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Abstract 

Background:  Pathway enrichment analysis (PEA) is a well-established methodology 
for interpreting a list of genes and proteins of interest related to a condition under 
investigation. This paper aims to extend our previous work in which we introduced a 
preliminary comparative analysis of pathway enrichment analysis tools. We extended 
the earlier work by providing more case studies, comparing BiP enrichment perfor-
mance with other well-known PEA software tools.

Methods:  PEA uses pathway information to discover connections between a list of 
genes and proteins as well as biological mechanisms, helping researchers to overcome 
the problem of explaining biological entity lists of interest disconnected from the 
biological context.

Results:  We compared the results of BiP with some existing pathway enrichment 
analysis tools comprising Centrality-based Pathway Enrichment, pathDIP, and Signaling 
Pathway Impact Analysis, considering three cancer types (colorectal, endometrial, and 
thyroid), for a total of six datasets (that is, two datasets per cancer type) obtained from 
the The Cancer Genome Atlas and Gene Expression Omnibus databases. We measured 
the similarities between the overlap of the enrichment results obtained using each 
couple of cancer datasets related to the same cancer.

Conclusion:  As a result, BiP identified some well-known pathways related to the inves-
tigated cancer type, validated by the available literature. We also used the Jaccard and 
meet-min indices to evaluate the stability and the similarity between the enrichment 
results obtained from each couple of cancer datasets. The obtained results show that 
BiP provides more stable enrichment results than other tools.

Keywords:  Biological pathway, Statistical analysis, Pathway enrichment analysis, 
Pathway databases
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Background
Over the past decade, we have witnessed an increase in the production and availabil-
ity of omics data aided by the continuous development and refinement of Next Genera-
tion Sequencing (NGS), Genome-Wide Association Studies (GWAS), gene expressions, 
and SNP microarrays platforms, also known as High-Throughput (HT) methodologies. 
Their ability to produce a massive amount of data has spurred the development of sev-
eral pipelines for data analysis [1–4]. Several annotation software tools use Gene Ontol-
ogy (GO) to link HT data analysis results with the affected biological mechanisms [5, 
6]. Although these software tools can effectively analyze these vast amounts of available 
data, the produced results are still not connected to the biological mechanisms they may 
influence. Common diseases (for example, flu and headaches) and complex conditions 
(for example, cancer or diabetes) are due to several biological entities’ interactions rep-
resented through biological pathways.

Biological pathways are human representations of the existent biomolecules’ interac-
tions regulating cellular functions in healthy and diseased conditions and how cells can 
interact with the external environment. Biological pathways are networks where nodes 
represent biomolecules, and edges represent the interaction among them. The path-
way representation as a network has contributed to the development of several network 
alignment [7], and deep learning analysis [8] algorithms.

Biological pathways are fundamental in analyzing, contextualizing and interpret-
ing omics data. The main pathway categories are three: Signalling Pathways, Metabolic 
Pathways and Regulatory Pathways. Several pathway databases including Kyoto Ency-
clopedia of Gene and Genome (KEGG) [9], Metabolic Pathway Database (MetaCyc) 
[10], PantherDB [11], PathwayCommons [12], Pathway Interaction Databse (PID) [13], 
Reactome [14], SIGnaling Network Open Resource (SIGNOR) [15] and WikiPathways 
[16] are available online. These databases share different types of pathways. For exam-
ple, Reactome and KEGG store all three categories of pathways, while SIGNOR includes 
only signaling pathways and Metacyc showcases only metabolic pathways. Also, data-
bases that contain the same kinds of pathways (like KEGG and Reactome) show minimal 
overlap on the number of pathways and gene coverage as reported in [17].

Many molecular and cell biologists face a common question in their research: how to 
link pathways to a specific genes or proteins list? The availability of biological informa-
tion in a digital format enables the automatic elaboration of these pathway databases for 
different knowledge discovery tasks.

In particular, Pathway Enrichment Analysis (PEA) is a well-established approach to 
gain insight into the underlying biological mechanism of a differentially expressed list of 
genes and proteins of interest. PEA can use the information in pathway databases to elu-
cidate the link between the genes and proteins of interest and the biological mechanisms 
affected in the biological pathways. The three principal categories of PEA methods are: 
(1) Over Represented Analysis (ORA); (2) Gene Set Enrichment Analysis (GSEA); and 
(3) Topological Enrichment Analysis (TEA).

The first two categories of methods perform enrichment analysis using a list of genes, 
proteins, SNPs or mRNA as input. Moreover, GSEA methods include self-contained or 
competitive null-hypothesis approaches. Self-contained null hypothesis methods assume 
that no genes in the gene list are associated with the phenotype. Competitive null 



Page 3 of 35Agapito and Cannataro ﻿BMC Bioinformatics  2021, 22(Suppl 13):376	

hypothesis methods assume that genes in the gene list have a higher probability of being 
associated with the phenotype than genes outside the gene list. In contrast, the TEA 
methods need a genes and proteins list along with the network topology information.

PEA methods endeavor to help researchers decipher biological entities of interest dis-
connected from the biological context, expediting their findings’ validation. Analyzing 
lists of biological entities at the functional pathway-level can provide more explanatory 
power than analyzing a list of independent entities.

Several PEA software tools are available, among those: BioPAX-Parser (BiP) [18], 
Centrality-based Pathway Enrichment (CePa) [19], pathDIP [17] and Signaling Pathway 
Impact Analysis (SPIA) [20]. BiP and pathDIP belong to the ORA category. BiP employs 
Hypergeometric function [21] to assess the significance of genes of interest enriched in 
a specific pathway. Conversely, pathDIP uses a customized version of Fisher’s Test [22]. 
CePa and SPIA belong to the TEA category. CePa performs TEA by using network cen-
trality measures (node input degree, node output degree, betweenness, input reach-
ability and output reachability) [23]. In contrast, SPIA computes TEA using network 
measures [24] evaluating a node’s neighbor.

BiP and pathDIP can perform pathways enrichment analysis using a list of genes and 
proteins of interest without providing any additional information or data manipulation 
in the phenomena under investigation. In contrast, CePa and SPIA require users to pro-
vide additional network information, such as the interactions among the genes and pro-
teins of interest and other network topology information, to perform TEA.

CePa, pathDIP, and SPIA allow performing PEA only using the previously collected 
and integrated pathway information. Conversely, BiP can perform PEA employing users’ 
downloaded pathways information from KEGG, Reactome or any other pathway data-
base compliant with the Biological Pathway Exchange (BioPAX) format [25]. In this way, 
BiP can always provide more accurate and update enrichment results, avoiding losing 
critical biological features. Authors in [26] and [27] have remarkably highlighted the 
importance of using updated pathway information along with accurate lists of genes or 
proteins in performing pathway enrichment analysis. They proved that outdated path-
way information negatively influenced the PEA results.

We evaluate the BiP’s pathway enrichment effectiveness using three TCGA cancer 
data sets and three GEO gene expression data sets, related respectively with colorectal 
(CC), endometrial (EC), and thyroid (TC) cancer. We used the six gene lists along with 
KEGG and Reactome pathway databases to evaluate the enrichment results. This way, it 
is possible to assess if the enrichment results obtained from each tool are similar, when 
varying the input gene list and keeping the database unchanged.

Although some works, such as [28, 29], use GO in PEA, as reported in Khatri et al. 
[30], the definition of pathway in certain cases may be misleading or incorrect. For this 
reason, we did not use GO to perform the experiments.

For each couple of cancer enrichment results we computed the pathway overlap (inter-
section) and the union between the two enrichments, selecting the first top 10 pathways 
(p value ≤ 0.005 ) to validate by using published literature. We chose as statistical sig-
nificance threshold the p value< 0.005 , allowing us to improve the reproducibility of sci-
entific studies as recommended in [31]. We used the Jaccard and meet-min similarities 
indices to evaluate the tools’ stability (for example, in terms of number and similarity of 
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the enrichment pathways obtained by using different datasets related to the same cancer 
type). The obtained results proved that BiP is more solid in terms of number and simi-
larity of enriched pathways than other existing tools. Also, BiP can identify some well-
known cancer pathways omitted by other compared software frameworks.

This paper aims to extend our previous work [32] in which we introduced a prelimi-
nary comparative analysis of pathway enrichment analysis tools. In particular, we per-
formed more case studies and compared BiP enrichment performance with other 
well-known PEA software tools.

Methods
Related works

PEA software frameworks are available as stand-alone software, web-based applications 
or program libraries. The first two categories are usually more convenient to use, as they 
do not require analytical skills or programming abilities. Program libraries are coded in 
C, Java, R and Python languages, allowing them to automate the process through script-
ing analysis pipelines. User skills and the cost-benefit ratio of time invested in orchestrat-
ing everything necessary to run the analysis may influence selecting software platforms 
and program libraries. In the following we present a description of some well-known 
PEA software frameworks.

