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Abstract

Rationale: Data on the molecular mechanisms that regulate
platelet–pulmonary endothelial adhesion under conditions of
hypoxia are lacking, but may have important therapeutic
implications.

Objectives: To identify a hypoxia-sensitive, modifiable mediator
of platelet–pulmonary artery endothelial cell adhesion and
thrombotic remodeling.

Methods: Network medicine was used to profile protein–protein
interactions in hypoxia-treated human pulmonary artery
endothelial cells. Data from liquid chromatography–mass
spectrometry and microscale thermophoresis informed the
development of a novel antibody (Ab) to inhibit
platelet–endothelial adhesion, which was tested in cells from
patients with chronic thromboembolic pulmonary hypertension
(CTEPH) and three animal models in vivo.

Measurements and Main Results: The protein NEDD9 was
identified in the hypoxia thrombosome network in silico.
Compared with normoxia, hypoxia (0.2% O2) for 24 hours

increased HIF-1a (hypoxia-inducible factor-1a)–dependent
NEDD9 upregulation in vitro. Increased NEDD9 was localized to
the plasma-membrane surface of cells from control donors and
patients with CTEPH. In endarterectomy specimens, NEDD9
colocalized with the platelet surface adhesion molecule P-selectin.
Our custom-made anti-NEDD9 Ab targeted the NEDD9–P-selectin
interaction and inhibited the adhesion of activated platelets to
pulmonary artery endothelial cells from control donors in vitro and
from patients with CTEPH ex vivo. Compared with control mice,
platelet–pulmonary endothelial aggregates and pulmonary
hypertension induced by ADP were decreased in NEDD92/2 mice
or wild-type mice treated with the anti-NEDD9 Ab, which also
decreased chronic pulmonary thromboembolic remodeling in vivo.

Conclusions: The NEDD9–P-selectin protein–protein
interaction is a modifiable target with which to inhibit
platelet–pulmonary endothelial adhesion and thromboembolic
vascular remodeling, with potential therapeutic implications for
patients with disorders of increased hypoxia signaling pathways,
including CTEPH.
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At a Glance Commentary
Scientific Knowledge on the
Subject: Hypoxia signaling pathways are
upregulated in the pulmonary endothelium
in clinical pathophenotypes characterized by
pathogenic platelet–endothelial interactions
and thromboembolic remodeling. However,
the molecular mechanisms that regulate
platelet-pulmonary endothelial biology
under hypoxic conditions in pulmonary
thromboembolic disorders are
poorly understood.

What This Study Adds to the Field:
We show hypoxia inducible factor-1-
dependent upregulation of NEDD9 in
pulmonary artery endothelial cells. We
focused on a functional NEDD9 peptide
expressed on the extracellular surface of
pulmonary artery endothelial cells, which
participates in a previously unrecognized
protein-protein interaction with platelet
P-Selectin. By developing a novel anti-
NEDD9 antibody to antagonize
NEDD9-P-Selectin complex formation,
we inhibited platelet–endothelial cell
adhesion mediated by hypoxia or
inflammation in vitro, prevented acute
platelet–endothelial aggregate formation
and pulmonary hypertension in vivo, and
decreased in situ chronic
thromboembolic remodeling in rats. Our
anti-NEDD9 antibody also inhibited
adhesion of platelets to endothelial cells
isolated from patients with chronic
thromboembolic pulmonary
hypertension, and we observed that
NEDD9 is increased in endarterectomy
specimens from patients. Overall, this
study identifies NEDD9 as a modifiable
mediator of platelet–endothelial
interactions with potential therapeutic
relevance to diseases characterized by
hypoxia, activated platelets, and
pulmonary thromboembolic remodeling.

