dependent release of IL-1β and IL-18. The role for the NLRP3 

inflammasome is demonstrated in aged Nlrp3-deficient mice, which have restored glucose 

metabolism, catecholamine-induced lipolysis, bone density, and cognition, among other 

improvements in healthspan [17-20]. Aged knockout mice also show increased autophagy, 

NAD+ levels and SIRT1 protein [17]. Furthermore, small molecule inhibition of the 

NLRP3 inflammasome in animal models of Alzheimer’s Disease, atherosclerosis and 

myocardial infarction inhibit inflammation and have beneficial effects in preventing disease 

or preserving tissue function [21-24]. The hyperactivation of inflammasome and SASP

mediated inflammation are likely to be promoted by declining autophagy in aging [12,25]. 

The full extent of autophagy or other pathways as connecting cell-autonomous or non-cell

autonomous factors between inflammasome activation and senescence accumulation during 

aging is unknown.
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Immunosenescence is a component of inflammaging and refers to the dysregulation 

of the aged immune system, indicating both the inappropriate dysfunctional cells and 

the hyperactive cells, but not the cellular senescence of immune cells. Immune cells 

may express commonly used senescence markers, p16INK4a and p21CIP1; however, it is 

controversial as to whether the cells are truly senescent, as these kinase inhibitors are 

also required for immune cell differentiation. In this review, we focus on the recently 

identified changes in metabolic pathways of aged immune cells to better understand 

immunosenescence (Figure 1&2).

Dysregulated metabolic pathways within aged immune cells

Innate Immunity:

Hematopoietic cells are predisposed towards myelopoiesis during aging. Myeloid-derived 

suppressor cells, a heterogenous population of myeloid cells accumulate in the marrow 

in a NF-κB-dependent mechanism [26], produce IL-1β, and have greater suppressive 

activity on T cell proliferation in aged mouse models [27]. Their IL-1β production also 

inhibits B cell lymphopoiesis [27], but promotes plasma cell expansion [28]. The precise 

contribution of myelopoiesis and recruitment versus the proliferative capacity of tissue 

resident macrophages and whether each is regulated by the NLRP3 inflammasome during 

aging is unclear.

Aged macrophages have heightened inflammatory pathways, including the NLRP3 

inflammasome activation, but reduced phagocytic ability, antigen presentation, 

mitochondrial dysfunction and impaired cellular metabolism [29-33] (Figure 2). 

Macrophages from aged Nlrp3-deficient mice have reduced inflammation, in part, mediated 

through increased reactive oxygen levels and expression of growth differentiation factor 

(GDF)-3 [29,31]. Recent work highlighted the role for the de novo production of NAD via 

the kynurenine pathway metabolism of tryptophan, which regulates mitochondrial function, 

inflammation and macrophage phenotype [33]. Declines in that cell-autonomous production 

of NAD in aged macrophages increases inflammation and impairs oxidative metabolism 

[33]. Additional research shows SIRTUIN 2 (SIRT2) inhibits inflammasome activation 

through deacetylation [34]. These results suggest that reduced NAD metabolism also impairs 

SIRT2 activity leading to the NLRP3 inflammasome activation during aging. Interestingly 

NAD supplementation, via nicotinamide mononucleotide, reduces reactive oxygen levels, 

NLRP3 inflammasome activation and bone loss, suggesting that metabolic defects in aged 

macrophages may be overcome [35]. Further links between the de novo NAD pathway, 

NAD+/NADH levels, the sirtuin pathway and inflammasome activation in aged macrophages 

remain to be explored.

Other innate immune cells, including natural killer (NK) cells and eosinophils are also 

altered with age (see Figure 2), but which metabolic pathways are altered within these cell 

types remain unclear.
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Adaptive Immunity:

B cell lymphopoiesis moderately declines with age. However, increased numbers of plasma 

cells, with elevated levels of IL-1 and TNFα, promote myelopoiesis in aging bone marrow 

[28]. These changes, along with altered memory B cell subsets [36], and increased 

accumulation of aged B cells (ABCs), contribute to impaired aged humoral responses [37]. 

ABCs secrete TNFα, IL4 and IL10, and respond to TLR agonists, but not B cell receptor 

signaling and therefore are directly linked to the reduced lymphopoiesis and reduced 

responses to antigen challenge during aging [37] (Figure 2).