•	 BiP [18] can perform PEA using pathways encoded in Biological Pathway Exchange 
(BioPAX) [25] and KGML (KEGG Markup Language) formats. BioPAX is a meta-
language defined in OWL (Web Ontology Language) and represented in the RDF/
XML (Resource Description Framework / eXtensible Meta Language) format and is 
the language of choice to store and exchange pathway data. KEGG Markup Language 
(KGML) is based on an XML-like markup language, providing computational anal-
ysis and modeling of gene/protein networks and chemical networks in the KEGG 
database. BiP has been extended to be compatible with the KGML format used to 
represent pathways in the KEGG database. BiP is developed in Java programming 
language, making it platform-independent. PEA in BiP is computed using a list of 
proteins/genes of interest as input. The genes and proteins enrichment is calculated 
using a customized version of Hypergeometric Test, along with multiple statistical 
corrector such as False Discovery Rate (FDR) and Bonferroni. BiP can enrich lists of 
genes and proteins using KEGG, Reactome and other available pathway databases 
compliant with the BioPAX format. BiP can be freely downloaded as a stand-alone 
application at [33].

•	 CePa [19] performs PEA based on topological information in addition to gene-set 
information. Pathways are collected and integrated from the Pathway Interaction 
Database (PID) database. PID includes the KEGG database. CePa parses the XML 
pathway files to obtain pathway data in order to perform the enrichment. To per-
form PEA, CePa needs a differentially expressed gene list and a background gene 
list. Several methods are available to produce the differential genes or proteins list, 
for example, the t-test. The background gene list is the list of genes of a specific 
microarray platform. The differential gene list and the background gene list must 
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use the same identifiers to represent the gene symbol or protein identifier. CePa is 
an R application freely available at [34].

•	 pathDIP [17] is an integrated database of pathways in human, model organisms 
and domesticated animals, comprising core pathways from major curated pathway 
databases and gene pathway associations predicted using physical protein interac-
tions. pathDIP helps researchers to perform ORA on structured ontology annota-
tions, pathway databases, or set of biological entities. pathDIP is a web-application 
compatible with all available operating systems, it is available through an Appli-
cation Program Interface (API) and it is developed in Java, R and Python. path-
DIP computes PEA using the Fisher’s Exact Test, providing correction for multiple 
hypothesis testing through two different methods: Bonferroni and FDR. pathDIP 
integrates pathway data from 22 databases, including KEGG and Reactome. path-
DIP is publicly available at [35].

•	 Signaling Pathway Impact Analysis (SPIA) [20] combines the evidence obtained 
from the classical enrichment analysis with the measure of the perturbation on 
a given pathway under a given condition. It allows to calculate a global pathway 
significance p value, combining the enrichment and perturbation p values. SPIA 
needs a set of differentially expressed genes and their fold changes and pathways 
topology to compute PEA from the condition under investigation. Differentially 
expressed genes need to be in Entrez gene IDs format. SPIA performs PEA by 
using pathway information from the KEGG database. SPIA is an R program freely 
available at [36].

The main differences among the surveyed PEA frameworks are summarised as fol-
lows. CePa and SPIA are all available as R packages, meaning the user needs some 
basic programming knowledge. Conversely, BiP efficiently performs PEA through a 
simple graphical user interface (GUI), that allows loading only a list of genes or pro-
teins, selecting which pathway database use, setting the p value significance threshold 
and choosing the destination folder where to store the results. The only requirement 
to use BiP is to have previously installed Java, no additional libraries are necessary. 
pathDIP is a web application that allows performing enrichment analysis through a 
graphical interface just by loading a list of protein or gene identifiers and returning 
the pathways in which those identifiers are involved.

All the PEA software tools are different in terms of pathway enrichment calculation. 
BiP employs the Hypergeometric Test, along with FDR and Bonferroni correctors to 
calculate pathway enrichment. CePa computes pathway enrichment using topologi-
cal information (that are, node input degree, node output degree, betweenness, input 
reachability and output reachability) and gene-set information. pathDip computes 
pathway enrichment using the Fisher’s Exact Test, along with Bonferroni and FDR cor-
rectors. Finally, SPIA calculates pathway enrichment combining the classical enrich-
ment analysis with the measure of the perturbation on a given pathway under a given 
condition, evaluating a node’s neighbourhood.

BiP and pathDIP can perform pathways enrichment analysis using a list of genes 
and proteins of interest without providing any additional information or data manip-
ulation in the phenomena under investigation. In contrast, CePa and SPIA require 
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users to provide additional network information, such as the interactions among the 
genes and proteins of interest and other network topology information, to perform 
TEA.

Finally, BiP is the only enrichment analysis tool that allows users to select the pathway 
database that has to be used to enrich the condition under investigation.

All the PEA software tools and the related algorithms are well established in provid-
ing biological context in -omics studies, particularly to analyze the biological molecules, 
where summarizing the overall biology of a particular disease by pathways enhances 
interpretability. BiP, CePa, pathDIP and SPIA are some of the available gold standards 
tools in pathway enrichment analysis.

Most PEA tools evaluate enrichments in a very similar manner; we chose CePa, path-
Dip and SPIA as representative PEA tools due to their popularity and ability to test a 
breadth of data sources similar to that of BiP.

The Genomic Regions Enrichment of Annotations Tool (GREAT) [37] is a web-appli-
cation for ontology enrichments tailored for regions bounding. GREAT requires a set of 
input genomic regions and an ontology of gene annotations as input, whereas the com-
pared tools require as input a list of proteins or genes and one or more pathway data-
bases. Also, ontology functional enrichment is different from PEA, how stated in [30]. 
Thus, we have chosen do not to compare GREAT with BiP.

g:Profiler [38] primary purpose is to perform functional enrichment analysis on input 
genes lists. Only in the last release of g:Profiler, pathway enrichment has been intro-
duced, and it is limited only to Reactome and WikiPathways pathway databases. KEGG, 
due to licensing reasons, can be used only for terms association and not for enrichment. 
Conversely, from g:Profiler, all the compared PEA tools use KEGG to perform enrich-
ment analysis, a not negligible difference that would make the comparison between the 
results obtained using different pathway databases unfair.

Datasets

We downloaded three couples of cancer datasets: colorectal cancer (COAD [39] and 
GSE41011 [40]), thyroid cancer (THCA [41] and GSE65144 [42]), and endometrial can-
cer (UCEC [43], and GSE63678 [44]) from the TCGA​ and GEO databases respectively, to 
test BiP.

The Gene Expression Omnibus (GEO) database is a public functional genomics data-
base including high-throughput gene expression, chips, and microarrays data.

The Cancer Genome Atlas (TCGA) makes publicly available molecular and clinical 
information for more than 33 different types of human cancers, including exome (vari-
ant analysis), single nucleotide polymorphism (SNP), DNA methylation, transcriptome 
(mRNA), microRNA (miRNA) and proteome. TCGA data are accessible through the 
NCI Genomic Data Commons (GDC) data portal, GDC Legacy Archive, and the Broad 
Institute’s GDAC Firehose.

The COAD dataset contains 750 cases and 21,  224 probes, THCA includes 681 
cases and 13, 564 probes, UCEC dataset comprises 560 cases and 22, 162 probes. The 
GSE41011 dataset contains 30,  968 probes and 19 cases, GSE65144 includes 12 cases 
and 54, 675 probes and, finally, GSE63678 comprises 7 cases and 22, 277 probes. Here 
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cases indicate the positive samples, while probes indicate the dimension of the microar-
ray (that is, the number of rows).

Table  1 summarises the information about the six dowloaded datasets.
We downloaded biological pathways database in BioPAX format for each available 

organism from Reactome [45], but we used Homo-sapiens to perform pathway enrich-
ment analysis. Furthermore, we downloaded from KEGG [46] database all the Homo-
sapiens pathways.

Reactome is an open-source freely available curated relational database of signaling 
and metabolic molecules and their relations organized into biological pathways and 
processes. Reactome uses pathway steps that indicate any event in biology that changes 
the state of a biological molecule. Molecules such as nucleic acids, proteins, complexes, 
and small molecules participating in reactions form a network of biological interactions 
called pathways.

KEGG is a database that integrates genomic, chemical and systemic functional infor-
mation to analyze gene functions. KEGG contains various types of data classified as sys-
tems information, genomic information, chemical information and health information. 
The central KEGG element is the molecular network, representing systemic functions of 
the cell and the organism.

Mutated genes (MGenes) were downloaded from cBioPortal [47, 48] for the TCGA 
datasets (mutated + (Copy-number alterations) CNAs), while deregulated genes were 
obtained using the GEO2R web portal [49] for GEO datasets.

The cBioPortal for Cancer Genomics provides a Web resource for graphically analyz-
ing multidimensional cancer genomics data. The portal reduces molecular profiling data 
from cancer tissues and cell lines into readily understandable genetic, gene expression, 
etc data. The cBioPortal allows to integrate multiple data types at the gene level and then 
query for the presence of specific biological events in each sample (for example, genetic 
mutation, gene amplification, and increased mRNA or miRNA expression). Data inte-
gration includes CNAs, mRNA and microRNA (miRNA) expression, and so on.

GEO2R is an online framework with which users can separate the samples into groups 
and select the differential expressed genes (DEG). We used the False Discovery Rate 
(FDR) corrector to adjust the p value by reducing the type I error in the null hypothesis 
due to multiple comparisons.

Both downloaded genes and pathways data sets have been used as input for the four 
PEA frameworks to get new biological insights.

Table 1  Summary of the downloaded datasets

#MGenes refers to the number of mutated/deregulated genes involved with the various cancer types

Dataset Name Data Source Cancer Type #Cases #MGenes

COAD TCGA​ Colorectal Cancer (CC) 750 5913

THCA TCGA​ Thyroid Cancer (TC) 681 6270

UCEC TCGA​ Endometrial Cancer (EC) 560 6574

GSE41011 GEO Colorectal Cancer (CC) 19 791

GSE65144 GEO Thyroid Cancer (TC) 12 6202

GSE63678 GEO Endometrial Cancer (EC) 7 1024
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We evaluated each tool’s capability to enrich the same relevant pathways using differ-
ent data sets related to the same condition. Thus, it was not needed to perform any batch 
effect removal.

