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A B S T R A C T   

Understanding the spatiotemporal patterns of the COVID-19 impact on industrial production could improve the 
estimation of the economic loss and sustainable work resumption policies in cities. In this study, assuming and 
checking a correlation between the land surface temperature (LST) and industrial production, we applied the 
BFAST algorithm and linear regression models on multi-temporal MODIS data to derive monthly time-series 
deviation of LST with a spatial resolution of 1 × 1 km, to quantificationally explore the fine-scale spatiotem-
poral patterns of the COVID-19 control measures impact on industrial production, within Wuhan city. The results 
demonstrate that (1) the trend of time-series LST could partly reflect the impact of the COVID-19 pandemic on 
industrial production, and the year-around industrial production was less than expectations, with a fall of 
14.30%; (2) the most serious COVID-19 impact on industrial production appeared in Mar. and Apr., then, after 
the lifting of lockdown, some regions (approximate 4.90%) firstly returned to expected levels in Jun, and almost 
all regions (98.49%) have completed the resumption of work and production before Nov.; (3) the southwest and 
south-central had more serious impact of the COVID-19 pandemic, approximate twice as much as that in the 
north and suburban, in Wuhan. The results and findings elaborated the spatiotemporal distribution and their 
changes during 2020 within Wuhan, which could provide a beneficial support for assessment of the COVID-19 
pandemic and implementation of resumption plans for sustainable development.   

1. Introduction 

At the end of 2019, the sudden outbreak of the novel coronavirus 
disease (COVID-19) has led to a global public health disaster with 
hundreds of thousands of fatalities (WHO, 2021a, 2021b). To delay or 
prevent the spread of the disease, many affected countries implemented 
substantial outbreak control measures including social distancing, sus-
pensions of public transport and industry, and widespread restrictions of 
movement (‘lockdowns’). As the first country facing the outbreak of 
COVID-19 pandemic, China enacted a lockdown from 23 January to 8 
April 2020 in Wuhan city where the first cases were reported, while 
other provinces and cities implemented strict policies to limit 
non-essential activities, transportation, and production since the Chi-
nese New Year (Wang et al., 2020). 

The serious COVID-19 pandemic and concomitant strict control 
measures lead to a significant and comprehensive impact on the public 

life, social and economic activities, and environments, across the world. 
For example, Tian et al. (2021) confirmed the continuous decreases in 
the domestic consumption of motor gasoline and CO2 emissions from 
urban vehicles in Canada during the lockdown of the COVID-19 
pandemic. World trade was expected to fall by between 13% and 32% 
in 2020 as the COVID-19 pandemic disrupts normal economic activity 
and life around the world (WTO, 2020). These in consequence affect 
industrial production (Shao et al., 2021), resulting in a temporary 
decrease of industrial productivity, and a fall of economic output. The 
June 2020 World Bank Global Economic Prospects reported that the 
COVID-19 pandemic would cause global economic output to contract by 
5.2% in 2020 (World Bank, 2020). 

To explore and assess these great changes and impact of the COVID- 
19 pandemic, many studies were carried out. These studies have mainly 
focused on planetary energy balance (Yi et al., 2020), air and environ-
ment quality (Lian et al., 2020; Rumpler et al., 2020; Liu et al., 2020c; 
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Chakraborty & Maity, 2020; Sathe et al., 2021; Wang & Li, 2021; Latif 
et al., 2021; Benchrif et al., 2021), global trade (Vidya & Prabheesh, 
2020; Guan et al., 2020), travel and tourism industry (Pulella & Sica, 
2021; Tian et al., 2021; Shakibaei et al., 2021; Liang et al., 2021), social 
and economic activity (Ehlert, 2021; Maliszewska et al., 2020), and 
public behaviors (Si et al., 2021). Multi-source data were used, including 
social economic statistical data (Sha et al., 2020; Parolin & Wimer, 
2020), travelling data (Kang et al., 2020b; Jiang et al., 2021a), mobile 
phone data (Willberg et al., 2021; Xiong et al., 2020; Jia et al., 2020; 
Jadidi et al., 2021), observation and sensor data (Pulella & Sica, 2021; 
Liu et al., 2020b; Chen et al., 2021; Vîrghileanu et al., 2020; Basu et al., 
2021), social media data (Peng et al., 2020; Li et al., 2020a; Zhu et al., 
2020; Beria & Lunkar, 2021), and bibliometric data (Benita, 2021; Das & 
Dutta, 2021; Kutela et al., 2021). The study scales ranged from globe 
(Chakraborty & Maity, 2020; Laborde et al., 2020; Gupta et al., 2021), to 
continent and county (Fanelli & Piazza, 2020; Shi et al., 2020; Liu et al., 
2020a; Kang et al., 2020b), to city and district (Tian et al., 2020; Ma 
et al., 2020; Liu et al., 2021). Various techniques and methods were 
employed, including statistic models (Chu et al., 2021; Desjardins et al., 
2020), geographic mapping and spatial analysis (Shariati et al., 2020; 
Kang et al., 2020a; Maiti et al., 2021; Guo et al., 2021), big data and 
artificial intelligence (Bragazzi et al., 2020; Zhou et al., 2020; Li et al., 
2020b; Ahmed et al., 2021; Ghahramani & Pilla, 2021; Chew et al., 
2021). 

