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A B S T R A C T   

Currently, the novel COVID-19 coronavirus has been widely spread as a global pandemic. The COVID-19 
pandemic has a major influence on human life, healthcare systems, and the economy. There are a large num
ber of methods available for predicting the incidence of the virus. A complex and non-stationary problem such as 
the COVID-19 pandemic is characterized by high levels of uncertainty in its behavior during the pandemic time. 
The fuzzy logic, especially Type-2 Fuzzy Logic, is a robust and capable model to cope with high-order un
certainties associated with non-stationary time-dependent features. The main objective of the current study is to 
present a novel Deep Interval Type-2 Fuzzy LSTM (DIT2FLSTM) model for prediction of the COVID-19 incidence, 
including new cases, recovery cases, and mortality rate in both short and long time series. The proposed model 
was evaluated on real datasets produced by the world health organization (WHO) on top highly risked countries, 
including the USA, Brazil, Russia, India, Peru, Spain, Italy, Iran, Germany, and the U.K. The results confirm the 
superiority of the DIT2FLSTM model with an average area under the ROC curve (AUC) of 96% and a 95% 
confidence interval of [92–97] % in the short-term and long-term. The DIT2FLSTM was applied to a well-known 
standard benchmark, the Mackey-Glass time-series, to show the robustness and proficiency of the proposed 
model in uncertain and chaotic time series problems. The results were evaluated using a 10-fold cross-validation 
technique and statistically validated through the t-test method. The proposed DIT2FLSTM model is promising for 
the prediction of complex problems such as the COVID-19 pandemic and making strategic prevention decisions 
to save more lives.   

1. Introduction 

The COVID-19 pandemic was first reported in Wuhan in South China 
in early December 2019. The cause of the pandemic was later recognized 
as a novel coronavirus known as SAR-COV-2. As of November 2020, 
there have been 51,100,521 COVID-19 cases, with 1,324,714 deaths and 
32,951,517 recovered cases. The U.S. had the highest number of COVID- 
19 death cases with 247,000 deaths [1], see Table 1. During the last few 
months, several types of research have been conducted to realize the 
incidence of the disease and modelling uncertainties and prediction of 
the COVID-19 patterns during time series. The WHO is collecting and 
encouraging researchers to provide new methods and knowledge on 
COVID-19 and compiling it in a database to obtain a better strategy for 
handling this global issue. There are non-stationary time series features 
in Covid-19 pandemic patterns whose statistical attributes such as 
means and variances change over time. This study aims to model 

uncertainty sources associated with non-stationary time series features 
in real-world applications such as the COVID-19 pandemic. 

1.1. Literature review 

This section presents an overview of data analytics and computa
tional intelligence models applied to COVID-19 prediction. 

In [2], the author described a bioinformatics inference system for 
modeling the SARS-CoV-2, which focuses on the design of a synthetic 
vaccine and a preventative peptidomimetic antagonist against the SARS- 
CoV- 2 with computer-aided techniques. In [3], the authors designed a 
framework for predicting the incidence of the COVID-19 pandemic 
based on the data transportation in China and applied machine learning 
methods for prediction of epidemic spread of Coronavirus driven by 
Spring Festival Transportation in time-series forecasting. In [3–5], 
population-based methods were proposed to predict the candidate 
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targets. These methods used immune responses information through the 
sequence homology of the COVID-19 patterns. Also, the authors delib
erated what could still be done to manage the COVID-19 pandemic with 
the standard measures of separation and contact tracing in risky coun
tries. A computational spatial–temporal approach for modeling the 
distribution of SARS-CoV-2 in China was proposed in [6–7] with a focus 
on culinary spice bioactive as potential therapeutics against sars-cov-2: 
computational investigation and data-driven modeling analysis. In [8], 
the authors proposed a propagation analysis method for modeling the 
time series. Their research proposed the transmission characteristics of 
the epidemic at different stages designed based on a Gaussian distribu
tion theory to construct an innovative method of coronavirus trans
mission during a period. 

On the other hand, in [9,10], the authors describe various data 
mining and statistical techniques for predicting the COVID-19 pandemic 
in China with reasonable outcomes. They modeled an estimation of the 
daily number of new cases. Also, their proposed model emphasizes the 
control of the infection rates in short time-series. The authors in [11] 
proposed a deep LSTM approach to predict the SARS-CoV-2 new infec
tion rates. They showed the trends of different countries and compared 
them to Canadian data to forecast the upcoming infections. They used 
LSTM to model the ending era of the pandemic in Canada for long time- 
series, but the challenge of non-optimal parameters in their model 
affected on the results of their work. Also, a computational intelligence 
framework for COVID-19 incidence based on a deep neural network 
technique and a social mimic tuning method associated with fuzzy logic 
and stacking methods in [12]. They described the dynamics of epidemic 
incidence of Coronavirus disease during a daily horizon. Also, in [13], 
the authors model a real-time prediction framework for the COVID-19 
pandemic in a monthly format. These models were based on LSTM, 
convolutional neural network (CNN), and multi-layer perceptron neural 
nets using the dataset. Meanwhile, a novel SIR method has been pro
posed to model the pandemic incidence in Pakistan [14]. They projected 
the epidemic curve as realistic quarantine, social distancing, and prob
able medication scenarios in a short time-series. 