B cells rely on glycolytic metabolism for activation and differentiation [38]. With aging 

there are mild decreases in glycolysis and pronounced defects in mitochondrial energy 

production [39]. There are also alterations in expression of genes involved in metabolism, 

with decreases in expression level of sirtuin (Sirt)1, FOXO1 and carnitine palmitoyl 

transferase in antibody secreting cells from human individuals [39]. SIRT1 is highly 

expressed in resting B cells and downregulated by stimuli inducing activation-induced 

cytidine deaminase (AID) which is required for immunoglobulin class switch DNA 

recombination and somatic hypermutation [40], therefore SIRTUIN signaling may also 

drive reduced somatic hypermutation and class-switching. These results are described in 

circulating B cells, but a major finding over the last few years, is the recognition of the 

accumulation of tissue resident B cells, especially in the white AT and liver [41,42].

Aged T cells are characterized by reduced thymic output, oligoclonality of T cell repertoire, 

and accumulation of highly differentiated T cells, exhausted T cells and activated regulatory 

T cells, possibly leading to a higher risk of autoimmunity and infection [43]. Aging causes 

suboptimal induction of mitochondrial biogenesis and metabolism. Upon activation with 

reduced levels of metabolites in glycolysis, the pentose phosphate pathway and the TCA 

cycle, which impairs activation [44]. Increased mTOR signaling in aged T cells via miR-21 

also entails impaired tissue homing and memory cell differentiation of T cells [45,46]. 

Supplementation with a TCA cycle metabolite, alpha-ketoglutarate extends lifespan and, 

interestingly, also induces IL-10 production in T cells [47]. IL-10, traditionally an anti

inflammatory cytokine, may play a complicated role in aging. There is an accumulation 

of IL-10 producing T follicular helper cells with age, which ultimately curtails T cell

dependent antibody response to vaccination [48].

During aging there is an accumulation of senescent-like T cells, highly differentiated 

functional memory T cells that exhibit low proliferation capacity. These cells express 

sestrins, stress-inducible metabolic regulators known to inhibit mTORC1 signaling. Sestrins 

are responsible for the low responsiveness via hyperactivation of AMPK-MAPK pathway 

and acquisition of NK receptor and dependent cytotoxicity [49,50]. Defective SIRT1

FOXO1 axis regulates their glycolytic capacity and granzyme B production, although the 

specific role of these memory T cells in aging needs to be investigated [51]. T cells with 

dysfunctional mitochondria by deficient mitochondrial transcription factor A (TFAM), a key 

regulator of mitochondria DNA, have impaired activation and induce inflammaging, as well 

as premature aging in mice [52]. These results demonstrate the importance of T cell-intrinsic 

metabolism on age-related pathology.
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Association of aged tissue resident immune cells with metabolic 

dysfunction

Adipose tissue (AT):

AT is a critical organ in energy balance and nutritional homeostasis. Increased adiposity and 

metabolic dysfunction during aging is highly dependent upon the NLRP3 inflammasome

induced inflammaging [29,42,53]. White adipocytes traditionally store lipid and use discrete 

mechanisms for release of the stored triglyceride. Lipolysis drives the release of free 

fatty acids, glycerol, and proteins to be used as metabolic and signaling substrates. AT 

shows reduced lipolytic signaling and reduced NAD levels, driven by accumulation of 

CD38 [13]. Changes in AT cellular composition including the altered immune cells and 

the accumulating senescent burden impairs both NAD and lipid metabolism (Figure 3). 

The immune cell alteration and lipolytic impairment may also be linked to impaired 

thermogenesis and reduced responses to infection during aging.

Resident visceral AT F4/80+ CD11b+ SiglecF− macrophages are numerically decreased, 

although they express an elevated inflammatory profile, with increased NLRP3 

inflammasome activation that is at least partially regulated by GDF3 [29,30]. F4/80+ 

CD11b+ SiglecF+ eosinophils, critical regulators of insulin sensitivity and inflammation 

during obesity, are also decreased with age. Eosinophil production of IL-4 recruits 

alternatively activated macrophages and improves insulin sensitivity [53]. Aged-Nlrp3 

deficient mice have increased (restored) AT macrophages. Along with decreased myeloid 

cells, there are expansions in adaptive immune system, include T and B lymphocytes 

[42,54]. Aged adipose B cells are a subset of the ABCs, with a few distinct differences. They 

express the IL-1 receptor, and their proliferative capacity requires the NLRP3 inflammasome 

and IL-1 signaling [29,42]. A subset of AT B cells are plasma cells, expressing IgM 

antibodies, and may contribute to the global increase in autoantibodies [41]. Functionally, 

aged murine AT macrophages upregulate catecholamine-degradation machinery, reducing 

lipolytic signaling in adipocytes [29]. Aged AT B cells also mediate lipolytic impairment 

although the precise mechanisms are unclear [42]. Overall, these data point towards a 

sequential series of events, likely connected by specific inflammatory signals such as 

senescent cell accumulation leading to metabolic dysfunction (Figure 3).