The impact of the COVID-19 pandemic and its control measures are 
comprehensive for cities and society. In special, as the important social 
and economic activities, industrial production has decreased observably 
(Shao et al., 2021; Wang & Zhang, 2021) during the pandemic, which 

further impact the society operation and sustainable development. 
Through studying the spatiotemporal patterns and the long-term po-
tential effect of the COVID-19 impact on industrial production, we can 
gain some valuable experience to better understand the pandemic and 
control measures, forecast the economic loss, which can provide sus-
tainable evidence to guide further management and resumption. 
Considering the industrial process of input-production-output (and 
emission), population migration and urban traffic (Li et al., 2021; Xu 
et al., 2020), logistics (Notteboom et al., 2021), energy consumption 
(Jiang et al., 2021b; Wang & Zhang, 2021), night-time light imagery 
(Shao et al., 2021), and air contaminant (Ding et al., 2020; He et al., 
2021) could be taken as indicators to partly explore the COVID-19 
impact on industrial production. 

Although these previous studies have greatly promoted the under-
standing of the COVID-19 impact on industrial production, there are a 
number of limitations to these approaches. (1) Available studies focused 
mainly on large-scale spatial analysis, such as the global emission of NOx 
and the urban public behaviors. There were a few studies concerning 
fine-scale spatial distribution and temporal trend analysis of the COVID- 
19 impact within cities. (2) The commonly used social and economic 
statistical data (such as social-media data and power consumption) 
within cities, are district-oriented, making it hard to locate the derived 
results into geographical grids. (3) Only simple multi-temporal 
contrastive analysis among before, during and after the lockdown was 
conducted, and there was a lock of comprehensive consideration on the 
periodic and tend components in time-series data. 

From the perspective of Earth observation, satellite land surface 
temperature (LST) is the radiative skin temperature of the land, which 

Fig. 1. Study area and POIs of high energy-consuming companies in Wuhan, China.  
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measures the emission of longwave thermal radiance from the land 
surface. LST is sensitive to changing surface conditions, including 
terrain, land cover, and human activities. Particularly, anthropogenic 
heat release can be the main cause of higher LST in urban areas 
compared to surrounding regions (known as urban heat island effect) 
(Phelan et al., 2015; Mirzaei & Haghighat, 2010). Previous studies found 
that the industrial areas usually experienced the highest LST in urban 
areas, due to heat and emission from the industrial production (espe-
cially the secondary industry and high-consuming industry) (Portela 
et al., 2020; Firozjaei et al., 2020; Huang & Wang, 2019). Moreover, the 
COVID-19 control measures disrupt and decrease the normal industrial 
activity (Shao et al., 2021), presenting the significant decrease in the 
industrial heat emission, as well as the mean LST in urban areas (Nanda 
et al., 2021; Parida et al., 2021). And further study also highlighted that 
the mean LST in industrial areas witnessed greater reduction during the 
COVID-19 pandemic in comparison to the average (Ali et al., 2021; Pal 
et al., 2021). 

In this study, the LST derived from Earth observation data would be 
employed to explore the COVID-19 control measures impact on indus-
trial production within Wuhan city. Specially, we applied time-series 
algorithms and linear regression models on four-year time-series 
MODIS LST data with a resolution of 1 × 1 km, to present the spatio-
temporal distribution and their changes of industrial production during 
2020. The contributions of this study include: (1) this is the first attempt 
to use LST to quantificationally measure the COVID-19 impact on in-
dustrial production, to our best knowledge, (2) Earth observation data 
with a resolution of 1 × 1 km was employed to capture the fine-scale 
spatiotemporal pattern within cities, (3) the trend component was 
decomposed from the time-series LST data, to calculate the LST devia-
tion, for quantifying the change of industrial production. 

The remainder of the paper is structured as follows. Section 2 pre-
sented the study area and experimental materials. In Section 3, we 
detailed our methods to present the spatiotemporal distribution of the 
LST deviation and the decrease of industrial production. Then, experi-
ments were carried out and their spatiotemporal pattern were discussed 
in Section 4. Section 5 concluded this paper with several major 
conclusions. 

2. Study area and materials 

2.1. Study area 

Wuhan is the capital of Hubei province, which is one of the most 
economically developed regions in China. It is located in the east of 
Jianghan Plain and the middle reaches of the Yangtze River. The 
Yangtze River and its largest tributary, the Han River, meet within 
Wuhan, forming the three towns (Wuchang, Hankou, Hanyang) across 
rivers. Wuhan has 13 administrative districts. And 7 districts (including 
Jiangan, Jianghan, Qiaokou, Hanyang, Wuchang, Qingshan and Hon-
gshan) form the main urban area, where most of the industry is 
concentrated, as presented in Fig. 1. 