In [15,16], COVID-19 patients; however, they failed to use reason
able pandemic predictions and described a clinical SIR estimation 
method for modeling a time-series prediction of the COVID-19 new cases 
rates in a short time-series based on parameter approximation of time- 
dependent rates in China and Iran datasets. However, the main issue 
and limitation of their work is the lack of an appropriate dataset, which 
affects the reliability of their proposed model. In [17–20], the authors 
proposed a dynamic model of the incidence of the viruses based on Auto- 
regressive integrated moving average (ARIMA), Transmission Dynamics 
Susceptible Latent Mild Critical Removed (SLMCR), Seasonal-ARIMA 
and the SIR model to predict the incidence of the COVID-19 in short 
time series. 

The work presented in [21] predicted total cases in the most infected 
African countries with an ARIMA model in the short time-series. How
ever, their proposed model does not consider the associated uncertainty 
in the procedure of forecasting. In [22], a comprehensive mathematical 

hybrid SIR and ARIMA were applied to predict the new cases in a short- 
term time series of the COVID-19 pandemic but using a limited number 
of cases in the dataset. Also, an intelligent hybrid ensemble artificial 
neural network with fuzzy inference aggregation was proposed in [23] 
for daily prediction of the COVID-19 incidence. Overall, the reviewed 
literature in this section, such as [15,16,21], cannot model the high- 
ordered uncertainty for the COVID-19 time-series forecasting. On the 
other hand, most of the related works in the kinds of literature were 
focused on the short time-series horizon, which is not suitable for stra
tegic predictions. Also, most of the related works used a limited dataset 
in their model architecture which affects the reliability of their proposed 
approaches. 

1.2. Challenges of the current intelligent methods 

During the recent decade, applications of fuzzy logic systems, espe
cially type-2 fuzzy systems in problems with high-order uncertainty, 
have been emerged, especially for predictions problems with dynamic 
and non-stationary problems [24]. Various types of research [25–28] 
have been reported to model uncertainty using fuzzy set theory. Also, 
they have been applied to real-world applications through type-2 fuzzy 
logic systems, mostly in modeling uncertainty, control, and predictions 
[29–31]. Also, various neural network models such as recurrent neural 
networks (RNNs) have been applied to model and predict and model the 
time series data [11,12,32–34]. 

It has been proven that the RNNs, especially the LSTM network, have 
an excellent capability for solving complex problems. The LSTM model 
can learn the multi-layered inter-relationships between short and long 
time series [35–37]. The benefit of an LSTM cell compared to a regular 
recurrent unit is its cell memory [38]. The cell vector of an LSTM can 
capture the notion of forgetting part of its earlier stored memory and the 
part of its new information [39]. These capabilities can be used in the 
prediction of non-stationary problems [40]. In addition to the general 
benefits of using RNNs for time series prediction, the LSTM network can 
also automatically learn the temporal dependence from the data [41]. 
Hence, by definition, the LSTM has the capabilities of classical non- 
linear prediction methods to learn an arbitrary complex mapping from 
inputs to outputs. However, it cannot model the associated uncertainty 
in non-stationary features. 

1.3. Highlights and structure of the article  

• This study takes advantage of type-2 fuzzy logic to develop a new 
architecture for handling high-order uncertainty in a deep time- 
series learning model.  

• A novel deep interval type 2 fuzzy LSTM (DIT2FLSTM) model has 
been proposed to predict non-stationary problems such as the 
COVOID-19 pandemic.  

• The proposed DIT2FLSTM model is capable for both short- and long 
time-series forecasting. 

The rest of the article is ordered as follows: a theoretical research 
background has been presented in Section 2; the detailed structure and 
the mathematical model of the proposed DIT2FLSTM model have been 
denoted in Section 3; Section 4 presented the performance evaluation 
and comparison results of the proposed DIT2FLSTM based on ROC curve 
analysis and t-test statistical evaluation; Section 5 provides the discus
sion and the comparative results. The paper is concluded in Section 6. 

2. Research background 

This section presents a brief review of the LSTM network. Then, it 
follows by a review of interval type-2 fuzzy sets (IT2FS) concepts and the 
mathematic definitions. 

Table 1 
Comparison of the New Cases, Death and recovered cases based on the WHO top 
10 countries (7 Nov 2020).  