Interaction between activated platelets and
the endothelium is a key pathogenetic event
underlying numerous pulmonary vascular
diseases (1). Upregulation of hypoxia
signaling pathways in human pulmonary
artery endothelial cells (HPAECs) is also
common to clinical disorders characterized
by pulmonary thromboembolic arterial
remodeling (2). The ramifications of hypoxic
vascular injury on endothelial dysfunction,
including proliferation and fibrosis, have
been reported in the lung circulation (3).
However, few data are available on the
molecular mechanisms that regulate
platelet–pulmonary endothelial interactions
under hypoxic conditions.

In carcinoma cell lines, hypoxia
increases the hypoxia-inducible factor-1a–
dependent transcriptional regulation of
NEDD9 (4), which is a scaffolding protein
that controls numerous protein–protein
interactions involved in metastasis. In turn,
metastasis is associated with abnormal
platelet–endothelial adhesion (5), thereby
suggesting NEDD9may be unrecognized in
the pathogenesis of prothrombotic
pathophenotypes (6). Increased vascular
hypoxia–inducible factor-1a expression is
observed after luminal pulmonary embolism
(7), often the antecedent event to chronic
thromboembolic pulmonary hypertension
(CTEPH) (8), and in cells from CTEPH
pulmonary endarterectomy specimens (9).
Furthermore, accumulation of pulmonary
endothelial NEDD9 promotes fibrotic
vascular remodeling, endothelial
dysfunction, and pulmonary hypertension
(10). On the basis of these converging
observations, we hypothesized that NEDD9
upregulation by hypoxia is an unrecognized
mechanism that regulates pathogenic
platelet–pulmonary endothelial adhesion.

Methods

Additional methods are available in the
online supplement.

Cell Culture and Treatments
Details for all cell types and biological
reagents used in this study are provided in
Tables E1 and E2 in the online supplement,
respectively. Primary HPAECs, other
endothelial cell types, and human pulmonary
artery smooth muscle cells were grown to
confluence using Endothelial Basal Medium-2
(Lonza) and SmoothMuscle GrowthMedium-
2 (Lonza), respectively, unless otherwise
specified. Human brain microvascular
endothelial cells were selected as a control
owing to the unique consequences of hypoxia
on cerebral perfusion, the importance of
endothelial dysfunction in cerebral bleeding,
and intracranial hemorrhage that is reported
in some patients prescribed anticoagulant
therapies to treat thromboembolic pulmonary
vascular diseases (11, 12). All media were
supplemented with a cell type–specific
Bulletkit (Lonza). C57BL/6 mouse primary
pulmonary artery endothelial cells and
human brainmicrovascular endothelial cells
were grown to confluence using Cell
Biologics Endothelial Cell Mediumwith Kit
(Cell Biologics). Cells (passages 3–8) were
incubated at 37�C in 5.0% CO2 and
dissociated using 0.5% trypsin/
ethylenediaminetetraacetic acid. In selected
experiments, cells were treated with
hypoxia (10%, 2%, 1%, or 0.2% O2) using a
tightly sealed modular hypoxia chamber
incubated at 37�C for 24 hours, as reported
previously (10).

Platelet–Endothelial Cell
Adhesion Assay
Endothelial cells were seeded on a 96-well
opaque-bottom plate (Thermo Fisher
Scientific) and grown to 100% confluence
at 37�C and at 5.0% CO2. Human platelets
from healthy volunteers were isolated
(Partners Institutional Review Board [IRB]
#2016P001640) and fluorescently labeled
with 5-chloromethylfluorescein diacetate
before activation with 10 mM of TRAP
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(thrombin receptor agonist peptide)
(Sigma), as described previously (13, 14).
Platelet isolation methods are provided in
the online supplement. In some
experiments, HPAECs were stimulated
with the inflammatory cytokine IL-6 (25
ng/ml) (Peprotech) for 24 hours, followed
by treatment with an anti–P-selectin
antibody (Ab) (10 mg/ml) (Sigma), anti–P-
selectin glycoprotein ligand-1 Ab (clone
KPL-1) (15 mg/ml) (15) (Sigma), or
purified t-PA (tissue plasminogen
activator) (15 ng/ml) (16) (Abcam) at 37�C
in a water bath for 15 minutes before
incubating with HPAECs for 45 minutes.
The platelet number was counted by
fluorescence-activated cell sorting and
adjusted to 23 108/ml and then incubated
with cell monolayers for 45 minutes at
37�C and at 5.0% CO2. The total
fluorescence (485/535 nm) was measured
using a multilabel counter plate reader
(Molecular Devices) before and after three
serial washes with phosphate-buffered
saline. The percentage of platelet adhesion
was calculated as follows: (remaining
fluorescence – blank)� (total
fluorescence – blank)3 100.