Additional file 1 contains the pathway enrichment analysis user guide illustrating how 
to download genes or proteins data sets from GEO and TCGA databses and highlighting 
how to use the downloaded data sets with the surveyed PEA software tools.

Pathways enrichment computation

Equation  1 defines the Hypergeometric function H(·) implemented in BiP to compute 
the pathway enrichment score.

In Eq. 1 “m′′ is the number of proteins into the pathway under enrichment analysis, “n′′ 
refers to the number of proteins with which to perform the enrichment and “k = m ∩ n′′‘ 
represents the intersection between the “m′′ proteins in the pathway and the “n′′ input 
proteins.

To balance the errors due to multiple tests, we implemented the False Discovery Rate 
(FDR) corrector along with the Bonferroni’s corrector. Equations  2 and  3 define FDR 
and Bonferroni correctors.

In Eq. 2, pi is the i-th smallest p value out the total number of the p value for the per-
formed experiment, N represents the number of performed tests, and i is the number of 
accepted p value using the i-th p value threshold.

In Eq.  3, α′ is the corrected significance level, α is the chosen significance level, and k is 
the number of performed individual tests.

Similarity indices computation

To assess the BiP abilities to detect essential pathways influenced by the genes under 
investigation, we compared the pathway enrichment results by using the two gene lists 
from the same disease obtained by BiP with respect to those provided by CePa, pathDIP, 
and SPIA, using the following similarity indices:

(1) Jaccard similarity index (JI) measures the percentage of similarity between the 
two enrichment sets. Equation  4 defines the Jaccard index.

(1)H(x) =

(

m
k

)(

n−m
n− k

)

(

m
n

)

(2)α′
i =

piN

i

(3)α′ =
α

k

(4)JI =
|P1 ∩ P2|

|P1 ∪ P2|
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In Eq.   4, P1 and P2 represent the total number of pathways in the two enrichments 
respectively. JI index range between 0 and 1, indicating respectively low and high simi-
larity between the two enrichments.

(2) meet-min index (mi) [50] evaluates the similarity between the two sets, in terms 
of set containment. The definition of the meet-min index is reported in Eq. 5:

In Eq. 5, P1 and P2 represent the total number of pathways respectively in the two enrich-
ments sets. mi index ranges between 0, that indicates no containment between the two 
sets, and 1 that indicates a perfect containment of a set into another.

We chose to use Jaccard and meet-min indices as similarity measures for the following 
reasons. The Jaccard index is a common trend to compare populations by determining 
what percent of objects identified were present in both populations, which means that 
the Jaccard index evaluates the similarity of two sets. Meet-min is a measure that can 
assess the similarity (the common objects into the two sets). The containment between 
two sets or one set contains the other, which means that the meet-min can evaluate both 
similarity and containment between two sets.

Results
This section compares the BiP, CePa, pathDIP and SPIA capability to perform path-
way enrichment analysis using the six gene lists obtained from the cancer datasets in 
Table  1, using the Reactome and KEGG databases.

We compared BiP with pathDIP [17], CePa [19] and SPIA [20] based on the KEGG 
database. We also compared BiP and pathDIP using the Reactome database because 
CePa and SPIA do not support pathway data coming from this database. Then, we vali-
dated the identified pathways by using the available literature.

Colorectal cancer enrichment using KEGG database

In this subsection, we present the pathway enrichment results obtained by all the soft-
ware tools by analyzing the two gene lists related to Colorectal Cancer (CC) -COAD and 
GSE41011- and using the KEGG database.

BiP was able to identify 274 and 53 significant pathways (p value ≤ 0.005 ) respec-
tively from the COAD and GSE41011 genes lists (let see Additional file 2 for the whole 
enriched pathway list). Table  2 shows the intersection of the first top 10 (The first top 
ten pathways are the first ten ones ordered by p value from lower to higher values) path-
ways (p value ≤ 0.005 ) obtained from the two CC gene lists using the KEGG database.

The first BiP’s enriched pathway is the “Metabolic pathway” that in a recent manuscript 
[51] is cited as pathway that regulates the colorectal cancer initiation and progression. In 
[52] authors identified how the “Transcriptional misregulation in cancer” pathway corre-
lates with some outcomes of colorectal cancer. The “MAPK signaling pathway” regulates 
many cellular function including cell proliferation and apoptosis in colorectal cancer as 
reported in [53]. In [54] authors assessed the functional role of “salmonella infection” 
in downregulating Wnt1 in the inflammatory response and colorectal cancer progres-
sion. The functional implication of “Neuroactive ligand-receptor interaction pathway” in 

(5)mi =
|P1 ∩ P2|

min(P1,P2)
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colorectal cancer has been described in [55]. In [56] the implication of “Herpes virus” 
in human colorectal polyps and adenocarcinomas, inducing important oncogenic path-
ways in colon-cancer cells, is reported. In the manuscript published by Vicente et al. [57] 
the role of the “proteoglycans molecules” in colorectal cancer progression is described. In 
the review of Fernandes et al. [58] the role of “Epstein-Barr virus infection” and “Human 
papillomavirus infection” in the onset and progression of colorectal cancer, is assessed.

CePa was able to identify 24 and 22 significant pathways respectively from the COAD 
and GSE41011 genes lists (let see Additional file 3 for the whole enriched pathway list).

Table  3 shows the CePa’s top 10 pathways obtained from the intersection of the path-
way enrichment results for the two CC genes lists and the KEGG database.

CePa enrichment results include the following KEGG pathways. Authors show in [59] 
that Klotho family members are associated with “FGFRs” to adjust “FGF” binding to 
“FGFRs”, important molecules in CC [59, 60]. Satoh et al. [61] describes the importance 
of “phyrymidine biosynthesis” in colorectal cancer, while [62] highlights that loss of “APC 
expression” in tumor tissue may be related with the risk for recurrence and a poor sur-
vival rate for patients with colorectal cancer. Tsaniras et al. [63] reviews the link between 
pre-replicative complex and cancer (pathways “Removal of licensing factors from origin”, 
“CDT1 association with the CDC6 ORC origin complex”). Bernal et al. [64] evaluates the 
role of dysfunctional “telomeres” in contributing to genomic instability in cancer. Tong 
et al. [65] shows that “ChREBP” plays a critical role in redirecting glucose metabolism to 
anabolic pathways as well as suppressing p53 activity. Esteban-Jurado et al. [66] evaluates 
how the “Fanconi anemia DNA damage repair pathway” performs an important role in 
germline predisposition to colorectal cancer. Fernández-Briera et al. [67] describes how 
“NCAM” (but not the neurite outgrowth) is responsible of worse prognosis and lymph 
nodes metastasis in colorectal cancer. To the best of our knowledge, we could not find 
any evidence for the “Switching of origins to a post-replicative state” pathway.

pathDIP in the colorectal cancer enrichment was able to identify 53 and 291 significant 
pathways (p value < 0.005 ) respectively from the COAD and GSE41011 genes lists (let 
see Additional file 4 for the whole enriched pathway list). Table  4 shows the intersection 

Table 2  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from BiP by performing PEA using CC gene lists and the KEGG database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Metabolic pathways 4.33 × 10−152 1.26 × 10−149 1.26 × 10−149

(2) Pathways in cancer 2.95 × 10−36 2.14 × 10−34 8.58 × 10−34

(3) Transcriptional misregulation in cancer 2.44 × 10−28 1.18 × 1010−26 7.10 × 10−26

(4) MAPK signaling pathway 2.04 × 10−27 8.50 × 10−26 5.95 × 10−25

(5) Salmonella infection 2.75 × 10−25 8.90 × 10−24 8.01 × 10−23

(6) Neuroactive ligand-receptor interaction 1.00 × 10−24 2.65 × 10−23 2.91 × 10−22

(7) Herpes simplex virus 1 infection 1.85 × 10−21 3.85 × 10−20 5.39 × 10−19

(8) Proteoglycans in cancer 3.08 × 10−21 5.60 × 10−20 8.95 × 10−19

(9) Epstein-Barr virus infection 5.75 × 10−21 9.29 × 10−20 1.67 × 10−18

(10) Human papillomavirus infection 1.48 × 10−20 2.06 × 10−19 4.32 × 10−18
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of the first top 10 pathways (p value < 0.005 ) obtained from the two CC gene lists using 
the KEGG database.