AT microenvironment niches are altered with age. Macrophages are abundant throughout 

the parenchyma, surrounding crown-like-structures and lining both sympathetic nerves and 

blood vessels, whereas eosinophils are found surrounding crown-like-structures [53]. In the 

aged visceral AT, but not other depots, lymphoid clusters, termed fat-associated lymphoid 

clusters (FALCs), which harbor the expansion of T and B lymphocytes, are increased 

[42,55]. Lymphoid clusters develop in response to acute or chronic inflammation and are 

an essential component of infection clearance [56]. Given the increase in Tfh cells and B 

cells during aging, but with impaired adaptive and humoral responses, it remains to be seen 

whether aged FALCs are immunologically responsive. Interestingly, the accumulation of 

lymphoid clusters does occur in other aged tissues, including the bladder [57], but direct 

links between metabolic signaling, senescence and FALC formation need to be dissected out 

(Figure 3).
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Liver:

Aging reduces liver volume, disrupts blood flow and increases susceptibility to liver fibrosis, 

non-alcoholic fatty liver disease, and liver injury [58]. AT proximity and anatomical location 

to the liver, as well as its propensity for secreting various factors, makes the AT a prime 

suspect for cross-tissue regulation of inflammation and metabolic dysfunction in the liver 

with age. Similar to AT, liver shows elevated senescence impaired metabolism and an 

expansion of B cells [13,41]. Kupffer cells, liver resident macrophages, are important in liver 

homeostasis, but there is limited data regarding their roles in aging. Aging upregulates CD38 

expression in Kupffer cells, resulting in NAD decline and SIRT3-dependent mitochondrial 

dysfunction [13,59]. The increase in CD38 expression on Kupffer cells was paralleled 

by increased senescent cell marker, p21CIP1, and increased signature of pro-inflammatory 

M1-like cells. Cellular senescence is likely to participate in some areas of age-related 

liver pathology, as liver fat accumulation may be accelerated by the increase in senescent 

p16INK4A+ LSEC and Kupffer cells [60] (Figure 3).

Mechanistically, the NLRP3 inflammasome and IL-1β drive the pathology of aged liver, as 

Nlrp3-deficiency rescued age-related glucose intolerance and high cholesterol [61]. In liver 

injury, aging enhances cGAS/STING-mediated NLRP3 activation by mitochondrial DNA 

in macrophages, worsening liver ischemia and reperfusion injury [62]. Similarly, endotoxin

induced liver inflammation is also slowly resolved during aging, resulting in chronic 

activation of NLRP3 and IL-1β production [63]. The increased IL-1β induces lipogenic 

machineries via PPARα and SREBP1c to drive lipid accumulation in aged hepatocytes, 

indicating a direct link between NLRP3 inflammasome and liver tissue lipid accumulation 

[63] (Figure 3).

Senolytic therapy as gerotherapeutics to target immunometabolism

With aging, two immunological features, inflammaging and immunosenescence are 

interconnected through cell-specific metabolic changes. There are many gerotherapeutics 

targeting the pillars of aging, aimed at improving healthspan and which have beneficial 

effects on AMPK-mTOR (e.g., metformin, rapamycin) and SIRTUIN signaling (e.g., 

resveratrol), autophagy or reducing inflammation [4]. (See Table 1 for a list of recent 

publications using gerotherapeutics). Based on the research revealing the interactions 

of these pillars of aging, gerotherapeutics that directly target a single pillar may also 

indirectly affect all pillars. Senolytics, agents that induce the death of senescent cells 

specifically are currently in clinical trials as a new type of gerotherapeutic for improving 

age-related diseases [4,11,64,65]. Both natural senolytics, such as fisetin, and FDA approved 

compounds, such as dasatinib in combination with quercetin, selectively eliminate senescent 

cells resulting in improved immune cell frequencies and reduced inflammation in addition to 

the improved health span benefits [4,64]. Senolytics may also remove p16Ink4a+ Kupffer 

cells, prevent DC activation and Th1/Th17 immunogenicity by limiting mtDNA from 

senescent cells, which in turn improve tissue homeostasis [60,65]. In the future, additional 

research is required to reveal the impact of senolytics on aged immune system and the 

affected immune cell types to improving health span during aging.
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Figure 1. Immunometabolism during inflammaging.
A. Sequence of events leading to inflammaging and metabolic dysfunction in tissues. 