Human CTEPH Samples
Demographic and hemodynamic data for
patients with CTEPH undergoing pulmonary
endarterectomy were collected prospectively
and are provided in Tables 1–3 (G.A.A., G.E.,
R.N.C.) (IRB #2016P001640). In the
operating room, specimens were divided into
proximal and distal sections, and snap-frozen
in liquid nitrogen or preserved in 10%
formalin. The samples were acquired on the
basis of availability. The CTEPHHPAECs
were isolated at the time of surgery (S.R.,
J.C.H., Y.-R.Y.) (n5 3) (IRB #00082338)
using an aseptic technique in a tissue culture
hood according to published methods (17)
and as detailed in the online supplement.

Statistical Analyses
Data are expressed as the mean6 SEM
unless otherwise indicated. For continuous
data, all comparisons between two groups
with n < 6/condition were performed using
the Mann-Whitney test. For comparisons
between two groups with n. 6/condition,
the Mann-Whitney test was used for
continuous data that were not distributed
normally based on results of the Shapiro-
Wilks test. If these data were distributed
normally, the Student’s unpaired two-tailed t
test was used to compare differences
between the two groups. A one-way
ANOVA was used to examine differences in
response to treatments between groups. A
post hoc analysis was performed by the
method of Tukey. To avoid overemphasizing
false-negative statistical results, an additional
adjustment for multiple statistical testing
beyond the method of Tukey was not
included in the ANOVA comparisons. For
categorical variables, the chi-square (x2)
proportion test was used to examine
differences between the two groups. The
Pearson and Spearman correlation
coefficients are presented for linear
regression analyses involving normally and
nonnormally distributed data, respectively. A
P value, 0.05 and a false discovery rate
(FDR), 0.05 were considered significant.

Results

Individual data points for each result are
provided in Data File E1 in the online
supplement.

Hypoxia Induces HIF-1a–Dependent
Upregulation of NEDD9 in HPAECs
Cultured HPAECs were treated with
normoxia or hypoxia (10%, 2%, and 0.2%
O2) for 24 hours, and NEDD9 expression
was analyzed using a commercially available
anti-NEDD9 Ab (Ab 1) (Abcam #18056)
(10). Compared with normoxia, hypoxia-
induced a dose-dependent increase in
NEDD9measured by immunoblot (Figure
1A) and immunofluorescence (Figure 1B).
Maximal hypoxia (0.2% O2) for 24 hours also
increased NEDD9 in saphenous vein
endothelial cells (Figure E1A). By contrast,
hypoxia decreased NEDD9 protein
expression in human brain microvascular
endothelial cells (Figure 1C) and did not
affect NEDD9 significantly in other vascular
cell types (Figure E1A).