Table 3  The intersection of the first 10 pathways obtained from CePa by performing pathway 
enrichment analysis by using CC genes lists and the KEGG database. The table summarises the 
values obtained for each topology measure employed by CePa

Name Weight In degree Out degree Betweenness In reachability Out reachability

(1) Pyrimidine biosyn-
thesis

0.034 0.031 0.188 0.031 0.037 0.037

(2) Inactivation of APC 
C via direct inhibi-
tion of the APC C 
complex

0.031 0.047 0.047 0.037 0.037 0.037

(3) Removal of licens-
ing factors from 
origins

0.031 0.034 0.031 0.037 0.037 0.037

(4) CDT1 association 
with the CDC6 ORC 
origin complex

0.031 0.0059 0.047 0.0058 0.037 0.037

(5) NCAM signaling for 
neurite out growth

0.031 0.034 0.098 0.083 0.037 0.037

(6) FGFR1c and Klotho 
ligand binding and 
activation

0.044 0.169 0.10 0.066 0.180 0.180

(7) Switching of 
origins to a post 
replicative state

0.031 0.034 0.031 0.037 0.037 0.037

(8) Fanconi Anemia 
pathway

0.031 0.034 0.031 0.037 0.037 0.037

(9) ChREBP activates 
metabolic gene 
expression

0.044 0.321 0.400 0.0058 0.338 0.338

(10) Telomere C strand 
Lagging Strand 
Synthesis

0.065 0.098 0.075 0.071 0.047 0.047

Table 4  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from pathDIP by performing PEA using CC genes lists and the KEGG database

In the table FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value by using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Pathways in cancer 1.93 × 10−50 6.16 × 10−48 6.16 × 10−48

(2) Human papillomavirus infection 6.34 × 10−32 1.01 × 10−29 2.03 × 10−29

(3) Endocytosis 4.28 × 10−28 4.56 × 10−26 1.37 × 10−25

(4) Lysosome 8.40 × 10−28 6.72 × 10−26 2.69 × 10−25

(5) MicroRNAs in cancer 8.88 × 10−25 5.68 × 10−23 2.84 × 10−22

(6) Human T-cell leukemia virus 1 infection 1.42 × 10−24 7.59 × 10−23 4.56 × 10−22

(7) MAPK signaling 1.94 × 10−24 8.88 × 10−23 6.22 × 10−22

(8) PI3K-Akt signaling 5.31 × 10−22 1.54 × 10−20 1.70 × 10−19

(9) Cell cycle 1.47 × 10−21 3.92 × 10−20 4.70 × 10−19

(10) Autophagy-animal 1.92 × 10−19 3.07 × 10−18 6.13 × 10−17
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The pathDIP enrichment results include the following KEGG pathways. The “Path-
ways in cancer” is too general, making its role trivial in colorectal cancer. Fernandes et al. 
[58] assesses the role of “Human papillomavirus infection” in the onset and progression 
of colorectal cancer. Park et al. [68] describes the role of “Endocytosis” in colorectal can-
cer cells. Sun et  al. [69] describes how the dichloroacetate attenuates the stemness of 
colorectal cancer cells via triggering ferroptosis through sequestering iron in “lysosomes” 
pathway. Grady et al. [70] describes a possible tumor suppressor role of “microRNA” in 
colorectal cancer due to the epigenetic silencing of the intronic microRNA hsa-miR-342 
and its host gene EVL. We couldn’t find a link with the “Human T-cell leukemia virus 1 
infection” and colorectal cancer. Slattery et al. [53] describes the involvement of “MAPK 
signaling pathway” in colorectal cancer. Agarwal et al. [71] assesses the role of “PI3K-Akt 
signaling” in cell survival and metastasis regulation in colorectal cancer. Mita et al. [72], 
Kuerbitz et al. [73] describe how “Cell Cycle” pathway is related to colorectal cancer. We 
did not investigate “Autophagy - animal” pathway because it is not related to the human 
species.

SPIA did not enrich any pathway from both CC genes lists (let see Additional file 5 for 
the whole enriched pathway list).

Endometrial cancer enrichment using KEGG database

Analyzing with BiP the two datasets related to the Endometrial Cancer, that is UCEC 
and GSE63678, we have been able to identify 276 and 252 significant pathways (p value 
≤ 0.005 ) respectively. Both enrichment results have been able to detect pathways linked 
to endometrial cancer (let see Additional file  2 for the whole enriched pathway list). 
Table   5 shows the BiP’s top 10 enriched pathways using both EC genes lists and the 
KEGG database.

The BiP enrichment results comprise the “Metabolic” pathway whose role in endome-
trial cancer is described in [74]. Liu et al. [75] shows the involvement of the “Cytokine-
cytokine receptor interaction” in the development of endometrial cancer. The Pathways 
in cancer is too general, making its role obvious in endometrial cancer. Ouyang et  al. 

Table 5  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from BiP by performing PEA using EC genes lists and the KEGG database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Metabolic pathways 1.18 × 10−199 3.21 × 10−197 3.21 × 10−197

(2) Cytokine-cytokine receptor interaction 3.14 × 10−84 4.27 × 10−82 8.53 × 10−82

(3) Pathways in cancer 1.12 × 10−49 1.01 × 10−47 3.04 × 10−47

(4) Neuroactive ligand-receptor interaction 5.60 × 10−36 3.81 × 10−34 1.52 × 10−33

(5) Pathways of neurodegeneration-multiple diseases 2.09 × 10−33 1.14 × 10−31 5.69 × 10−31

(6) Transcriptional misregulation in cancer 7.91 × 10−33 3.59 × 10−31 2.15 × 10−30

(7) MAPK signaling pathway 4.41 × 10−31 1.71 × 10−29 1.20 × 10−28

(8) NOD-like receptor signaling pathway 2.64 × 10−28 8.98 × 10−27 7.18 × 10−26

(9) Shigellosis 9.48 × 10−28 2.86 × 10−26 2.58 × 10−25

(10) Proteoglycans in cancer 1.94 × 10−27 5.29 × 10−26 5.29 × 10−25
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[76] describes the role of “Neuroactive ligand-receptor interaction” with the endometrial 
cancer developing. Wu et al. [77] assesses the role of “Transcriptional misregulation in 
cancer” pathway in metastatic endometrial cancers development. Wang et al. [78] aimed 
to assess the potential role of long non-coding RNA BANCR promoting endometrial 
cancer cell proliferation and invasion by regulating MMP2 and MMP1 via ERK/“MAPK 
signaling” pathway. Yang et  al. [79] describes how “NOD-like receptors signaling path-
way” through Hydrogen could contribute to inhibit endometrial cancer growth. Kodati 
et al. [80] propose an hypothesis that “shigellosis” may be the trigger for the endometrio-
sis. Winship et al. [81] describes the role of Chondroitin sulfate “proteoglycan” protein 
that stimulated by interleukin 11 promotes endometrial epithelial cancer cell prolifera-
tion and migration.

Table  6 shows the top 10 pathways obtained from CePa (let see Additional file 3 for 
the whole enriched pathway list). As shown, the first eight enriched pathways in Table  6 
are identical to the ones obtained in colorectal cancer. Wang et al. [82] shows that repro-
grammed branch chain amino-acid metabolism could promote endometrial cancer cells’ 
proliferation. While, for the Removal of DNA patch containing an essential residue path-
way there are only few evidence of its involvement in the endometrial cancer [83, 84].

Analyzing with pathDIP the two EC genes lists, that is, UCEC and GSE63678, we have 
been able to identify 133 and 60 significant pathways (p value ≤ 0.005 ) respectively. Both 
enrichment results have been able to detect pathways linked to endometrial cancer. 

Table 6  The intersection of the first 10 pathways obtained from CePa by performing TEA using EC 
genes lists and the KEGG database. The table summarises the values obtained for each topology 
measure employed by CePa

Name weight in degree out degree betweenness in reachability out reachability

(1) Pyrimidine biosyn-
thesis

0.031 0.029 0.146 0.037 0.0056 0.034

(2) Inactivation of APC C 
via direct inhibition of 
the APC C complex

0.044 0.0290 0.034 0.037 0.0056 0.034

(3) Removal of licensing 
factors from origins

0.031 0.029 0.034 0.037 0.047 0.034

(4) CDT1 association 
with the CDC6 ORC 
origin complex

0.031 0.029 0.066 0.062 0.047 0.034

(5) NCAM signaling for 
neurite out growth

0.031 0.029 0.034 0.085 0.121 0.034

(6) Switching of origins 
to a post replicative 
state

0.031 0.029 0.034 0.037 0.047 0.034

(7) Fanconi Anemia 
pathway

0.031 0.029 0.034 0.0377 0.047 0.041

(8) Telomere C strand 
Lagging Strand 
Synthesis

0.0056 0.062 0.066 0.0053 0.0056 0.041

(9) Branched chain 
amino acid catabo-
lism

0.031 0.029 0.089 0.0053 0.047 0.034

(10) Removal of DNA 
patch containing a 
basic residue

0.031 0.062 0.034 0.085 0.087 0.034
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Table  7 shows the pathDIP’s top 10 enriched pathways (p value ≤ 0.005 ) in both endo-
metrial cancer genes lists (let see Additional file 4 for the whole enriched pathway list).

Among the pathways enriched by pathDIP we could not find any link for the “Alzhei-
mer diseases”, “Parkinson diseases”, “Non-alcoholic fatty liver disease (NAFLD)”, “Human 
T-cell leukemia virus 1 infection”, “Cardiac muscle contraction” pathways and the endo-
metrial cancer. Konno et al. [85] delineates the role of “Cellular senescence” pathway in 
suppressing proliferating, and stem cell-like phenotype of aggressive endometrial cancer 
cells. Nevadunsky et al. [86] assesses the effects of such “oxidative phosphorylation” in 
both endometrial and non-endometrial cancer types. Wong et al. [87] demonstrate that 
treatment based on Dichloroacetate promotes “apoptosis” in endometrial cancer. Huo 
et al. [88] describes the involvement of “Mineral absorption” pathway in the underlying 
biological mechanisms driving the tumorgenesis of endometrial cancer.