Country Population Cases Deaths Recovered 

USA 330,880,530 9.9 M 237 K 8.3 M 
Brazil 212,463,372 5.7 M 163 K 5 M 
Russia 145,930,700 1.75 M 31 K 1.3 M 
India 1,379,122,578 8.4 M 126 K 8.2 M 
UK 67,863,688 1.1 M 49 K 604 K 
Peru 32,941,004 1 M 33 K 838 K 
Spain 46,753,960 1.4 M 38 K 1.3 M 
Italy 60,467,085 900 K 41 K 323 K 
Iran 83,921,387 665 K 38 K 510 K 
Germany 83,767,456 655 K 12 K 407 K  
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2.1. A review of LSTM network 

The LSTMs have been developed to address classic RNNs’ limitations 
by enhancing the gradient vanishing in the network structure. The cell 
statect in LSTM network stores the long-term information as follows 
[42]: 

Input gate: 

it = σ(Wi1zt− 1 +Wi2yt +Wi3xt +Wi4s+ bi) (1) 

Output gate: 

ot = σ(Wo1zt− 1 +Wo2yt +Wo3xt +Wo4s+ bo) (2) 

Forget Gate: 

ft = σ
(
Wf 1zt− 1 +Wf 2yt +Wf 3xt +Wf 4s+ bf

)
(3)  

where zt− 1 is the hidden state of the LSTM at time t − 1and W are the 
weight matrices, t index is the time step, and σ is the sigmoid activation 
function. Fig. 1 shows the architecture of the LSTM cell. 

Also, the gates adjust the states and hidden cells of the LSTM using 
the following equations [42]: 

Hidden state: 

zt = ot ⊙ Tanh(ct) (4) 

Cell state: 

ct = ft ⊙ ct− 1 + it ⊙ tanh(Wc1zt− 1 + Wc2yt + Wc3xt + Wc4s + bc) (5)  

where ⊙ is the element-wise product, and tanh is the activation function. 

2.2. A review of interval Type-2 fuzzy Sets. 

An interval type-2 fuzzy set represented as A, is characterized 
through a type-2 MF μA(x,u) where x ∈ X and u ∈ Jx⫅[0,1], [43], 

A =
{(

(x, u), μA(x,u)

)
|∀x ∈ X,∀ ∈Jx⫅[0, 1]

}
(6)  

where 0 ≤ μA(x,u) ≤ 1, Xis the domain of fuzzy set and Jx is the domain of 

the secondary MF at x. A is as [46]: 

A =

∫

x∈X

∫

u∈Jx
μA(x, u)

x, uJx
⫅[0, 1] (7)  

where ∬ represents union overall admissible x and u [44]. 

A =

∫

x∈X

∫

u∈Jx
1

x, u
=

∫

x∈X

[∫

u∈Jx
1

u

]

x
(8)  

where xis the main variable, Jx, an interval in [0,1], is the primary MF of 
×, u is the secondary variable, and 

∫

u∈Jx
is the secondary MF at x. 

A FOU for a Gaussian primary MF with an uncertain standard devi
ation is shown in Fig. 2. The FOU is bounded by an upper MF (UMF) 
μA(x)and a lower MF (LMF) μ A(x), which are type-1 fuzzy sets; 
consequently. Then, the uncertainty of Ais addressed by the union of all 
of the primary memberships, called the footprint of uncertainty (FOU) of 

A , i.e., [FOU(A)], [46] as: 

FOU(A) =
⋃

x∈X
Jx (9) 

Also, the FOU in the IT2FLS provides more degree of freedom when 
designing a fuzzy system [48]. An interval type-2 fuzzy system (IT2FS) 
architecture contains four components. Fig. 3 shows the stricture and 
components of an IT2FLS. 

The TSK fuzzy rule type was considered in the proposed model, 
which has more precision than Mamdani rules [49]. In this work, the 
singleton fuzzifier was implemented [50,51]. For defuzzification in the 
last step, the Karnik-Mendel (K.M.) algorithm [52] was applied. The 
following section presents the novel DIT2FLSTM model. 

3. The proposed DIT2FLSTM model 

This section presents the detailed architecture of the novel 
DIT2FLSTM model. In 3.1.2, the components of the DIT2FLSTM model 
are described. Then, in 3.2, the mathematical model of the DIT2FLSTM 
is presented. Finally, the cell structure of the proposed DIT2FLSTM has 
been discussed in 3.2.1. 

3.1. The architecture of the DIT2FLSTM 

The structure of the proposed DIT2FLSTM and it’s layers have been 
illustrated in Fig. 4. As shown in this architecture, the DIT2FLSTM is 
fuzzified using the IT2FS. 

Input Layer: The first layer is the input layer, which handles the 
original data in the input of the deep model. The output of the input 
layer can feed the inputs of the next layer, known as the hidden deep 
layers. 

Encoder, Hidden, and Decoder layers: The main idea is mapping the 
entire input sequence to a vector and then using an encoder to generate 
the output sequence. In this layer, the encoder represents the entire 
input sequence in the hidden layer activities. The DIT2FLSTM model 
presents a novel cell structure in the encoder/decoder layer. The pro
posed structure can simply reform according to the dimension of the 

Fig. 1. The architecture of the LSTM cell [42].  

Fig. 2. FOU for Gaussian primary membership function [46].  

Fig. 3. The structure of the IT2FLS [47].  
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training time-series data set. The details are described in section 3.2.1 
and shown in Fig. 5. 

Output Layer: The final layer is the prediction layer which decides 
and provides the final prediction based on the input features received 
from the previously hidden layers. 