A prior gene probe analysis demonstrated
previously that NEDD9 is increased 2.5-fold in
HPAECs that constitutively express HIF 1-a
(18), and hypoxia–NEDD9 signaling is
regulated byHIF-1a in colorectal cancer cells

Table 1. Demographic and Cardiopulmonary Hemodynamic Profile of Patients Treated with Thrombectomy for Luminal PE or
DVT or with PEA for CTEPH

Patient Group Age (yr) Sex (F) [n (%)] mPAP (mm Hg) PVR (WU) CO (L/min) CI (L/min/m2)

Acute PE or DVT, n5 6 5665.1 3 (50) — — — —
CTEPH, n5 7 5566.2 4 (57) 4664.8 8.061.3 4.460.6 2.16 0.2

Definition of abbreviations: CI5 cardiac index; CO5cardiac output; CTEPH5 chronic thromboembolic pulmonary hypertension; DVT5deep
vein thrombosis; mPAP5mean pulmonary artery pressure; PE5pulmonary embolism; PEA5pulmonary endarterectomy; PVR5pulmonary
vascular resistance; WU5Wood units.
Data are presented as mean6SE unless otherwise noted. There was no statistical difference in age between groups (P5 0.94) or sex
(P5 0.70) by two-sample Student’s t test and Chi-square analyses, respectively.

Table 2. Anatomic Locations of the Harvested Thromboembolic Specimens from
Patients Treated with Thrombectomy for Luminal PE or DVT or with PEA for CTEPH

Acute PE/DVT (n56) Anatomic Location of Specimen

1 Left brachial vein thrombus
2 Left lung pulmonary artery embolus
3 Right lung pulmonary artery embolus
4 Right lung pulmonary artery embolus
5 Left lung pulmonary artery embolus
6 Right pulmonary artery embolus

Definition of abbreviations: CTEPH5 chronic thromboembolic pulmonary hypertension;
DVT5deep vein thrombosis; PE5pulmonary embolism; PEA5pulmonary endarterectomy.
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(4). Thus, we next aimed to determine
whether a similar mechanism could account
for our findings involving NEDD9 in
hypoxia-treated HPAECs. Compared with
normoxia, cells treated with hypoxia (0.2%
O2) or the hypoxia mimicker cobalt chloride
(CoCl2) (19) (250mmol/L) for 24 hours
expressed increased HIF 1-a (4.96 1.5 vs.
15.461.5 vs. 13.961.0 arbitrary units [AU];
n5 3–6/condition; P, 0.0001) and NEDD9
(9.061.9 vs. 17.462.2 vs. 16.561.4 AU;
n5 3–6/condition; P, 0.04). However,
transfection with siRNA against HIF 1-a
decreased NEDD9 significantly in hypoxia-
treated cells (16.561.4 vs. 2.46 0.7 AU;
n5 3/condition; P, 0.0001) and CoCl2-
treated cells (16.561.4 vs. 3.36 0.7 AU;
n5 3/condition; P, 0.0001) (Figure 1D).
MicroRNA-145 is a HIF-1a target (20)
linked to NEDD9 transcriptional regulation
and pulmonary vascular disease (21). We
observed that in HPAECs, microRNA-145
inhibition attenuated the effect of hypoxia on
NEDD9 upregulation (Figure E1B).

The Hypoxia Transcriptomic Profiles
Are Distinct between Endothelial
Cell Types
Divergence in the effect of hypoxia on
NEDD9 protein expression between
HPAECs and human brain microvascular
endothelial cells suggested endothelial cell
type–specific differences in HIF-1a
programming.We used RNA sequencing to
identify n5 5,832 and n5 7,296 hypoxia-
regulated genes in HPAECs and human
brain microvascular endothelial cells,
respectively, of which n5 721 and n5 2,965
were unique to each respective cell type. We
also identified n5 66 and n5 1,878
hypoxia-regulated genes unique to HPAECs
and the brain microvascular endothelial cells,
respectively, that were differentially

expressed in cells transfected with siRNA
against HIF 1-a (Figure 1E and Data Files
E2–E5 in the online supplement). Hypoxia
increased NEDD9mRNA transcription
significantly in both HPAECs (12.73-fold
change vs. normoxia; P5 7.093 10246;
FDR5 7.003 10244) and brain
microvascular endothelial cells (11.46-fold
change vs. normoxia; P5 1.053 10211;
FDR5 1.533 10210); however, the extent to
which this effect was observed in the brain
microvascular endothelial cells was
significantly less compared with HPAECs
(21.62-fold change; P5 1.333 10210;
FDR5 1.063 1029) (Figure E1C).