SPIA did not enrich any pathway from both EC genes lists (let see Additional file 5 for 
the whole enriched pathway list).

Thyroid cancer enrichment using KEGG database

Analyzing with BiP the two thyroid cancer genes lists, that is, THCA and GSE65144, we 
have been able to identify 280 and 54 significant pathways (p value < 0.005 ) respectively. 
Both BiP’s enrichment results have been able to detect thyroid cancer-associated path-
ways. Table  8 shows the BiP’s top 10 overlapping pathways (p value ≤ 0.005 ) obtained 
from the two TC genes lists and the KEGG database (let see Additional file  2 for the 
whole enriched pathway list).

Searching the literature, we found the following evidence for the enriched pathways 
listed in Table  8. Filetti et al. [89] shows that the intrathyroidal iodine “metabolism path-
way” represents one of the most peculiar abnormalities present in neoplastic thyroid tis-
sue. Feng et  al. [90] describes the role of “Cytokine-cytokine receptor interaction” with 
thyroid cancer. The “Pathways in cancer” is too general, making its role obvious in thy-
roid cancer. To the best of our knowledge, we could not find any link between “Pathways 
of neurodegeneration - multiple diseases”, “Human immunodeficiency virus 1 infection” 

Table 7  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from pathDIP performing PEA using EC genes lists and the KEGG database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Alzheimer disease 2.47 × 10−10 3.46 × 10−08 6.93 × 10−08

(2) Parkinson disease 7.46 × 10−09 5.24 × 10−07 2.10 × 10−06

(3) Non-alcoholic fatty liver disease (NAFLD) 9.14 × 10−08 5.13 × 10−06 2.57 × 10−05

(4) Cellular senescence 1.31 × 10−06 4.60 × 10−05 3.68 × 10−04

(5) Huntington disease 4.98 × 10−06 1.40 × 10−04 1.40 × 10−03

(6) Human T-cell leukemia virus 1 infection 8.80 × 10−06 2.25 × 10−04 2.47 × 10−03

(7) Oxidative phosphorylation 9.73 × 10−06 2.28 × 10−04 2.73 × 10−03

(8) Apoptosis 1.28 × 10−05 2.76 × 10−04 3.59 × 10−03

(9) Mineral absorption 1.69 × 10−05 3.17 × 10−04 4.75 × 10−03

(10) Cardiac muscle contraction 1.84 × 10−05 3.24 × 10−04 5.18 × 10−03
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and thyroid cancer. Han et al. [91] delineates the link between “Ubiquitin mediated pro-
teolysis” pathway and thyroid cancer. Xu et al. [92] describes the involvement of “neu-
roactive ligand-receptor interaction” in thyroid cancer. Bonara et  al. [93] describe the 
defective “oxidative phosphorylation” in thyroid cancer associated with pathogenic mito-
chondrial DNA mutations. [94] describes the link between LXRβ and ribosome activity 
to develop new diagnostic and therapeutic targets in thyroid cancers. Zhao et  al. [95] 
presents how the tunicamycin promotes metastasis through up-regulating “endoplasmic 
reticulum” in thyroid carcinoma.

CePa enrichment shows nine pathways in common between colorectal and endome-
trial cancer. The number of shared genes among the six analyzed cancer data sets is equal 
to 30, a value that is not enough to support this overlap in the pathways enrichment 
results, obtained using these different genes lists. Table  9 shows the CePa’s top 10 path-
ways obtained from the intersection of the pathway enrichment results for the two TC 
genes lists and the KEGG database (let see Additional file 3 for the whole enriched path-
way list). The remaining, “Generation of second messenger molecules” in [96] describes as 
the PIP3 acts as the second messenger into the thyroid cancer.

Analyzing with pathDIP the two thyroid cancer genes lists, that is, THCA and 
GSE65144, we have been able to identifying 71 and 223 significant pathways (p value 
≤ 0.005 ) respectively (let see Additional file 4 for the whole enriched pathway list). Both 
pathDIP’s enrichment results, have been able to detect thyroid cancer associated path-
ways. Table  10 shows the pathDIP’s top 10 overlapping pathways (p value < 0.005 ) from 
the two TC genes lists and the KEGG database.

To the best of our knowledge we could not find any study directly linking “MicroRNAs 
in cancer”, “Proteoglycans in cancer”, “Human papillomavirus infection”, “phagosome”, 
“Regulation of actin cytoskeleton” and the thyroid cancer. The “Pathways in cancer” is too 
general, making its role obvious in thyroid cancer. Theret et al. [97] describes the iden-
tification of LRP-1 as an “endocytosis” and recycling receptor for β1-integrin in thyroid 
cancer cells. Liu et al. [98] describes how the LncRNA modulates the cell proliferation 
and cancer growth of thyroid cancer through “PI3K-Akt signaling” pathway. Owens et al. 

Table 8  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from BiP, performing PEA using TC genes lists and the KEGG database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Metabolic pathways 1.59 × 10−111 4.98 × 10−109 4.98 × 10−109

(2) Cytokine-cytokine receptor interaction 1.02 × 10−40 1.60 × 10−38 3.21 × 10−38

(3) Pathways in cancer 2.50 × 10−30 2.62 × 10−28 7.85 × 10−28

(4) Pathways of neurodegeneration-multiple diseases 7.56 × 10−26 5.93 × 10−24 2.37 × 10−23

(5) Ubiquitin mediated proteolysis 1.75 × 10−17 3.44 × 10−16 5.50 × 10−15

(6) Neuroactive ligand-receptor interaction 2.72 × 10−17 4.75 × 10−16 8.56 × 10−15

(7) Oxidative phosphorylation 7.94 × 10−17 1.25 × 10−15 2.49 × 10−14

(8) Ribosome 2.02 × 10−16 2.89 × 10−15 6.35 × 10−14

(9) Protein processing in endoplasmic reticulum 1.39 × 10−15 1.62 × 10−14 4.37 × 10−13

(10) Human immunodeficiency virus 1 infection 2.06 × 10−15 2.16 × 10−14 6.47 × 10−13
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[99] explained the possible role of “Focal adhesion” in a mechanism for metastasis of thy-
roid cancer. Eissing et al. [100] describes how Notch pathway activation by the “MAPK 
signaling” is responsible for thyroid cancer proliferation.

Table 9  The 10 enriched pathways with CePa using the two TC genes lists and the KEGG database. 
The table summarises the values obtained for each topology measure employed by CePa

Name Weight In degree Out degree Betweenness In reachability Out reachability

(1) Pyrimidine biosyn-
thesis

0.034 0.034 0.180 0.041 0.034 0.029

(2) Inactivation of APC 
C via direct inhibi-
tion of the APC C 
complex

0.047 0.0050 0.029 0.041 0.034 0.047

(3) Generation of 
second messenger 
molecules

0.034 0.097 0.0059 0.118 0.091 0.118

(4) Removal of licens-
ing factors from 
origins

0.034 0.034 0.029 0.041 0.034 0.029

(5) CDT1 association 
with the CDC6 ORC 
origin complex

0.047 0.034 0.041 0.0058 0.071 0.029

(6) Association of 
licensing factors 
with the pre replica-
tive complex

0.205 0.034 0.188 1 0.066 0.233

(7) NCAM signaling for 
neurite out growth

0.034 0.062 0.029 0.068 0.091 0.029

(8) Switching of 
origins to a post 
replicative state

0.034 0.034 0.029 0.041 0.034 0.029

(9) Fanconi Anemia 
pathway

0.034 0.034 0.029 0.041 0.034 0.029

(10) Telomere C strand 
Lagging Strand 
Synthesis

0.0051 0.065 0.041 0.082 0.075 0.029

Table 10  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from pathDIP performing PEA using TC genes lists and the KEGG database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) MicroRNAs in cancer 1.95 × 10−29 6.18 × 10−27 6.18 × 10−27

(2)Endocytosis 2.82 × 10−27 4.47 × 10−25 8.94 × 10−25

(3)Pathways in cancer 2.71 × 10−25 2.86 × 10−23 8.59 × 10−23

(4)PI3K-Akt signaling 4.67 × 10−24 3.70 × 10−22 1.48 × 10−21

(5)Proteoglycans in cancer 1.04 × 10−21 6.58 × 10−20 3.29 × 10−19

(6)Human papillomavirus infection 5.76 × 10−19 2.61 × 10−17 1.83 × 10−16

(7)Focal adhesion 5.79 × 10−17 2.29 × 10−15 1.84 × 10−14

(8)MAPK signaling 7.28 × 10−16 2.31 × 10−14 2.31 × 10−13

(9)Phagosome 2.29 × 10−15 6.59 × 10−14 7.25 × 10−13

(10)Regulation of actin cytoskeleton 8.49 × 10−15 1.92 × 10−13 2.69 × 10−12
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SPIA did not enrich any pathway from both TC genes lists (let see Additional file 5 for 
the whole enriched pathway list).

Colorectal cancer enrichment using Reactome database

Analyzing with BiP the two genes lists related to colorectal cancer -COAD and 
GSE41011 - and the Reactome database we identified 586 and 896 significant pathways 
(p value < 0.005 ) respectively. The enrichment results obtained by BiP point out its 
capability to identify some well-known colon cancer risk pathways. Table  11 shows the 
top 10 pathways (p value < 0.005 ) obtained by the intersection results from the two CC 
genes lists and the Reactome database.