3.1.1. Components of the DIT2FLSTM model 
Time series prediction models specify future values of a target yit for 

a given entity Xi at time t. The next step, prediction, is as follows: 

ŷi,t+1 = Pf
(
yi,t− e:t, xi,t− e:t, t

)
(11)  

where ŷi,t+1is the predicted value in the next step, yi,t− e:t and xi,t− e:t are 
observations of the target and observed inputs, respectively, over a look- 
back window e, and Pf is the prediction function, and the final prediction 
is produced by Ht: 

Pf
(
yi,t− e:t, xi,e− k:t, t,

)
= gdec(Ht) (12)  

Ht = genc
(
yi,t− k:e, xi,t− e:t, t

)
(13)  

where genc and gdec denote the encoder and decoder functions, respec
tively. The different parts of the LSTM network in the proposed 
DIT2FLSTM architecture are given by: 

Definition 1. Let N be the number of memory units of the model. In 
time-stept, i.e., the current time, the network keeps a set of vectors by 
the following equations: 

it = σ(Wixxt +Wimmt− 1 +Wicct− 1 + bi) (14)  

ft = σ
(
Wfxxt +Wfmmt− 1 +Wfcct− 1 + bf

)
(15)  

ct = ft ⊙ ct− 1 + it ⊙ g(Wcxxt + Wcmmt− 1) (16)  

ot = σ(Woxxt +Wommt− 1 +Wocct + bo) (17)  

mt = ot ⊙ h(ct) (18)  

Pf = φ
(
Wymmt + by

)
(19)  

whereσ is the sigmoid function, W signifies the weight matrices, Wix is a 
matrix of fuzzy weights from the input cell to the output gate, b signifies 
the bias vector, and i, f ,o,and c are the input gates, the hidden (forget) 
gate, the output gate, and cell activation function, m is the cell output, 
and ⊙ is the element-wise product, respectively. However, the hidden 
unit in this architecture is represented in memory blocks. Each block 
contains one or a large number of memory cells. This procedure allows 
these cells to preserve information for a particular time in an uncertain 
time series and decide which information needs to be stored and when to 
use it. 

3.2. The mathematical model of the DIT2FLSTM 

The input variables of the DIT2FLSTM model can be defined as p, 
xpandxp+1. Moreover, the Takagi Sugeno Kang (TSK) interval type-2 
fuzzy inference is applied to describe the input structure of the model 
as follows: 

p

⎧
⎪⎪⎨

⎪⎪⎩

Rj1 j2
p : ifxp = F

j1
p and xt+1 = F

j2
p

then yp =

[

c j1 ,j2
p , cj1 ,j2

p

]

⎫
⎪⎪⎬

⎪⎪⎭

M

j1 ,j2=1

(20)  

where F
j1
p and F

j2
p are respectively the interval type-2 fuzzy sets of the 

inputs xp and xp + 1 in DIT2FLSTM, M is the number of applied fuzzy 
rules, c j1 ,j2

i andcj1 ,j2
i are the endpoints of a fuzzy rule Rj1 j2

p or the conse
quent. The product t-norm technique in Eq.20 is applied to compute the 
firing interval. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f l(x’) = μ x1
1

(
x’

1

)
× ⋯ × μ x’

p

(
x’

p

)

f l
(x’) = μxl

1

(
x’

1

)
× ⋯ × μx’

p

(
x’

p

) (21) 

The inference part of the DIT2FLSTM model can be entirely char
acterized by M fuzzy rules for inference process as: 

R
l
: ifx1isF

l⋯ and xpisFl
p Then yisG

l (22)  

where p is the inputsx1 ∈ X1,⋯, xp ∈ Xp And the output y ∈ Y. The 
following equation represents the membership function as: 

μR
l (x, y) = μ

A→Ĝ
l (x, y) (23)  

where ∩ signifies the product t-norm operation [43]. The output of each 

fuzzy rule is B
l
= A

◦

xR
l, with membership functions of μ

B
l (y)as: 

Fig. 4. The architecture of the DFT2LSTM model.  

Fig. 5. The proposed cell structure of DIT2FLSTM.  
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μ
B

l (y) =
⋃

x∈X

[
μAx

(x) ∩ μA→G(x, y)
]

(24)  

where ∘ represents the composition operation and ∪ signifies the 

maximum t-conorm operation [43], and F
l
(x

Ấ
) denotes the firing interval 

for the fuzzy rule, where x = x
Ấ 

and Fl is as: 

Fl(x’) ≡

[

f l(x’), f l
(x’)

]

(25) 

The firing output set B
l is produced through a fuzzy inference using 

ruleset and the aggregation of the consequent of as follows [44]: 

B
l
:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

FOU
(

B
l
)
=

[

μ B
’ (y|x’), μB

’ (y|x’)

]

μB
’ (y|x’) = f l(x’)*μ

G
’ (y)

μB
’ (y|x’) = f l

(x’)*μ
Ĝ
(y)

(26)  

where * represents the product t-norm operation. The final output B
l is 

obtained through the integration of all rule firing sets B
l on the output: 

B
l
:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

FOU
(

B
)
=

[

μ B(y|x
’), μB(y|x

’)

]

μ B(y|x
’) = ∨μ B

M (y|x’)

μB(y|x
’) = ∨μB

M (y|x’)

(27)  

where ∨ represents the maximum operation. Then the type reduced 

setYC(x
Ấ
) is obtained through computing the centroid C

B
Ấ of B: 

YC(x’) = CB(x
’) =

1
[
lB(x’), rB(x’)

] (28)  

where the two points lb(x) and rb(x) are computed through the K.M. 
algorithm in [45]. 