Wuhan is a large industrial city with a relatively high proportion of 
heavy industry, which consume a great deal of energy, and release a 

large amount of heat (Gao et al., 2020). With the first confirmed of the 
COVID-19 pandemic and the longest lockdown, Wuhan was seriously 
affected. It was confirmed a fall by 4.70% of gross domestic product 
(GDP) and a fall by 7.30% of GDP in the secondary industry in Wuhan, 
due to the COVID-19 pandemic in 2020. Thus, it is important to study 
the spatiotemporal patterns of the COVID-19 impact on industrial pro-
duction, which would support the plan for work resumptions. 

2.2. Materials 

MODIS LST production from 2017 to 2020, POIs of high energy- 
consuming companies, and annual social-economy statistical data 
were employed in this study to reveal the spatiotemporal patterns of the 
COVID-19 control measures impact on industrial production. 

2.2.1. Multi-temporal MODIS LST data 
The MODIS instruments capture data in 36 spectral bands ranging in 

wavelength from 0.405 to 14.385 µm and at three spatial resolutions 
(250 m, 500 m and 1 km). It views the entire surface of the Earth every 
one to two days. The many data products derived from MODIS obser-
vations contribute to a range of land applications including wildfire 
monitoring, temperature and emissivity changes, land surface change, 
vegetation and ecosystem dynamics, natural disasters, and agriculture 
studies. 

In this study, the MOD11A2 Version 6 product with tile identifier of 
h27v05 (covering the study area) from 2017 to 2020 was obtained from 
MODIS Web (https://modis.gsfc.nasa.gov/) (as presented in Table 1). It 
provides an average 8-day LST (including both daytime and nighttime 
LST) in Kelvin (with a scale factor of 0.02) with a 1 km spatial resolution, 
for pixel-wise grid regions. We refer readers to MODIS Web for more 
details. 

2.2.2. POIs of high energy-consuming companies 
Heat discharged in the productive process (especially the high- 

consuming industry) would increase the surrounding LST, which 
makes the LST to be a potential Earth observation indicator of industrial 
production. Moreover, it is noted that there are other factors (such as 
terrain, water body and vegetation, and population density) for LST, in 
addition to the discharged heat. To highlight the impact on LST from 
industry production, as well as to weaken the diverse impacts from other 
factors, we further focused our study on the urban area with high- 
consuming industry. 

In this study, POIs of high energy-consuming companies were ob-
tained to further delineate the core study regions in the urban area 
within Wuhan (using method detailed in Section 3.1.2). Firstly, POIs of 
enterprises (including name, geographical location, and type) were 
gathered from the online APIs of Gaode Map (https://lbs.amap.com/a 
pi). Then, we further check their geographical locations and industry 
types using business databases (https://www.tianyancha.com/). Total 
4710 POIs of high energy-consuming companies were obtained, as 
presented in Fig. 1. These POIs would be further used to spatially limit 
the study area in experiments. 

2.2.3. Social-economy statistical data 
This study made an assumption that there was a correlation rela-

tionship between the LST and industrial production (detailed in Section 
3.3.1). To quantificationally measure the COVID-19 impact on industrial 
production and to verify their correlation, we introduced the annual 
GDP of the secondary industry of the whole Wuhan city and its districts 
(including Hannan, Dongxihu, Huangpi and Xinzhou), as well as the 
energy consumption of industrial enterprises above designated size, 
from Wuhan municipal statistics bureau (http://tjj.wuhan.gov.cn/). 

3. Methodology 

In this study, using time-series MODIS data, the fine-scale 

Table 1 
Details of multi-temporal MODIS data.  

Year Date From Date To Time 
interval 

Number of 
images 

2017 MOD11A2. 
A2017001 

MOD11A2. 
A2017361 

8 days 46 

2018 MOD11A2. 
A2018001 

MOD11A2. 
A2018361 

8 days 46 

2019 MOD11A2. 
A2019001 

MOD11A2. 
A2019361 

8 days 46 

2020 MOD11A2. 
A2020001 

MOD11A2. 
A2020361 

8 days 46  

Y. Zhou et al.                                                                                                                                                                                                                                    
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spatiotemporal patterns of the COVID-19 control measures impact on 
industrial production were explored within Wuhan, using the flowchart 
presented in Fig. 2. The flowchart contained three main parts: 

• Data preprocessing. We firstly used the mean value composites al-
gorithm to composite multi-temporal 8-day MODIS data into fully- 
covered monthly time-series LST data. Then, on these LST data, the 
POIs of the secondary industry were overlaid, and spatially clustered 
into pixel girds to produce the region of interesting (ROI) with pixel- 
wise time-series LST.  

• Time-series analysis. A time-series decomposition algorithm was 
applied on the pixel-wise time-series LST to fetch their trend 
component. Then following the insight of the year-over-year change, 
we calculated the LST deviation between the observed LST and its 
predicted LST for every month, in ROI.  

• Spatiotemporal patterns. On the global scale of Wuhan, we firstly 
checked the rationality of using LST to explore the COVID-19 impact 
on industrial production, and further identified the monthly LST 
response to the COVID-19 pandemic. On the pixel scale, Spatiotem-
poral patterns and their distribution statistics of deviation in LST 
were explored. 