B. Schematic to describe the triggers of inflammation, the responding tissue resident 

myeloid cells in AT and liver, the pathways that are activated within those myeloid 

cells or in neighboring cells, the interacting cell types and the resulting metabolic and 

tissue dysfunction. C. Pathways of energy or nutrient sensing and NLRP3 inflammasome 

activation. Alterations in energy sources, including (1) sensing of DAMPs to activate the 

NLRP3 inflammasome pathway or (2) changes in ATP/ADP and NAD+/NADH to drive 

activation of the sirtuin or AMPK pathway. Mitochondrial dysfunction that results in 
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elevated reactive oxygen species (ROS), mitochondrial (mt) DNA or altered NAD+/NADH 

levels are common themes that activate and alter these pathways in aging.
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Figure 2. Immunosenescence in aging.
Immunosenescence is a concept focused on the alterations in the aged immune system. Aged 

immune cells may be dysfunctional and inactive or hyper-inflammatory. Adaptive immunity 

shows increases in TNFα+ plasma cells producing autoantibodies and inflammatory, aged B 

cells (ABCs) that are unresponsive through their B cell receptor. Antigen-specific antibody 

production, one carbon metabolism and oxidative phosphorylation are decreased with age. 

There is an increased frequency of IL10+ regulatory T follicular helper cells that fail 

to interact with B cells effectively, ultimately results in reduced T cell priming. T cells 

also show impaired metabolism, reduced SIRT1, but increased senescent features. Innate 
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Immunity shows increases in myelopoiesis, elevated basal NLRP3 activation, decreased 

phagocytosis and reduced NAD metabolism. Other innate cells, including natural killer cells, 

eosinophils and neutrophils are altered in number and function.
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Figure 3. Aged tissue contains inflammatory and senescent cells contributing to metabolic 
dysfunction.
Schematic to highlight aged tissue. Liver and adipose tissue are two critical metabolic 

tissues that show alterations in immune cells, metabolic signaling and senescence. 

(Left) White visceral adipose tissue is the first to show elevated NLRP3 inflammasome 

activation, accumulating B and T cells in fat-associated lymphoid clusters and elevated 

levels of senescent cell burden. NLRP3-expressing macrophages are found in crown-like

structures (CLS), near sympathetic nerves (SNS), and fat-associated lymphoid structures 

(FALCs). CLS also have eosinophils (Eo.) in close contact, which support tissue resident 

macrophages. Dying adipocytes in CLS provide a source of damageassociated molecular 

patterns that activate macrophages and drive FALC accumulation. B cells in FALCs 

secrete antibodies, express the IL-1 receptor (IL-1R) and respond to NLRP3-induced 

IL1β by proliferation. Macrophages near SNS upregulate catecholamine degradation and 

inflammatory genes driving impairing of lipolysis. Senescent preadipocytes (Snc. Pre-AD) 

secrete SASP factors and interact with immune cells in ways that are not yet clear. (Right) 

B cells are increased in aged liver. Aged Kupffer cells (KC) upregulate the NADase, CD38, 

and senescence marker p21, but have lower levels of SIRT3, contributing to impaired 

NAD levels in liver. Mitochondrial DNA Cytokines from immune cells and SASP factors 

from senescent cells are increased in aged tissues. IL1β is a SASP factor secreted from 

KCs and Senescent liver sinusoidal endothelial cells (Snc. LSECs) which increases lipid 

accumulation via PPARα and SREBP1c in hepatocytes.
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Table 1.

Effects of gerotherapeutics on immune cells. IRI: Ischemia-reperfusion injury; S.pnm.: Streptococcus 

pneumoniae

Drug Model Effects Reference

Rapamycin • C57BL/6 mice
• 22–24m
• S. pnm.

• Conferred modest protection against mortality.
• Diminished lung damage rather than reduced bacterial burden.
• No effect on levels of SASPs in whole lung homogenates.

[66]

• C57BL/6 mice
• 16–18m
• West Nile virus

• Reduced thymic cellularity.
• Reduced the mortality, but not significant.

[67]

mTOR inhibitor (RAD001, 
BEZ235)

• Human subjects
• ≥ 65 years
• Influenza vaccine

• Induced higher antibody titers.
• Improved protection against influenza infection.

[68]

Dasatinib+Quercetin 
(D+Q)

• C57BL/6 mice
• 18m
• IRI

• Reduced systemic levels of CD8+ IFN-γ+, CD4+IFN-γ+, and 
CD4+IL-17+ cells after renal IRI.

[65]

• p16-Cre/R26-mTmG mice
• 10m

• Removed p16High F4/80+ cells in liver. [69]

Metformin • Human
PMBC
• Avg 62 years

• Ameliorated the Th17 profile by increasing autophagy and 
improving mitochondrial bioenergetics.

[70]
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