Thrombotic remodeling in the
pulmonary vasculature hinges on increased
collagen that stabilizes clotting, and increased
NEDD9 is profibrotic in HPAECs (10).
However, whether NEDD9 is functionally
important in hypoxia–fibrosis or
hypoxia–thrombosis signaling is not known.
Therefore, we performed a network analysis
to identify profibrotic and prothrombotic
pathways using hypoxia-regulated transcripts
from our RNA-sequencing experiments
enriched for fibrosis or thrombosis genes.
These data were used to generate the HPAEC
hypoxia–fibrosis network and the HPAEC
hypoxia–thrombosis network, which we
termed as the HPAEC hypoxia fibrosome and
HPAEC hypoxia thrombosome, respectively.
We identified NEDD9 in the HPAEC
hypoxia fibrosome (Figure 1F) and hypoxia
thrombosome (Figure 1G), providing
evidence in silico that pulmonary endothelial
NEDD9may be important in thrombotic
remodeling under hypoxic conditions.

The NEDD9 Substrate Domain
Localizes to the Extracellular Plasma
Membrane of HPAECs
Immunofluorescence demonstrated distinct
subcellular expression patterns on the basis

of different NEDD9 Ab targets (Figure 2A).
Specifically, NEDD9 was detected at the cell
perimeter using NEDD9 Ab 1 (Figure 2B),
which targets the p55-kDNEDD9 cleavage
product, and includes the NEDD9 protein
substrate domain (amino acid [AA],
82–398). Immunoprecipitation–liquid
chromatography–mass spectrometry
performed on HPAEC lysates confirmed that
NEDD9 Ab 1 bound peptides exclusively in
the NEDD9 p55-kD fragment (Figure 2C),
which was in contrast to NEDD9 Ab 2,
serving as a negative control, which targeted
an alternative segment of the NEDD9
protein (Figure 2D) (Figure E2) (10, 22).
Compared with treatment with normoxia,
treatment with hypoxia enhanced
colocalization of the NEDD9 p55-kD
fragment with the endothelial plasma-
membrane protein CD31 (PECAM-1
[platelet–endothelial cell adhesion molecule
1]) in nonpermeabilized HPAECs (Figure
2E). In addition, we demonstrated plasma-
membrane expression of NEDD9 using an
elution buffer–based method to isolate the
plasma-membrane fraction of HPAECs
(Figure 2F).

P-Selectin Binds the NEDD9
Substrate Domain
Our data suggested that the NEDD9
p55-kD fragment, which includes the
substrate domain, localizes to the HPAEC
plasma membrane. The substrate domain is
characterized by numerous tyrosine proline
(YxxP) motifs. On the basis of older reports
suggesting that tyrosine may underlie
platelet P-selectin participation in
platelet–endothelial interactions (23), we
hypothesized that P-selectin targets the
NEDD9 substrate domain in HPAECs.
Plasma-membrane fractions incubated
with recombinant P-selectin for 1 hour

Table 3. Individual Characteristics of Patients with CTEPH

CTEPH (n5 7) Age (yr) Sex mPAP (mm Hg) PVR (WU) CO (L/min) CI (L/min/m2) Before PEA Therapy

1 48 M 54 10.2 4.4 2.1 Riociguat
2 64 M 39 5.3 3.2 1.7 None
3 47 M 63 14.5 3.1 1.5 None
4 74 F 39 6.6 4.7 2.6 None
5 46 F 31 7.6 2.9 1.4 None
6 32 F 61 6.3 7.5 3.1 None
7 76 F 37 5.2 4.8 2.6 None