3.1. Data preprocessing 

3.1.1. Mean value composites 
The MOD11A2 product provides 8-day per-pixel average LST. 

However, appearances of clouds and their shadows on MODIS data 
result in missing data. Thus, it is necessary to construct full coverage of 
time-series LST in the study area. Following the similar procedure of 
maximum value composites presented in Holben (1986), the mean value 
composites algorithm was applied on multi-temporal MOD11A2 product 
in one month to produce monthly time-series LST data, using Eq. (1). 

mvc(i, j) =
1

N(i, j)
∑N(i,j)

t=1
v(i, j)t (1)  

where, N(i, j) is the number of effective observation (not covered by 
clouds and shadows) at geographical location (i, j), v(i, j)t is the pixel- 
wise LST value of time step t at location (i, j), mvc(i, j) is the final 
composited value at location (i, j). 

The mean value composites algorithm produced regular time-series 
LST data. One issue that might need more attention was aligning of 
time steps among years, since Chinese Lunar Calendar (especially there 
is a difference of more than one month, in the Gregorian calendar dates 
of the Chinese festivals in different year) plays an important role in 
guiding producing activity. To eliminate this effect on the following 

Fig. 2. Flowchart for the spatiotemporal patterns of the COVID-19 impact on industrial production, in Wuhan.  

Fig. 3. POIs clustering and the pixel-wise ROIs.  
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analysis as much as possible, we take date of the last MODIS product 
before the Chinese festival as the beginning of Feb. And composited 
MODIS data in 30 days to produce the mean-value composites LST data. 

3.1.2. POIs clustering in pixel grids 
Since POIs of the secondary industry have an irregular spatial dis-

tribution, it was hard (or unnecessary) to separate impact of single POI 
from its neighbors. Alternatively, POIs clustering in pixel grids was 
conducted to determine pixel-wise regions of POI impact, which were 
taken as regions of interest (ROI) in the following experiments and 
conclusions. Fig. 3 presented the procedure of POIs clustering and the 
pixel-wise ROIs. 

3.2. Time-series analysis 

3.2.1. Time-series decomposition 
Previous studies mainly employed multi-temporal contrastive anal-

ysis among before, during and after the lockdown, to reveal the impacts 
from the COVID-19 pandemic. While, both time-series LST and indus-
trial production demonstrate remarkable seasonal variation with one- 
year periods. So, we should first consider and remove the periodic 
component to retrieve the potential trend in time-series data, when 
exploring temporal changes in 2020. Detailly, time series usually 
contain a potential trend (overall rise or fall in the mean), seasonality (a 
recurring cycle), and the remaining random residual, which can be 
detected by time-series decomposition. Moreover, time-series decom-
position also provides a structured way for time-series forecasting 
problem, both generally in terms of modeling complexity and specif-
ically in terms of how to best capture each of these components in a 
given model. 

Many algorithms were developed for time-series decomposition, 
including seasonal trend loess (STL) algorithm (Jacquin et al., 2010), 
seasonal auto-regressive integrated moving average (Jiang et al., 2010), 
seasonal trend analysis, and the breaks for additive season and trend 
(BFAST) algorithm (Verbesselt et al., 2010; Watts & Laffan, 2014). 
Proposed exclusively for remote-sensing datasets, BFAST algorithm can 
identify long term trends and abrupt changes (breaks) in time series 
while explicitly accounting for the seasonal component. The algorithm 
iteratively fits piecewise linear trend and seasonal models to a time se-
ries. The model is of the general form Yt = Tt + St + et, where Yt is the 
observed data at time t, Tt is the trend component, St is the seasonal 
component, and et is the remainder component, that is, the residual 
variation. The intercept and slope of the trend component model are 
used to derive the magnitude and direction of breaks, as well as the 
number of breaks and their dates. For further details, please refer to 
(Verbesselt et al., 2010; Watts & Laffan, 2014). 

In this study, BFAST algorithm with default parameter settings was 
applied on the four-year (from 2017 to 2020) time-series LST data, to 
produce the LST trend component of and structural changes within the 
trend component. 

3.2.2. LST deviation from linear regression 
In the study period from 2017 to 2020, the COVID-19 pandemic 

broken out in January 2020, impacted the LST and industrial production 
of 2020. We assumed that the first three years (2017–2019) of LST and 
industrial production presented the normal change trend, while the LST 
in 2020 was abnormal. Further, the COVID-19 impact can be revealed by 
the difference between the abnormal and the predicted normal. Detailly, 
we firstly used the first three years of LST trend component derived from 
time-series decomposition, to predict the expected monthly LST in 2020, 
through linear regression models (LRM). Then, the LST deviation was 
defined as the difference between the observed and the predicted LST in 
2020, as presented in Eqs. (2)–(4). 

LST(i, j)t
pre = LRM

(
LST(i, j)t,2017

pre ,LST(i, j)t,2018
pre , LST(i, j)t,2019

pre

)
(2)  

dev(i, j)t
= LST(i, j)t

obs − LST(i, j)t
pre (3)  

dev(i, j)t
map = |dev(i, j)t

− 20| (4) 

Where LST(i, j)t
obs, LST(i, j)t

pre are the observed LST and predicted LST 
at location (i, j) and in the t month of 2020, respectively. Pixel-wise 
deviation less than zero indicated that the observed LST was lower 
than the predicted, and that these pixel-wise regions has yet to recover 
from the COVID-19 pandemic. Further, to highlight deviation in 
geographic maps, we converted the predicted dev(i, j)t (having a 
maximum value less than 20) into dev(i, j)t

map for mapping in Figs. 6-10, 
using Eq. (4). 