3.2.1. The DIT2FLSTM cell structure 
In this research, the sigmoid squashing function was used on all the 

gates for the DIT2FLSTM cell structure as described follows: 

σ =
1

1 + e− x (29) 

The input of the cell uses the following equation: 

netc(t) =
∑

Wφjy(t − 1) (30) 

The input to the cell passes a non-linear function fφ, as follows: 

fφ =
4

1 + e− x − 3 (31) 

In the following equation, the main MFs for each antecedent are 
defined through Gaussian distribution with uncertain income as follows: 

μi
k(M(k)) = exp

[

−
1
2

[
Mk − mi

k

σi
k

]2
]

(32)  

where mi
k ∈

⌊
mi

k1.m
i
k2
⌋

is the uncertain mean, k = 1,2 denotes the 
number of the antecedents, M denotes the number of the fuzzy rules, and 
σi

k is the standard deviation. C in nc represents the number of memory 
cells in the training phase as follows: 

nr × (3 × nc × no) (33)  

where nrrepresents the number of rules in the inference engine of the 
fuzzy module and nois the number of outputs in the LSTM new cell and 

ncrepresents the number of memory cells in the training phase. 
Furthermore, the values of the parameters by a ratio of nr

nc
, and when 

nr < nc, the system can increase the model memory, denoted by nc, 
which controls the number of parameters in the recurrent relations and 
the output layer in the proposed cell structure. The results are multiplied 
by the output of the gate unit. If the value is close to 0, then the output is 
not sent to the cell. The structure of the new cell in the DIT2FLSTM 
model is shown in Fig. 5. 

Also, the input enters the cell whenever the input gate is activated. 
The cell state is defined as follows: 

C(t) = itC(t− 1) + it(t)+ itg(netc(t) ) (34) 

Then in the output gate of the cell is as follows: 

netoutj (t) = Σmwoutjmym(t − 1)+
∑Cj

j=1
woutj C(t) (35) 

The activation function at the output gate is given by: 

L = fφ (netoutj(t)) (36)  

where the cell output is (yc) at the next step for prediction at time t as 
follows: 

yc(t) = netout(t) c(t) (37)  

4. Performance evaluation and experiments 

In this section, the DIT2FLSTM model was applied to an official 
dataset collected from the WHO official website. First, an ROC curve 
analysis of applying the DIT2FLSTM model to the official dataset is 
presented. Then a statistical evaluation of the DIT2FLSTM has been 
conducted to represent the model’s capability for both short and long 
time-series predictions. 

4.1. Applied data set on DIT2FLSTM model 

The dataset contains the latest public data on the COVID-19 
pandemic, including daily updates. This dataset includes detailed in
formation about the number of confirmed cases, confirmed death, and 
confirmed recovery cases during the COVID-19 pandemic (February 
2019 to November 2020). 

4.2. An ROC curve analysis of the DIT2FLSTM model 

In this section, an ROC curve analysis was conducted to have a 
reliable estimate of the performance of the DIT2FLSTM model, and the 
results were statistically verified as follows: 

Precision =
TP

(TP + FP)
× 100% (38)  

Recall =
TP

(TP + TN)
× 100% (39)  

F-Measure =
2 "Precision * Recall
Precision + Recall

(40)  

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(41)  

μi =
1

10
∑10

k=1
AUCj (42)  

where μi is the means of the accuracy of the ROC curve for the 10-fold 
cross-validation. A 10-fold cross-validation technique was applied, 
randomly partitions the original sample into k equal sized subsamples. A 
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single subsample is retained as the validation data for testing the model 
from the ten sub-samples, and the remaining nine are used as training 
data. This research was repeated ten times, while each subsample was 
used exactly once as validation test data. The obtained results of 10-fold 
cross-validation are reported in Table 2. Table 3 presents the accuracy 
and the network size of the proposed DIT2FLSTM model based on 
various datasets for different network sizes, including various numbers 
of cells and depths of layers. The results reveal that the DIT2FLSTM 
withs 20 layers and 3000 cells were the most robust configuration, 
which reported the best performance during the prediction process as 
depicted in Fig. 6. 

4.3. Statistical evaluation of the DIT2FLSTM 

In this section, the proposed DIT2FLSTM model was applied to both 
Mackey-Glass as a global benchmark and COVID-19 time series to show 
the proposed model’s capability for predicting short and long time se
ries. On the other hand, to perform a statistical evaluation of the per
formance of the proposed method, a t-test was conducted to validate the 
obtained results. 