Definition of abbreviations: CI5 cardiac index; CO5cardiac output; CTEPH5 chronic thromboembolic pulmonary hypertension; mPAP5mean
pulmonary artery pressure; PEA5pulmonary endarterectomy; PVR5pulmonary vascular resistance; WU5Wood units.
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were immunoprecipitated with an
anti–P-selectin Ab. Next, liquid
chromatography–mass spectrometry
performed on in-gel trypsin-digested
lysates identified only two NEDD9 peptide
sequences, both within the substrate
domain: K.LYQVPNPQAAPR.D
(AA, 91–102) (NEDD9 peptide sequence 1
[N9-P1]) and K.GPVFSVPVGEIKPQGVY
DIPPTK.G (AA, 191–211) (NEDD9
peptide sequence [N9-P2]) (n5 2
replicates for n5 2 iterations) (Figure
3A). Plasma-membrane fractions from
HPAECs were incubated with vehicle

control or exogenous (recombinant)
P-selectin for 1 hour, and NEDD9–
P-selectin complex formation was
assessed by coimmunoprecipitation.
Compared with vehicle control,
P-selectin (1.0 mg) increased NEDD9–
P-selectin complex formation significantly
by threefold (P5 0.030, n5 3) (Figure
3B). Microscale thermophoresis generated
a dose titration curve indicative of a
physical association between the receptor
(NEDD9) and ligand (P-selectin) with an
estimated Kd of 13.9 nM (n5 2) (Figures
3C–3E).

NEDD9 Is a Modifiable Target to
Inhibit Platelet–Endothelial
Adhesion In Vitro
Twomodel peptides corresponding to the
N9-P1 and N9-P2 sequences were
synthesized and used to develop an
antihuman, monospecific polyclonal Ab
(msAb) against each peptide (msAb–N9-P1
andmsAb–N9-P2) (Figures E3A–E3D).
Recombinant NEDD9 and P-selectin were
incubated for 30 minutes in a cell-free system
supplemented with either msAb–N9-P1
(10–20mg/ml) or msAb–N9-P2 (10–20mg/
ml), and differences in NEDD9–P-selectin
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Figure 1. In human pulmonary artery endothelial cells (HPAECs), the protein NEDD9 is increased by hypoxia–HIF-1a (hypoxia-inducible
factor-1a) signaling in vitro and is prothrombotic in silico. (A) Anti-NEDD9 immunoblotting and (B) immunofluorescence were performed on
lysates from HPAECs treated with normoxia or hypoxia (10%, 2%, 0.2% O2) for 24 hours (n5 3). IgG1 is the negative control. (C) In
contrast to our findings in HPAECs, hypoxia decreased NEDD9 in human brain microvascular endothelial cells (HBMVECs) (n53). (D)
Inhibition of HIF-1a with siRNA decreases NEDD9 expression in HPAECs treated with hypoxia or cobalt chloride (CoCl2) (250 mmol/L)
(n53). (E) Venn diagram illustrating the distribution of uniquely differentially expressed gene transcripts analyzed by RNA sequencing in
HPAECs and HBMVECs treated with normoxia or hypoxia for 24 hours, and untransfected or transfected with si–HIF-1a (n53/condition).
The genes related to fibrosis and thrombosis were collected from the curated literature. The gene products (proteins) of HPAEC
transcripts that were differentially expressed between normoxia and hypoxia and that were associated with either fibrosis or thrombosis
were mapped to the human protein–protein interactome (after Reference 10). NEDD9 (indicated by red oval) was identified in the (F)
HPAEC hypoxia fibrosome and the (G) HPAEC hypoxia thrombosome. These findings suggest that NEDD9 is functionally relevant to
endophenotypes involved in pulmonary thromboembolism. Scale bars, 20 mm. Data are presented as the mean6SE. Representative
immunoblots and micrographs are shown. a.u.5arbitrary units; Scr5 scrambled siRNA (negative) control; si–HIF-1a5HIF-1a siRNA;
UN5 untreated; V5 lipofectamine alone.
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complex formation were analyzed by
immunoprecipitation–immunoblot. We
observed maximal inhibition of NEDD9–P-
selectin complex formation by msAb–N9-P2
(20 mM) (Figure 4A).