To further weaken the disturbance from the periodic component in 
one year on LST deviation, we only take the year-over-year LST in the 
same month to establish linear regression models. For example, 
observed LST of Feb. in 2017, 2018, and 2019 was used to predict LST of 
Feb. in 2020. 

In the following exploring, the deviation of LST was taken as in-
dicators for the COVID-19 impact on industrial production. 

3.3. Spatiotemporal patterns 

3.3.1. From COVID-19 pandemic to industrial production 
The relationships between the LST (a proxy of the COVID-19 impact 

in industrial areas) and industrial production is important for exploring 
the COVID-19 impacts on industrial production in Wuhan. Wuhan is a 
large industrial city with heavy industries. The yearbook demonstrated 
that the secondary industry consumed approximate 59.90% energy in 
2019. Industrial heat emission is one of the main heat sources in Wuhan 
(Huang & Wang, 2019). When operating normally, these secondary in-
dustry and heat emissions would increase the LST in industrial area 
(Huang & Wang, 2019; Gao et al., 2020). While, the COVID-19 
pandemic decreased the industrial activities, resulting in reduction of 
energy consumption, as well as industrial heat emissions and lower LST 
in industrial areas. 

By referring to previous studies (Sailor, 2011; Liao et al., 2017; Hu 
et al., 2020; Sun et al., 2018; He et al., 2021), we introduced and pro-
posed four assumptions of the relationship between industrial produc-
tion and LST in industrial areas: (1) industrial production is positively 
correlated with energy consumption; (Tang et al., 2018) (2) energy 
consumption is closely correlated with heat emissions; (Sun et al., 2018; 
He et al., 2020) (3) close correlation exists between industrial heat and 
secondary GDP; Sun et al., 2018; He et al., 2020) (4) the industrial heat 
emissions is also positively correlated with the LST in industrial areas 
(Huang & Wang, 2019; Gao et al., 2020). Based on these assumptions, 
we can employ the LST to represent industrial activities, and further 
detail the spatiotemporal changes of LST to explore the COVID-19 im-
pacts on industrial production in Wuhan. 

3.3.2. Hot spot analysis 
Hot spot analysis uses statistical analysis (calculating the Getis-Ord 

Gi* statistic) to define areas (features) with either high or low values 
cluster spatially. In hot spot analysis, to be a statistically significant hot 
spot, a feature (region) will have a high value and be surrounded by 
other features with high values as well. The local sum for a feature and 
its neighbors are compared proportionally to the sum of all features. 
When the local sum is very different from the expected local sum, and 
when that difference is too large to be the result of random chance, a 
statistically significant score results. 

In this study, we used the optimized hotspot analysis tool in ArcGIS 
to illustrate the spatial clustering distribution of high and low impact 
from the COVID-19 pandemic by calculating the GI bin index. The Gi_Bin 
field identifies statistically significant hot and cold spots, corrected for 
multiple testing and spatial dependencies using the false discovery rate 
correction method. Features with a Gi_Bin value of either +3 or − 3 were 

Y. Zhou et al.                                                                                                                                                                                                                                    
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statistically significant at the 99% confidence level (CI); +/− 2 bins 95% 
CI; +/− 1 bins 90% CI. Features with 0 were not statistically significant. 

3.3.3. Statistical analysis on LST 
Based on the results of LST deviations and their hot spots, we con-

ducted more statistical analysis, to further quantificationally reveal the 
spatiotemporal changes of the COVID-19 impact on industrial produc-
tion. Through calculating the largest minus deviation and accumulated 
deviation for every pixel, we can identify the month with the greatest 
monthly impact and pixel-wise regions with greatest annual impact from 
the COVID-19 pandemic. The statistic on the month of the last minus 
deviation, indicated the fading of the impact on industrial production. 

4. Experiments and discussion 

Global-scale trend and verification were firstly conducted to ensure 
the effectiveness of our study. Then fine-scale spatiotemporal distribu-
tions and their statistics of LST deviation were presented and discussed. 

4.1. Regional LST trend in COVID-19 pandemic 

4.1.1. LST in daytime or nighttime 
MOD11A2 Version 6 product provides daytime and nighttime LSTs. 

Before conducting spatiotemporal analysis on LSTs during the COVID-19 
pandemic, we should make clear which LST (or their combination) can 
reveal the changes of industrial production. 