4.3.1. DIT2FLSTM applied on Mackey-Glass 
This section presents the experimental results of applying the pro

posed DIT2FLSTM prediction method to the Mackey-Glass time series. 
The proposed DIT2FLSTM model was evaluated on a high-dimensional 
chaotic time-series system generated by the Mackey-Glass delay differ
ential equations as follows: 

dx(t)
dt

= − 0.1x(t)+
0.2x(t − tΔ)

1 + x(t − tΔ)
10 (43)  

where tΔ is the delay of the time series. Furthermore, a statistical test 
was conducted on applying the DIT2FLSTM to the Mackey-Glass time 
series through t-test. First, we calculate the mean of observation as fol
lows [53]: 

t =
X − tΔ

s
×

̅̅̅
n

√
(44)  

where, X is the sample mean, tΔ is the time delay mean, s is the sample 
size, and S is the standard deviation as follows [53]: 

S =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Xi − X

)2

n − 1

√
√
√
√
√

(45) 

Also, the RMSE was computed to assess the error of the DIT2FLSTM 
model in the Mackey-Glass time-series. The detailed calculation of RMSE 
is given by: 

Table 2 
10-fold cross-validation result of applying the DIT2FLSTM to the WHO top-10 incidence countries.  

Fold # USA Brazil Russia India UK Peru Spain Italy Iran Germany 

1  *91.88%  94.77%  97.67%  91.63%  90.65%  95.50%  95.67%  96.54%  94.76%  96.80% 
2  90.25%  93.05%  92.29%  95.09%  95.88%  94.79%  94.92%  95.16%  91.08%  94.65% 
3  90.12%  91.87%  95.98%  96.28%  93.67%  96.02%  91.84%  90.65%  90.87%  95.76% 
4  91.19%  93.07%  92.08%  90.65%  93.16%  91.85%  92.56%  90.45%  92.90%  93.60% 
5  92.89%  91.56%  95.03%  95.47%  92.03%  95.79%  93.73%  92.86%  94.55%  93.55% 
6  90.93%  92.93%  97.86%  96.93%  95.73%  94.49%  91.98%  90.76%  96.00%  94.09% 
7  93.69%  92.99%  93.78%  93.88%  94.59%  92.95%  94.92%  92.62%  94.67%  93.97% 
8  94.18%  93.05%  95.79%  94.61%  93.29%  91.95%  92.00%  93.52%  94.90%  93.00% 
9  93.59%  96.69%  94.87%  90.94%  92.68%  92.11%  93.15%  95.00%  92.45%  95.06% 
10  94.87%  95.81%  92.23%  92.04%  94.77%  93.57%  94.65%  93.91%  93.75%  90.51% 
Mean  92.35%  93.57%  94.75%  93.75%  93.64%  93.90%  93.54%  93.15%  93.59%  94.10%  

* The obtained accuracy is an average percentage of three cases, including new cases, recovery, and deaths in its fold number. 

Table 3 
Training accuracy with different Cells and Layers of the proposed DIT2FLSTM.  

Cell Depth Network Size USA Brazil Russia India UK Peru Spain Italy Iran Germany Accuracy 

10,000 8L Underfit 87 86 84 82 81 85 89 90 86 90  84.16% 
7000 10L Underfit 82 84 80 82 82 84 86 90 88 92  82.33% 
5000 15L Overfit 95 96 98 96 94 95 93 92 92 94  95.66% 
3000 20L Fine Tuned 96 98 97 96 98 93 94 93 94 95  96.33%  

Fig. 6. ROC curve analysis for the DIT2FLSTM model.  

Fig. 7. Statistical analysis of the DIT2FLSTM model for Mackey Glass time- 
series as a global benchmark. 
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
ŷ(k)

− y(k)
)2

√

(46)  

where ŷ(k) denotes the forecasted value, and y(k) is the actual value. 
Fig. 7 shows the statistical analysis of the DIT2FLSTM model on Mackey 
Glass time-series. 

Also, the obtained results showed that the minimum error of the 
DIT2FLSTM model was 0.00251, and the average error was 0.00301. 
Table 4 shows the quantitative comparison of DIT2FLSTM uncertainty in 
Mackey-Glass and COVID-19 datasets. 

4.3.2. Null hypothesis and left tailed t-test 
In this section, a two-sample t-test (left tailed) has been conducted. 

The null hypothesis was defined as [54,55]: H0 = μi > μjand, H1: μi < μj, 
where μi and μj are the means of the area under the ROC curve (AUC) of 
DIT2FLSTM and IT2FLS for ten different iterations of 10-fold cross- 
validation assessment. The obtained results of the t-test analysis are 
shown in Table 5, which demonstrates the advantage of the proposed 
DIT2FLSTM method for COVID-19 time-series prediction compared to 
the IT2FLS. The obtained results in Table 5 shows that the t-test failed to 
reject the null hypothesis. 