Hughes et al. [101] describes the associations between “Metabolism of Proteins” path-
way and the colorectal cancer. Jaén et al. [102], Tomonaga et al. [103] describe the role 
of “The Post-translational protein modification pathway” in the colorectal cancer. Fang 
et  al. [104] describes the “Cellular responses to external stimuli” as a general pathway 
that regulates how a single cell detects and responds to external molecular and physi-
cal signals, comprising the mitogen-activated protein kinases (MAPK), the extracellular-
signal-regulated kinases in colorectal cancer. Mita et al. [72], Kuerbitz et al. [73] desribe 
how the “Cell Cycle, Mitotic”, “Cell Cycle” and “Cell Cycle Checkpoints” pathways, are 
related to colorectal cancer. Furthermore, survivin-transcription is controlled by spe-
cific sequences in the promoter region, and it increases during “Mitotic G1-G1/S phases” 
[72, 105], and reaches a peak in “Mitotic G2-G2/M phases” [72, 106], other two pathways 
enriched by BiP placed in the first 10 positions by p value relevance. A recent manu-
script published by Reilly et al. [107] describes as the alterations in DNA repair genes 
could provide new therapeutic opportunities for colorectal cancer, that is a further evi-
dence for the “DNA repair” pathway in colorectal cancer enriched by BiP. Finally, [108] 
describes the role of “Cellular responses to stress” pathway in colorectal cancer.

Analyzing with pathDIP the two genes lists related to colorectal cancer, that is, COAD 
and GSE65144, we identified 59 and 704 significant pathways (p value ≤ 0.005 ) respec-
tively. Both pathDIP’s enrichment results, have been able to detect colorectal cancer 

Table 11  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from BiP performing PEA using CC genes lists and the Reactome database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Metabolism of proteins 2.32 × 10−63 4.66 × 10−60 4.66 × 10−60

(2) Post-translational protein modification 2.13 × 10−49 2.14 × 10−46 4.29 × 10−46

(3) Cellular responses to external stimuli 5.70 × 10−35 3.82 × 10−32 1.14 × 10−31

(4) Cell Cycle, Mitotic 1.90 × 10−33 9.57 × 10−31 3.83 × 10−30

(5) Mitotic G1-G1/S phases 1.90 × 10−33 7.65 × 10−31 3.83 × 10−30

(6) Cellular responses to stress 1.98 × 10−33 6.63 × 10−31 3.98 × 10−30

(7) Cell Cycle 3.03 × 10−33 8.71 × 10−31 6.10 × 10−30

(8) Mitotic G2-G2/M phases 9.07 × 10−32 2.28 × 10−29 1.82 × 10−28

(9) DNA Repair 6.35 × 10−31 1.42 × 10−28 1.28 × 10−27

(10) Cell Cycle Checkpoints 6.55 × 10−31 1.32 × 10−28 1.32 × 10−27
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associated pathways. Table  12 shows the top 10 overlapping pathways (p value ≤ 0.005 ) 
obtained from the two enrichment analysis using Reactome database.

Hughes et al. [101] delineates the associations between “Metabolism of Proteins” path-
way and the colorectal cancer. [109] shows how the “immune system” pathway plays an 
integral role in preventing and promoting the development of colorectal cancer. Jaén 
et al. [102] and Tomonaga et al. [103] show the role of “The Post-translational protein 
modification pathway” in colorectal cancer. At the best of our knowledge, it was not 
possible to identify any link between “disease”, “Generic Transcription Pathway”, “Tran-
scriptional Regulation by TP53” pathways and colorectal cancer. [110] investigates the 
effect of PI3K pathway in regulating colorectal cancer cell lines and the “gene expression” 
pathway. Wang et al. [111] shows that “RNA polymerase II transcription” through BTF3 
contributes to primary colorectal cancer or metastasis. [112] discusses the mechanisms 
of colitis and colitis-associated colorectal cancer used by the innate immune system in 
the intestine. Mita et al. [72], Kuerbitz et al. [73] describes how the “Cell Cycle” pathway 
is related to colorectal cancer.

Endometrial cancer enrichment using Reactome database

Analyzing with BiP the two genes lists related to the Endometrial Cancer , that is, UCEC 
and GSE63678, we have been able to identify 566 and 1, 173 significant pathways (p value 
≤ 0.005 ) respectively. Both enrichment results have been able to detect pathways linked 
to endometrial cancer. Table  13 shows the top 10 enriched pathways (p value ≤ 0.005 ) 
obtained using both EC genes lists and the Reactome database.

Mehlen et al. [113] describes the connections between “Axon guidance” and endo-
metrial cancer. Baylin et  al. [114], Mäkinen et  al. [115] report the relationships 
between transcription pathways (“Gene expression (Transcription)”, “RNA Polymer-
ase II Transcription” and “Generic Transcription Pathway”) with endometrial can-
cer. Takai et al. [116] shows the connection between “Signaling by Receptor Tyrosine 
Kinases” and endometrial cancer. Yu et  al. [117], Change et  al. [118, 119] prove the 
link between “ERBB2 and ERBB4 signaling pathways” and the endometrial cancer, 

Table 12  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from pathDIP performing PEA using CC genes lists and the Reactome database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Metabolism of proteins 3.18 × 10−74 6.31 × 10−71 6.31 × 10−71

(2) Immune System 1.46 × 10−60 9.64 × 10−58 2.89 × 10−57

(3) Post-translational protein modification 6.40 × 10−49 3.17 × 10−46 1.27 × 10−45

(4) Disease 4.02 × 10−37 1.33 × 10−34 7.96 × 10−34

(5) Gene expression (Transcription) 1.34 × 10−36 3.79 × 10−34 2.66 × 10−33

(6) RNA Polymerase II Transcription 1.01 × 10−29 2.00 × 10−27 2.00 × 10−26

(7) Innate Immune System 4.51 × 10−27 8.13 × 10−25 8.95 × 10−24

(8) Cell Cycle 2.07 × 10−25 2.93 × 10−23 4.11 × 10−22

(9) Generic Transcription Pathway 2.94 × 10−25 3.88 × 10−23 5.83 × 10−22

(10) Transcriptional Regulation by TP53 3.27 × 10−21 3.09 × 10−19 6.48 × 10−18



Page 19 of 35Agapito and Cannataro ﻿BMC Bioinformatics  2021, 22(Suppl 13):376	

while [120] reviews the role of “Rho GTPases signaling” in cancer. Deregulation of 
the cell cycle is famously linked to cancer development [121], while the bi-directional 
correlation between the neural factors and cancer progression and metastasis is more 
recent [122].

Analyzing with pathDIP the two genes lists related to the Endometrial Cancer, that is, 
UCEC and GSE63678, we identified 22 and 215 significant pathways (p value ≤ 0.005 ) 
respectively. The pathway enrichment intersection obtained from pathDIP using the 
two EC genes lists and the Reactome database, contains only 7 pathways in common. 
Table  14 shows the top 7 enriched pathways (p value < 0.005 ) obtained using EC genes 
lists and Reactome database.

Baylin et al. [114], and Mäkinen et al. [115] delineate the relationships between tran-
scription pathways (“Gene expression Transcription”, “RNA Polymerase II Transcription” 
and “Generic Transcription Pathway”) with endometrial cancer. At the best of our knowl-
edge, it was not possible to identify any link between “Metabolism of proteins”, “Innate 
Immune System”, and “Translation” pathways with endometrial cancer. [123] delineates 
the implications of “immune system” in endometrial cancer development.

Table 13  The intersection of the first 10 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from BiP performing PEA using EC genes lists and the Reactome database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Metabolism of proteins 2.35 × 10−182 4.83 × 10−179 4.83 × 10−179

(2) Metabolism 3.89 × 10−173 4.00 × 10−170 8.00 × 10−170

(3) Cellular responses to external stimuli 5.22 × 10−160 3.57 × 10−157 1.07 × 10−156

(4) Signaling by Receptor Tyrosine Kinases 2.82 × 10−159 1.45 × 10−156 5.80 × 10−156

(5) Cellular responses to stress 5.82 × 10−157 2.39 × 10−154 1.20 × 10−153

(6) Cell Cycle 1.30 × 10−151 4.46 × 10−149 2.67 × 10−148

(7) Post-translational protein modification 3.30 × 10−150 9.68 × 10−148 6.77 × 10−147

(8) Cell Cycle, Mitotic 7.04 × 10−150 1.81 × 10−147 1.44 × 10−146

(9) Mitotic G1-G1/S phases 7.04 × 10−150 1.61 × 10−147 1.44 × 10−146

(10) Cellular Senescence 3.54 × 10−149 7.27 × 10−147 7.27 × 10−146

Table 14  The intersection of the first 7 pathways (sorted by the relevance of p value ≤ 0.005 ) 
obtained from pathDIP performing PEA using EC genes lists and the Reactome database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) RNA Polymerase II Transcription 5.04 × 10−11 7.43 × 10−09 5.94 × 10−08

(2) Gene expression (Transcription) 6.83 × 10−11 8.95 × 10−09 8.06 × 10−08

(3) Generic Transcription Pathway 1.67 × 10−10 1.51 × 10−08 1.97 × 10−07

(4) Metabolism of proteins 6.64 × 10−07 2.70 × 10−05 7.83 × 10−04

(5) Immune System 6.85 × 10−06 2.07 × 10−04 8.09 × 10−03

(6) Innate Immune System 4.79 × 10−03 3.25 × 10−02 1.00×10
+00

(7) Translation 7.01 × 10−03 4.31 × 10−02 1.00×10
+00
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Thyroid cancer enrichment using Reactome database

Analyzing with BiP the two thyroid cancer genes lists that is, THCA and GSE65144, 
we identified 374 and 921 relevant pathways (p value ≤ 0.005 ) respectively. Both 
enrichment results, have been able to detect thyroid cancer associated pathways. 
Table   15 shows the top 10 overlapping pathways obtained enriching the two TC 
genes lists and using Reactome database.