We firstly compared the different factors of LSTs in daytime and 
nighttime, in theory. Compared with the nighttime LST, the daytime LST 
has exclusive solar radiation and more human activities (including 
public living and production), resulting in a higher LST in daytime. 
Then, let’s take a close look on the solar radiation and human activities. 
In the four years, we can assume that the annual cycle of solar radiation 
is stable, and the monthly solar radiation (we used the monthly LST in 
our experiments) has the same annual cycle. This stable annual cycle of 
the solar radiation would product a horizontal line of the trend com-
ponents in the time-series decomposition. Although there is great dif-
ference between human activities in daytime and nighttime (such as 
building industry), whose difference also shares stable annual cycles in 
local regions. This kind of difference would also generate a horizontal 
line of trend in the BFAST algorithm. This is, the difference between 
daytime and nighttime LSTs is nearly periodic, and there is little dif-
ference to use daytime or nighttime LST to explore the changes of in-
dustrial production. 

In experiments, we further checked the possible difference in using 
daytime or nighttime LSTs. Firstly, we extracted trend components of 
nighttime LST for every pixel in the ROIs. Then, correlation coefficients 
(including correlation of four-year LST and four-year correlation of 
annual LST) between daytime and nighttime time-series LSTs were 
calculated and analyzed, as presented in Fig. 4. There were approximate 
90.97% pixel-wise regions having highly corrected annual daytime and 
nighttime LSTs (with correlation coefficient greater than 0.7), and 
85.19% regions for the four-year LSTs. The results further showed that 
both daytime and nighttime LSTs can be used to explore the changes of 
industrial production. 

Let’s take a close look at the methodology, time-series decomposition 

Fig. 4. Correlation between LST in daytime and nighttime.  

Table 2 
Annual LST and secondary GDP and energy consumption and their prediction.  

Year 2017 2018 2019 2020 2020 
prediction 

Mean LST (K) 299.62 299.56 299.90 299.66 299.98 
2nd GDP (Billion) 5227.00 5861.00 6377.00 5557.00 6481 
Energy (10000 

ton) 
5233.69 5289.77 5354.99 5264.87 \  

Fig. 5. The trend component of the mean time-series LST data in Wuhan.  
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on time-series LST separate the periodic components (annual natural 
and human-induced changes), and keep only the trend components. The 
trend components could accurately present the changes of LST trend 
during the COVID-19 pandemic. This is exactly one contribution of our 
study, compared with previous studies on the COVID-19 impact. In the 
following spatiotemporal analysis, we only employed the time-series 
LST in daytime. 

4.1.2. LST trend vs. secondary GDP and energy consumption 
Taking the GDP of the secondary industry and energy consumption 

of industrial enterprises above designated size (energy consumption) as 
the measurable proxy of the industrial production, we verified the cor-
relation relationship between LST and industrial production, using the 
annual mean LST, and the secondary GDP and energy consumption in 
the four years (as presented in Table 2). 

For the whole Wuhan city (in the ROIs), the correlation coefficient 

Fig. 6. Spatiotemporal distribution of LST deviation of 2020, in Wuhan. The values in the blow text indicated the percentage of minus deviation and the monthly 
mean deviation. 
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between the mean LST and the secondary GDP, and between the mean 
LST and energy consumption, were 0.7386 and 0.7984, respectively. 
These greater correlations supported these assumptions detailed in 
section 3.3.1, that the LST can partly present the industrial production in 
Wuhan. Then, pixel grids in the ROIs were assigned to the administrative 
districts of Wuhan. In districts with available GDP data, correlation 
coefficients also were calculated, by the similar procedure. The results 
showed the correlation coefficients ranged from 0.6404 to 0.7077, also 
suggesting that LST can be employed to reveal the COVID-19 impact on 
industrial production. 

Furthermore, we tried to quantify the actual impact of the COVID-19 
pandemic on industrial production. Firstly, a linear regression model 
(from Year to Mean LST) derived from the first three years of annual 
mean LST, was used to predict the mean LST of 2020 of 299.98, as 
presented in the last column in Table 2. Then, we employed a linear 
regression model (from Mean LST to GDP) to predict the GDP in 2020 of 
6481. Finally, comparing the actual and the predicted, a fall of 14.30% 
in GDP of the secondary industry was calculated. 

4.1.3. COVID-19 pandemic in LST trend 
Feeding the monthly mean time-series LST from 2017 to 2020 in the 

ROIs, into the BFAST algorithm, we obtained its trend component and 
structural changes, as presented in Fig. 5. 

Although the trend component of time-series LST had a small vari-
ation range (from 297.28 to 302.52, 5.24 Kelvin), it presented obvious 
structural changes, with six segments. The control measures of COVID- 
19 pandemic (from Jan. 23 to Apr. 8 in 2020) were conducted in 
Seg5, and the continuing impact appeared in Seg6. 

Let’s take a close look at the Seg5 and Seg6. The Seg5 (from Oct. 
2019 to May 2020) demonstrated an obvious descent in LST, which was 
mainly dominated by the COVID-19 lockdown. In special, during the 
lockdown, the LST continued to decrease, and reached the lowest point 
in Apr. After the lifting of lockdown on Apr. 8, the LST began to rise in 
May. Then, from May to Dec. (Seg6), the LST presented a slight increase, 
along the work resumptions after lockdown. These findings qualitatively 
verified that the changes of time-series LST can partly reflect the impact 
of the COVID-19 pandemic on industrial production. 