4.4. Comparison analysis of the results 

In this section, Table 6 presents a comparison of conventional 
methods and the proposed DIT2FLSTM model. According to the ob
tained results, the proposed DIT2FLSTM model has reported the highest 
performance compared to the counterpart models, including the LSTM, 
IT1FLS, IT2FLS, T1FLSTM, and T2ANFIS for the COVID-19 time-series 

prediction. 
Meanwhile, the time-series complexity was determined by the 

number of computational steps needed to run the algorithm of the 
DIT2FLSTM as a function for several data samples as the input size. Time 
measurement was computed by order of the models and consumption, 
including the hour, minute, and seconds (00:00:00) as shown in Table 7, 
where N is the number of instructions and M is the input size. 

Fig. 8 illustrates the cumulative representation of the COVID-19 
prediction. This figure shows the associated uncertainty in prediction 
of the new case, death, and recovery for COVID-19 time-series. 

The prediction results of the 10-top countries based on the proposed 
DIT2FLSTM model are shown in Fig. 9. Also, in the final part of this 
section, the DIT2FLSTM model has been compared to related works in 
Table 8. 

Table 4 
Comparison of DIT2FLSTM in Mackey-Glass and COVID-19.  

Samples Mackey Glass COVID-19  

RMSE STD Mean RMSE STD Mean 

100  1.2672  0.0351  0.127  0.1021  1.2672  0.097 
1000  0.9821  0.0267  0.086  0.0537  0.9821  0.076 
5000  0.5231  0.0171  0.089  0.0315  0.5231  0.071 
10,000  0.2176  0.0149  0.084  0.0208  0.2176  0.044  

Table 5 
Left-tailed T-test analysis of the DIT2FLSM and IT2FLS.  

Fold# DIT2FLSTM IT2FLS 

1  0.9071  0.7434 
2  0.9212  0.7291 
3  0.9252  0.6359 
4  0.8905  0.6301 
5  0.9421  0.7218 
6  0.9312  0.7925 
7  0.9651  0.7651 
8  0.9426  0.7271 
9  0.9667  0.8112 
10  0.9821  0.8214 
Mean  0.9673  0.8277  

Table 6 
Comparison of conventional methods and DIT2FLSTM model.  

Method AUC% CI% Recall Precision F-1 

IT1FLS  79.23 [77–81]  78.52%  79.67%  80.33% 
IT2FLS  82.07 [80–85]  81.23%  82.41%  82.77% 
LSTM  90.92 [87–92]  91.79%  92.24%  90.33% 
Fuzzy-LSTM  92.05 [88–93]  91.76%  92.27%  91.17% 
IT2ANFIS [30]  91.21 [89–93]  92.15%  91.15%  90.53% 
DIT2FLSTM  96.00 [92–97]  96.17%  95.83%  95.26%  

Table 7 
Complexity Comparison of DIT2FLSTM and counterparts.  

Model Order Time Consumption 

IT1FLS O(1) + O(N) 0:00:32 
IT2FLS O(N) + O(M*N) 0:00:48 
LSTM O(1) + O(M*N) 0:00:42 
T1-LSTM O(1) + O)log(M*N)( 0:01:13 
T2-ANFIS [30] (4*O(1) + O(N2)) 0:01:34 
DIT2FLSTM (6*O(1) + O(N*M) + O(N2) 0:01:43  

Fig. 8. Illustrations of associated uncertainty in different time steps.  

Fig. 9. DIT2FLSTM predictions of new cases (Blue), recovered (Green), and 
deaths (Orange) in top-10 countries. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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5. Discussion 

Experimental results revealed that the proposed DIT2FLSTM model 
had reported reliable results based on the real COVID-19 datasets ob
tained from the official WHO websites. Moreover, the ROC curve anal
ysis shows 96% (AUC) performance for the DIT2FLSTM model for 
COVID-19 prediction on the WHO dataset. The experimental results 
revealed that the performance of the proposed DIT2FLSTM model was 
better than its counterparts; i.e.,17% greater than T1FLS, 14% greater 
than IT2FLS, 6% greater than LSTM, 4% greater than T1FLSTM, and 5% 
better than the IT2ANFIS, in terms of the AUC. The proposed 
DIT2FLSTM model has an average AUC of 96% with a 95% confidence 
interval [92–97] % to predict the mortality rate of the COVID-19 
pandemic. Also, to show the proficiency of the proposed DIT2FLSTM, 
a Mackey-Glass-time series with a delay equation was applied. The 
minimum error of the DIT2FLSTM model was 0.00251, where the 
average error was 0.00301 in terms of the RMSE. 

This research presents the DIT2FLSTM model for predicting the 
COVID-19 time series as a real-world challenge. However, the capability 
of the proposed model is not limited to this specific application. 
Furthermore, the proposed DIT2FLSTM model has the potential to be 
applied to other biomedical applications, including biopharmaceutical 
and clinical studies in horizon of time series. 