Nucera et  al. [124] reports the link between “Extracellular matrix organization” 
and thyroid cancer. Zhong et al. [125] describes the involvement of “RHO GTPases” in 
thyroid cancer, while [126] describes the connection between “Membrane Trafficking” 
pathway and thyroid cancer. Interestingly, few pathways are linked to cell cycle men-
tioned above, that is well known to be deregulated in cancer (pathways: “Mitotic Pro-
metaphase”, “M Phase”, “Cell Cycle, Mitotic”, “Mitotic G1-G1/S phase”, “Cell Cycle”). 
Ząbczyńska et al. [127] describes the link between Changes in the glycosylation pro-
file (a popular type of post-translational modification (PTM) ) pathway with thyroid 
cancer. While we couldn’t find a link with the metabolism of proteins pathway.

Analyzing with pathDIP the two genes lists related to thyroid cancer, that is, THCA 
and GSE65144, we identified 28 and 405 relevant pathways (p value ≤ 0.005 ) respec-
tively. Both enrichment results, have been able to detect thyroid cancer associated 
pathways. Table   16 shows the top 10 overlapping pathways (p value ≤ 0.005 ) using 
the two TC genes lists and Reactome database.

[126] describes the connection between “Membrane Trafficking” pathway and thy-
roid cancer. Interestingly, few pathways are linked to “cell cycle” mentioned above, 
that is well known to be deregulated in cancer (pathways: “Mitotic Prometaphase”, “M 
Phase”, “Cell Cycle, Mitotic”, “Mitotic G1-G1/S phase”, “Cell Cycle”). We couldn’t find 
a link between the “Metabolism”, “metabolism of proteins”, “Immune System”, “Post-
translational protein modification”, “Neutrophil degranulation”, “Disease” pathways 
and thyroid cancer.

Table 15  The first 10 enriched pathways (sorted by the relevance of p value ≤ 0.005 ) obtained from 
BiP performing PEA using TC genes lists and the Reactome database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Mitotic Prometaphase 7.74 × 10−14 2.52 × 10−11 1.51 × 10−10

(2) Membrane Trafficking 3.61 × 10−12 8.80 × 10−10 7.04 × 10−09

(3) Signaling by Rho GTPases 7.67 × 10−12 1.15 × 10−09 1.50 × 10−08

(4) Post-translational protein modification 1.49 × 10−11 1.94 × 10−09 2.91 × 10−08

(5) Extracellular matrix organization 1.40 × 10−10 1.36 × 10−08 2.72 × 10−07

(6) Metabolism of proteins 2.48 × 10−10 2.11 × 10−08 4.85 × 10−07

(7) M Phase 3.18 × 10−10 2.48 × 10−08 6.20 × 10−07

(8) Cell Cycle, Mitotic 1.17 × 10−09 7.86 × 10−08 2.28 × 10−06

(9) Mitotic G1-G1/S phases 1.17 × 10−09 7.59 × 10−08 2.28 × 10−06

(10) Cell Cycle 1.58 × 10−09 9.64 × 10−08 3.08 × 10−06
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Pathway enrichment similarity assessment

To compare the pathway enrichment results obtained from BiP with CePa, pathDIP, 
and SPIA, we used the same six gene lists obtained from the cancer datasets listed in 
Table 1, along with the KEGG and Reactome databases.

For each couple of enrichments, we measured the total number of the enriched 
pathway with p value ≤ 0.005 , and the number of enriched pathways that belong to 
the union, and the intersection between the enriched results, concerning the used 
database. These information have been summarized in Tables 17 and 18.

Table 16  The first 10 enriched pathways (sorted by the relevance of p value ≤ 0.005 ) obtained from 
pathDIP performing PEA using TC genes lists and the Reactome database

In the table, FDRc represents the corrected p value using FDR corrector, and Bc refers to the corrected p value using 
Bonferroni corrector

Pathway Name p value FDRc Bc

(1) Immune System 1.56 × 10−28 2.90 × 10−25 2.90 × 10−25

(2) Metabolism 9.59 × 10−28 5.94 × 10−25 1.78 × 10−24

(3) Metabolism of proteins 6.89 × 10−27 3.20 × 10−24 1.28 × 10−23

(4) Cell Cycle, Mitotic 5.72 × 10−26 1.52 × 10−23 1.06 × 10−22

(5) Post-translational protein modification 3.01 × 10−24 6.20 × 10−22 5.58 × 10−21

(6) Membrane Trafficking 1.37 × 10−21 2.54 × 10−19 2.54 × 10−18

(7) Neutrophil degranulation 3.17 × 10−18 4.91 × 10−16 5.90 × 10−15

(8) M Phase 5.68 × 10−16 4.59 × 10−14 1.06 × 10−12

(9) Disease 7.65 × 10−14 5.07 × 10−12 1.42 × 10−10

(10) Signaling by Receptor Tyrosine Kinases 4.96 × 10−13 2.88 × 10−11 9.21 × 10−10

Table 17  The number of enriched pathways obtained by using the six genes datasets and the 
KEGG database

NP stands for Number of Enriched Pathways, U is short for Union, and I is short for Intersection

Tool CC EC TC

TCGA​ GEO TCGA​ GEO TCGA​ GEO

NP NP U I NP NP U I NP NP U I

BiP 274 53 274 53 276 252 295 233 280 54 284 50

CePa 23 25 27 21 23 25 27 21 23 25 28 20

pathDIP 52 290 291 51 133 60 152 41 71 233 226 68

SPIA 4 1 5 0 1 6 7 0 0 19 19 0

Table 18  The number of enriched pathways obtained by using the six genes datasets and the 
Reactome database

NP stands for Number of Enriched Pathways, U is short for Union, and I is short for Intersection

Tool CC EC TC

TCGA​ GEO TCGA​ GEO TCGA​ GEO

NP NP U I NP NP U I NP NP U I

BiP 586 896 936 546 566 1173 1184 555 374 921 930 365

pathDIP 59 703 730 32 22 215 230 7 28 405 414 19
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To measure the similarity between the pairs of pathway enrichments obtained from 
the investigated cancer genes lists, we adopted the Jaccard index able to measure the 
similarity between two sets and the meet-min index that can assess the containment 
property between two groups. High Jaccard index values indicate that the two enrich-
ments are similar, while high values of meet-min index suggest that the smallest set is 
contained in the biggest. Figures  1, 2, 3, 4, 5 and 6 show the Jaccard and meet-min indi-
ces values respectively for each software tool applied using KEGG or Reactome, to each 
cancer data set.

Results show that BiP achieves the highest Jaccard and meet-min indexes values in 
almost all comparisons, revealing that BiP is more stable than the other methods. Only 
in two cases, CePa obtains better Jaccard values when enriching CC and TC gene lists. 
Result due to the relatively similar number of enriched pathways in the two enrichment 
results (see Table  17), indicating that the two sets are only in the overlap. Conversely, 
BiP obtains higher values of meet-min, a most suitable measure of containment between 
two groups.

The better enrichment stability yielded by BiP may be due to the use of updated path-
way information. Pathway enrichment analysis is influenced by outdated pathway infor-
mation, and the used database [26]. Outdated pathway information negatively affects 
pathway enrichment analysis. To use updated pathway information, BiP allows users to 
load and use the last version of pathway data available from Reactome, KEGG, and the 
other web databases compliant with the BioPAX or KGML data formats. We will add in 
BiP software framework a KEGG downloader module to directly download the last ver-
sion of KEGG pathways, making it possible to perform pathway enrichment analysis by 
using pathway data coded in KGML. BiP [33] is freely available, and we are working to 
make the updated version of BiP available as soon as possible. Thus, updated pathway 
information avoids to underrate the functional significance of relevant genes, prevent-
ing the lost of some possible significant results. A consideration that could explain the 
different pathway enrichment results obtained by CePa and SPIA is due to the use of an 
outdated version of KEGG (containing only 108 pathways). Whereas BiP and pathDIP 
used the last version of KEGG containing 139 pathways (at the time of writing), allow-
ing them to enrich more pathways and providing more consistent pathways enrichment 
concerning the investigated cancer genes list.

Discussion
To better understand the impact of the PEA on a gene or protein list of interest, we per-
formed PEA employing the three couple of gene lists obtained from TCGA and GEO 
databases, respectively, related to the colorectal (CC), endometrial (EC), and thyroid 
(TC) cancers. The goal of PEA was to evaluate the capability of BiP to identify relevant 
pathways for the three types of cancer under investigation with respect to the other 
tools.