4.2. Spatiotemporal distribution of LST deviation 

4.2.1. Spatiotemporal distribution of deviation 
Following the procedure detailed in Section 3.2, monthly pixel-wise 

LST deviations were calculated for the pixel-wise ROIs (and the 
following spatiotemporal exploring is also confirmed to the ROIs). The 
spatiotemporal distribution of LST deviation were presented in Fig. 6. 

As a whole, there was an obvious change in LST deviation, first 
lowering and then recovering in 2020. In details, the LST deviation 
firstly increased from Jan. to Mar. and Apr., indicating the increasing 
COVID-19 impact on industrial production. This was expected, since the 
lockdown continued into Apr. in Wuhan. Then, after the lifting of the 
lockdown, the LST deviation reduced sharply, and reached zero in Jul. 
and Aug. This suggested that the industrial production has returned back 
to their expected levels. Then, the LST deviation began to be positive in 
Aug., and increase sharply, from Sep. to Dec., which was a big rebound 
of industrial production, after the COVID-19 pandemic. Taking a close 
look at the recovery procedure, the LST recovery after the lifting of the 
lockdown in Apr. was remarkable faster than its attenuation process 
from Jan. to Apr. The LST deviation in May began to be greater than that 
in the beginning of the lockdown, due to the large demand unfulfilled 
during the lockdown in industrial production. 

From the perspective of the percentage of minus deviation (showed 
in the blow text of sub figures in Fig. 6), almost all regions have minus 
deviations (greater than 99.00%) before May, indicating that the 
COVID-19 pandemic affected the total industrial production in Wuhan. 
From Jun. to Sep., the percentages of minus deviation reduce sharply 
from 94.85% to 7.79%, presenting the fading of the COVID-19 impact. 
After Oct., industrial production in almost all regions (98.49%) has 
almost recovered to the expected. 

4.2.2. Hot spot of the LST deviation 
Hot spot analysis algorithm was applied on the spatial distribution of 

LST deviation in the pixel-wise ROIs to identify their hop spot regions 
and changes, as presented in Fig. 7. As a whole, the area of the hot spot 
regions presented a changing process of first growth and then dissipa-
tion. And the spatial location of hot spot has a development process of 
first from suburban to downtown, and then to suburban. 

More specifically, hot spot mainly distributed in small regions in the 
southwest and south of the ROIs, at the beginning of the COVID-19 
pandemic in Jan. In Feb., hot spot spread rapidly in the southwest and 
south, with a higher confidence. In Mar., hot spot further spread to the 
north, covering the center of the ROIs. In Apr. there was a little change in 
spatial area, but a large promotion in confidence, indicating more 
serious impact in hot spot regions than that in other area. In May, hot 
spot persistently appeared in the southwest, south, southeast, and south 
center, while the north party of center recovered to be the no-significant. 
In Jun. and Jul., the hot spot spread into more suburban in the east and 
south, but with a decreasing confidence. While, the cold spot always 
congregated in the suburbs from Jan. to Jul. In Aug., hot spot of LST 
deviation began to flinch from the center, and the cold spot began to 
gather in the north, indicating a relative quick and effective work 

Fig. 6. (continued). 
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Fig. 7. Hot spot regions and its changes of LST deviation of 2020, in Wuhan (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article). 
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resumption. In Sep., hot spot only remained in the small area in the 
southwest, south, and southeast, while cold spot continued to expand. 
From Oct. to Dec., hot spot continuously faded, while the cold spot 
continuously spread, covering the center of the ROIs. 

There were several key temporal turning points in the spatial dis-
tribution. In Mar. and Apr., hot spot concentrated in the center, along 
the banks of Yangtze river, indicating that the center had a more serious 
impact than the suburban. In Jun. and Jul., regions with more serious 
impact were distributed in the south of city. And after Oct., the impact of 
the COVID-19 pandemic transferred to the suburban. 

And several diverse spatial regions were indicated in the spatial 
distribution of hot spot. One was the Jiang’an District, labeled with a 
green circle in figure (c) in Fig. 7. In Mar. and Apr., the hot spot region 
covered this area, and changed to be the no-significant in May, which 
indicated that it was the first regions with work resumption. The second 
is in Hanyang District, labeled with a green box in figure (h) in Fig. 7. 
Before Aug., it was always in hot spot. Then it transferred to no- 
significant regions in Aug., and to cold spot in Sep. This presented a 
rapid work resumption. 

4.3. Distribution statistics of LST deviation 

4.3.1. The largest minus deviation 
Based on the spatiotemporal distribution of the deviations in LST, we 

further conducted the maximum statistical analysis for every pixel in the 
ROIs, and the results were presented in Fig. 8. 

In Fig. 8, figure (a) and (c) demonstrated the pixel-wise maximum 
LST deviation and its hot spot region, respectively. The more serious 
monthly impact of the COVID-19 pandemic was mainly distributed in 
the center and southwest of the ROIs. 