6. Conclusion 

In this study, a novel DIT2FLSTM model was proposed to predict the 
incidence of new cases, recovery cases, and mortality rates of the 
COVID-19 pandemic. The proposed DIT2FLSTM model was applied to 
the WHO global dataset. The proposed DIT2FLSTM model can be 
applied to the uncertain and chaotic time series for short and long time 
series prediction. The obtained results show that the proposed 
DIT2FLSTM model is proficient at coping with the uncertainty to model 
phenomena such as the COVID-19 pandemic. Additionally, the model 
can easily get updated when new cases are reported because of its deep 
architecture. Further studies are suggested for tuning the DIT2FLSTM 
cell structure parameters and applying them to other real-world appli
cations associated with non-stationary uncertainties. The optimization 
techniques such as evolutionary algorithms can be applied to improve 
the performance of the DIT2FLSTM model. 
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Appendix A 

The notations, petameter, and the variables of the proposed 
DIT2FLSTM model are summarized and described in Table 9. 
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Ấ
)

Firing interval of fuzzy rule 

20 cj1 ,j2
i  

endpoints of the consequent of a rule in cell 

21 μ
R

l  The MF of the rule in a cell 
22 ∩ t-norm 
23 B

l  The output of the fuzzy rule 

24 ∘ composition operation 
25 ∪ t-conorm 
26 * Product t-norm 
27 ∨ Maximum operations 
28 YC  Type-redacted of cell output 
29 lb  Left boundary 
30 rb  Right boundary 
31 k Number of Antecedent 
32 netcj  The input of a cell 
33 yc  The output of a cell 
34 netinj  Net of an input gate 
35 netφj  Net of a forget gate 
36 netoutj  Net of an output gate 
37 C  Number of the memory cell 
38 ct  Cell state at time t 
39 m Mean 
40 N Number of memory units 
41 L activation function at output gate  

A. Safari et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.jbi.2021.103920
https://doi.org/10.1016/j.jbi.2021.103920
https://doi.org/10.1002/jmv.25885


Journal of Biomedical Informatics 123 (2021) 103920

9

[2] B. Robson, Computers and viral diseases. Preliminary bioinformatics studies on the 
design of a synthetic vaccine and a preventative peptidomimetic antagonist against 
the SARSCoV- 2 (2019-nCoV, COVID-19) coronavirus, Comput. Biol. Med. 119, 
103670 (2020). http://doi.org/10.1016/j.compbiomed.2020.103670. 

[3] C. Fan, L. Liu, W. Guo, A. Yang, C. Ye, M. Jilili, M. Ren, P. Xu, H. Long, Y. Wang, 
Prediction of Epidemic Spread of the 2019 Novel Coronavirus Driven by Spring 
Festival Transportation in China: A Population-Based Study, Int. J. Environ. Res. 
Public Health 17 (5) (2020), https://doi.org/10.3390/ijerph17051679. 

[4] Goh GK, Dunker AK, Foster JA, Uversky VN, Rigidity of the Outer Shell Predicted 
by a Protein Intrinsic Disorder Model Sheds Light on the COVID-19 (Wuhan-2019- 
nCoV) Infectivity. Biomolecules. 10(2) (2020). http://doi.org/10.3390/ 
biom10020331. 

[5] Grifoni, A, Sidney, J, Zhang, Y. Scheuermann, B. Sette, A, A Sequence Homology 
and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses 
to SARS-CoV-2. Cell. Host. Microbe, 27(4) (2020) 671-680. http://doi.org/ 
10.1016/j.chom.2020.03.002. 

[6] Jagadish Natesh, Priya Mondal, Dhanamjai Penta, Abdul Ajees Abdul Salam, Syed 
Musthapa Meeran, Culinary spice bioactives as potential therapeutics against 
SARS-CoV-2: Computational investigation, Comput. Biol. Med., 128 (2020). http:// 
doi.org/10.1016/j.compbiomed.2020.104102. 

[7] R. Huang, M. Liu, Y. Ding, Spatial-temporal distribution of COVID-19 in China and 
its prediction: A data-driven modeling analysis, J. Infect. Dev. Ctries. 14 (3) (2020) 
246–253, https://doi.org/10.3855/jidc.12585. 

[8] Lixiang Li, Zihang Yang, Zhongkai Dang, Cui Meng, Jingze Huang, Haotian Meng, 
Deyu Wang, Guanhua Chen, Jiaxuan Zhang, Haipeng Peng, Yiming Shao, 
Propagation analysis and prediction of the COVID-19, Infectious Disease 
Modelling, 5 (2020) 282-292. http://doi.org/10.1016/j.idm.2020.03.002. 

[9] Q. Li, W. Feng, Trend and forecasting of the COVID-19 outbreak in China, J. Infect. 
80 (2020) 469–496, https://doi.org/10.1016/j.jinf.2020.01.017. 

[10] Liu, Z, Magal, P. Seydi, O. Webb, G. Understanding Unreported Cases in the 
COVID-19 Epidemic Outbreak in Wuhan, China, and the Importance of Major 
Public Health Interventions. Biology, 9(3) (2020). http://doi.org/10.3390/ 
biology9030050. 

[11] V. Chimmula, L. Zhang, Time series forecasting of COVID-19 transmission in 
Canada using LSTM networks, Chaos, Solitons & Fractals 135 (2020), https://doi. 
org/10.1016/j.chaos.2020.109864. 
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