For the CC genes list and KEGG database, BiP enriched 274 pathways from COAD 
data set, and 53 pathways from GSE41011 with a p value ≤ 0.005 . BiP enriched insu-
lin signaling pathway (p value = 9.53× 10−12 ), Notch signaling pathway (p value = 
1.68× 10−05 ), and apoptosis (p value = 0.002), all of which are well recognized path-
ways whose dysregulation can contribute in accelerate the risk of CC development and 
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progression. It is worth to note that, in the intersection between the top 10 enriched 
pathway from both COAD and GSE41011 data sets, only BiP identified as novel can-
didate risk pathways the Metabolic pathway (p value = 4.33× 10−152 ) which was dis-
regarded by the other tools, the Transcriptional misregulation in cancer (p value = 
2.44 × 10−28 ), and proteoglycans in cancer (p value = 3.08× 10−21 ) pathways, which 
were ignored by CePa and SPIA tools. The enrichment of the three pathways related 
to CC is also described in [128, 129]. Zhao et  al. [129] illustrates a protocol to figure 
out some critical biomarkers associated with colorectal cancer. The authors obtain the 
CC differential expressed genes from the GEO database (GSE32323 data set), whereas 
the KEGG pathway database was used to enrich those genes. [128] shows a pipeline to 
investigate possible competing endogenous RNA (ceRNA) networks in CC. The authors 
obtain the CC differential expressed genes from the TCGA database, whereas the KEGG 
pathway database was used to enrich those genes. The overlap between the pathway 

Fig. 4  The similarity score obtained by each tool analyzing both CC gene lists using the Reactome database. 
The histograms show the score reached by each tool in percentage. In the Figure, JI indicates the Jaccard 
Index, which measures the similarity of two classes of samples. mi corresponds to the meet-min index used 
to quantify the containment between two sets

Fig. 5  The similarity score obtained by each tool analyzing both EC gene lists using the Reactome database. 
The histograms show the score reached by each tool in percentage. In the Figure, JI indicates the Jaccard 
Index, which measures the similarity of two classes of samples. mi corresponds to the meet-min index used 
to quantify the containment between two sets
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enrichment results obtained by BiP and those in [128, 129] confirms the effectiveness of 
BiP in identifying pathways that play a relevant role in complex diseases.

For the EC genes list and KEGG database, BiP enriched 276 pathways from UCEC data 
set, and 252 pathways from GSE63678 data set with a (p value ≤ 0.005 ). BiP enriched 
p53 signaling pathway (p value = 2.16× 10−08 ), VEGF signaling pathway (p value = 
8.60× 10−05 ), and Ras signaling pathway (p value = 1.56× 10−09 ), all of which are well 
recognized pathways whose dysregulation can contribute in EC development. Notice-
ably, in the intersection between the top 10 enriched pathway from both data sets UCEC 
and GSE63678, only BIP identified as novel candidate risk pathways Metabolic pathway 
(p value = 3.59× 10−107 ), MAPK signaling pathway (p value = 4.41× 10−31 ) in endo-
metrial cancer (see [130], and [131]), which were ignored by the other tools.

For the TC genes list and KEGG database, BiP enriched 280 pathways from THCA 
data set, and 54 pathways from GSE65144 with a ( p value ≤ 0.005 ). BiP enriched Thy-
roid hormone pathway (p value = 1.35× 10−06 ), Rap1 signaling pathway (p value = 
1.65× 10−08 ), and Parathyroid hormone synthesis, secretion and action pathway (p value 
= 1.56× 10−09 ), all of which are well recognized pathways whose dysregulation can con-
tribute to TC development. Noticeably, in the intersection between the top 10 enriched 
pathways from both data sets UCEC and GSE63678, only BIP identified as novel can-
didate risk pathways Ubiquitin mediated proteolysis pathway (p value = 1.75× 10−17 ) 
and Oxidative phosphorylation pathway (p value = 7.49× 10−17 ) and reticulum path-
way. [132–134] and [95] describe the involvement of those pathways in TC, which were 
ignored by the other tools.

Finally, we compared BiP enrichment results with those obtained by Yang et al. [135] 
by using the same gene lists and pathway database. It is worthy to note that BiP enriches 
the same relevant pathways of Yang et al. This result confirms the effectiveness of BiP 
in identifying pertinent pathways in the condition under investigation, even if different 
data sets related to the same disease, are used. The production of very different pathway 
enrichment results for each investigated dataset associated with the same disease may 
limit the usefulness of those results in clinical and therapeutic scenarios. The production 

Fig. 6  The similarity score obtained by each tool analyzing both TC gene lists using the Reactome database. 
The histograms show the score reached by each tool in percentage. In the Figure, JI indicates the Jaccard 
Index, which measures the similarity of two classes of samples. mi corresponds to the meet-min index used 
to quantify the containment between two set
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of very different pathway enrichment results for each investigated dataset associated 
with the same disease may limit the usefulness of those results in clinical and therapeu-
tic scenarios. We used the Jaccard and meet-min indices to better prove the stability 
and the similarity between the enrichment results obtained from each couple of cancer 
datasets. The obtained results show that BiP provides more stable enrichment results 
than other tools, when analyzing different genes or proteins data sets related to the same 
diseases.

We would highlight the key role of the metabolic pathway in reprogramming cancer 
cells, that might play an important role in the progress of several types of cancers. Stud-
ies on cancer metabolism show that metabolic pathways aberrations and reprogramming 
are necessary to sustain rapid cell proliferation, tumor progression and cell death resist-
ance [136]. Cancer metabolic reprogramming represents a fundamental trait of most 
cancer cells. Several works have evidenced that this metabolic reprogramming is an 
active process governed by oncogenes and cancer suppressors, which provides energy to 
the cancer cells [137]. Indeed, La Vecchia et al. in [138] provide a review of key findings 
in cancer metabolism pathway as a significant contributor of tumor initiation, growth, 
and metastatic dissemination in CC. Also, in [139] many findings show that metabolic 
pathway contributes to endometrial cancer cell survival and tumor growth are provided. 
Finally, in [140] a recent molecular study in thyroid cancer revealed that oncogenes and 
tumor suppressor genes not only control growth and apoptotic phenotypes of thyroid 
carcinomas but also directly affect the outcome of treatment and or disease progression 
in thyroid cancer. Thus, it appears clear that metabolic pathway dysregulation is a crucial 
factor in regulating tumor progression and survival in all the investigated tumor types. 
Thus, the association of this pathway with all three cancers types in our study is not sur-
prising and confirms the effectiveness of BiP in identifying pathways that play a relevant 
role in complex diseases.

To the best of our knowledge, we were not able to find any evidence in literature prov-
ing the involvement of Branched chain amino acid catabolism pathway in developing, 
sustaining or growing EC. In [141] Sweatt et  al. describe the implication of Branched 
chain amino acid catabolism pathway to regulate anabolic signals in digestive systems, 
as well as in neurons of the peripheral nervous system. To the best of our knowledge, we 
were not able to find any evidence in literature proving the involvement of Removal of 
DNA patch containing a basic residue pathway with EC. We didn’t get any results even 
looking for the Removal of DNA patch containing a basic residue pathway in KEGG. 
This result point outs that CePa to perform pathway enrichment used an older version 
of KEGG, that impact negatively on the enrichment results, since it provide an obso-
lete pathway name. In the current version of KEGG the Removal of DNA patch contain-
ing a basic residue pathway may have been replaced by the DNA base excision repair 
pathway. Furthermore, this can contribute to explain why even using different gene lists 
related to different cancer types, CePa provides the same first 8 pathway in both CC and 
EC enrichment results. Notability, the number of genes in common among the CC and 
EC cancer data sets is equal to 30; value that does not justify this overlap in the path-
ways enrichment results using different genes data sets. We also investigated the neu-
roactive ligand receptor interaction pathway that is a collection of receptors located on 
the plasma membranes, involved in the transduction of signals from the extracellular 
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environment into cells [142]. The neuroactive ligand-receptor interaction pathway con-
tains a very large gene set, consisting of more than 300 genes representing a variety of 
signalling molecules including many types of neuroreceptors. Many of these neurore-
ceptor genes have been found to be associated with multiple cancers, as well as playing 
an important role in the development of CC [143, 144]. Thus, the association of this gene 
set with CC observed in our study is not surprising, and confirms the effectiveness of 
BiP in identifying pathways that play a key role in complex diseases.

Conclusion
In this work, we presented a comparative study of pathway enrichment analysis tools, 
conducted by using BiP, CePa, pathDIP and SPIA software tools. We have shown that 
the used database version influences the pathway enrichment results; the updated ver-
sions do not underrate the functional significance of relevant genes and proteins and do 
not omit the significant effects. This conclusion was specifically pronounced for CePa 
and SPIA because they are topology-based enrichment approaches and consequently 
expected to be most sensitive to the definition of a pathway available in the adopted 
database. At the same time, we observed that using an updated version of pathway data-
bases (BiP) or an integrative pathway approach (pathDIP) led to more biologically con-
sistent results.

The results obtained by BiP show good performance in terms of the number of rel-
evant enriched pathways, especially compared to SPIA. BiP shows higher Jaccard and 
meet-min indexes values in almost all similarity comparisons results obtained from dif-
ferent gene lists of the same cancer types than CePa, pathDIP, and SPIA, suggesting BiP’s 
efficacy to achieve more reliable results. Of course, part of the boost in performance may 
be due to using more recently update versions of Reactome and KEGG databases, con-
sidering the difference in the size of the two databases.

As future works, we are improving the enrichment approach to limit the number of 
enriched pathways, ensuring at the same time the best possible result accuracy and 
improving their effectiveness. Finally, we will extend the BiP parsing capability to make 
it compatible with as many pathway representation formats as possible, such as SBML, 
GMTL, and XML-like.
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