In the view of the month of maximum deviation in figure (b), both 
the northwest and suburban first faced the maximum deviation in Jan. 
and Feb., while, the maximum deviation of downtown (regions along 
the river bank, in special) appeared in Apr. to Jun. figure (d) presented 
the month distribution of pixel-wise maximum deviation. In Mar. and 
Apr., approximate 64.57% regions have their maximum deviation. It 
was expected, since as the lockdown continued, industrial production 
would be increasingly affected. In special, Mar. has a greater percentage 
of maximum deviation than Apr., with the possible reason is the lifting 
of lockdown in the early of Apr. Furthermore, there were few regions 
with the maximum deviation after Jun. 

Fig. 8. Pixel-wise maximum LST deviation and their corresponding date.  
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4.3.2. The month of the last minus deviation 
The last minus deviation indicated the end of the COVID-19 impact 

on LST and industrial production, and the LST and industrial production 
has achieved or surpassed the expectations. Based on the spatiotemporal 
distribution of the LST deviation, we further found the last minus de-
viation for every pixel in the ROIs, and the results were presented in 
Fig. 9. 

In Fig. 9, figure (a) demonstrated the spatial distribution of the last 
month of the minus deviation. In Jun. (approximate 4.90% in figure (b)) 
and Jul. (approximate 20.23%), the north region has first gotten rid of 
the impact of the COVID-19 pandemic, and returned to expected levels. 
There were most regions (approximate 42.09%) back to expectations in 
Aug., which are mainly located along the river bank. Before Nov., almost 
all the regions (98.49%) have completed the resumption of work and 
production. 

4.3.3. The accumulation of deviation 
The accumulation of LST deviation (including both plus and minus 

deviation in 2020) could indicate the annual impact of the COVID-19 
pandemic on industrial production. The results in the ROIs were pre-
sented in Fig. 10. 

As a whole, there were approximate 95.73% regions with an accu-
mulation of deviation less than zero, indicating that annual industrial 
production in almost all regions was less than expectations, in spite of 
the strong rebound after the lifting of the lockdown in Apr. 

In details of figure (b), regions with greater accumulation of devia-
tion were mainly located in the southwest and south-central of the ROIs, 
while the north and suburban have relatively small accumulated devi-
ation. We further calculated the mean accumulated LST deviation in hot 
spot regions and cold spot regions with greater confidence than 95%, 
respectively. The results showed that the hot spot regions have a mean 
accumulated LST deviation of 15.35, twice of that in cold spot regions 

Fig. 9. Spatiotemporal pattern of the last minus deviation.  

Fig. 10. spatiotemporal pattern of the accumulation of deviation.  
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with a mean deviation of 7.94, which partly suggested the degrees of the 
COVID-19 impact on industrial production of the two significant 
regions. 

5. Conclusion 

To study the impact of the COVID-19 pandemic on industrial pro-
duction (reflected by the land surface temperature), we derived monthly 
time-series LST deviation with a spatial resolution of 1 × 1 km in the 
ROIs of high-consuming industry within Wuhan city in 2020, by 
applying the BFAST algorithm and linear regression models to multi- 
temporal MODIS observation. Through exploring the monthly pixel- 
wise LST deviation between the observed and the predicted from the 
multi-year trend, we quantified the detailed spatiotemporal pattern of 
the COVID-19 impact on industrial production. From the results of the 
experiments and statistics in the ROIs, we mainly concluded: (1) the 
remote sensing data with time-series analysis technique can reveal the 
fine-scale spatiotemporal changes of the COVID-19 impact within urban 
areas. (2) Taking Wuhan city in 2020 as a whole, the trend of time-series 
LST could partly reveal the impact of the COVID-19 pandemic on in-
dustrial production. The year-around industrial production in Wuhan 
was less than expectations, with a fall of 14.30%. (3) From the temporal 
perspective, in Mar. and Apr., approximate 64.57% regions have their 
monthly maximum deviation and the most serious impact on industrial 
production. After the lifting of lockdown, some regions (approximate 
4.90%) firstly returned to expected levels in Jun, and there were most 
regions (approximate 42.09%) back to expectation in Aug., and almost 
all regions (98.49%) have completed the resumption of work and pro-
duction, before Nov. (4) From the spatial view, regions with more 
serious impact of the COVID-19 pandemic were mainly located in the 
southwest and south-central, while the north and suburban have rela-
tively small impact (a half of that in the southwest and south-central). 
The spatial location of hot spot regions developed from the southwest 
to the center, and shrink to the south, and fade away in the suburban. 

In short, there were great decrease in the whole industrial produc-
tion, and significant differences in spatiotemporal distribution of the 
industrial production loss and their resumption caused by the COVID-19 
pandemic within Wuhan City. Our study suggests that administrators 
and planner should rethink the impacts of control measures during 
pandemics, and guide measures for work resumption after pandemics, 
from a finer spatiotemporal perspective. It is not rational to immediately 
drop enforcement measures. But more elaborate monitoring and adap-
tive measures are needed for the next wave of possible pandemic (for 
example, how to regionally and timely conduct control measures and 
plans of work resumption), for the accurate estimation of the economic 
loss and the reducing of the COVID-19 impact on industrial production. 
Moreover, the selected LST in this study could partly represent the 
spatiotemporal changes of industrial production. Authors believe that 
further investigations with more spatiotemporal big data (Zhou et al., 
2020) are needed to promote these analytics for sustainable cities. 
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