Compared with normoxia, hypoxia for
24 hours increased HPAEC expression of the
N9-P2 peptide (Figure E3E), and msAb–N9-
P2 inhibited TRAP-stimulated
platelet–endothelial adhesion in hypoxia-
treated cells (Figure 4B). On the basis of
these collective results, we focused on the
effect of msAb–N9-P2 in further in vitro

experiments. We also expanded our
conditions to include HPAEC treatment
with IL-6, which is an inflammatory cytokine
that is increased in CTEPH (24). We
observed that IL-6 increased NEDD9
expression and the adhesion of
activated platelets to HPAECs (Figure E4).
Compared with IgG1 control, the
inhibitory effect of msAb–N9-P2 on the
adhesion of activated platelets to
HPAECs treated with IL-6 was equivalent to
the effect of inhibiting P-selectin or P-
selectin glycoprotein ligand-1, which

is the P-selectin counter receptor
(Figure 4C).

NEDD9 Does Not Regulate Platelet
Aggregation
Using platelets isolated from healthy
volunteers, we detected NEDD9 outside of
platelet a-granules by anti-NEDD9
immunofluorescence and along the outer
perimeter of platelets by electron microscopy
(both experiments used NEDD9 Ab 3)
(Figure 5A). We next isolated platelets from
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wild-type (WT) and NEDD92/2 mice and
found no difference in global platelet
aggregation between these two conditions in
response to collagen or other potent murine
platelet agonists (Figure 5B). We also
observed no significant difference in whole-
blood impedance aggregometry, plasma
tissue plasminogen activator concentration,
or plasminogen activator inhibitor-1
concentration betweenWT and NEDD92/2

mice, nor did we observe differences in
impedance aggregometry observed between
human blood samples incubated with or
without msAb–N9-P2 (Figures 5C–5E).
Furthermore, TRAP-stimulated
platelet–endothelial adhesion was decreased
significantly in HPAECs transfected with
NEDD9 siRNA (Figure E5). These collective

findings are in support of our hypothesis that
platelet–pulmonary endothelial interactions
are modulated by N9-P2 expressed in
HPAECs, rather than NEDD9 expressed in
platelets.

NEDD9 Inhibition Prevents the
Formation of Platelet–Pulmonary
Endothelial Aggregates and
Pulmonary Hypertension In Vivo
We next turned to the established murine
model of ADP-induced platelet activation
(Figures E6 and E7) (25). Compared with
WTmice, NEDD92/2 mice were resistant to
the formation of ADP-induced
platelet–pulmonary endothelial aggregates
(Figures 6A and E8A) and had a significantly

blunted increase in right ventricular
systolic pressure (Figures 6B and E8B). To
determine whether NEDD9 antagonism
affects platelet–endothelial adhesion
in vivo, WT mice were pretreated with
msAb–N9-P2 or msAb–N9-P1 (as a
negative control) for 10 minutes before
ADP infusion. Compared with IgG1

control, treatment with msAb–N9-P2
decreased ADP-induced vascular occlusion
and pulmonary hypertension significantly
(Figures 6C and 6D).

NEDD9 Inhibition Prevents Chronic
Thromboembolic Remodeling In Vivo
To determine whether msAb–N9-P2 was
effective at inhibiting chronic
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thromboembolic pulmonary arterial
remodeling in vivo, we used a lung-
embolization disease model in which
beads containing fibrinogen-coated and
collagen-coated microspheres in thrombin
solution were administered sequentially to
rats (Figure E6). Compared with
untreated rats, sequential bead
embolization increased PECAM-1
expression (indicative of endothelial
proliferation), vascular NEDD9 expression,
and fibrotic and thrombotic pulmonary
arterial remodeling without significantly
affecting right-ventricular fibrosis quantity.
Using a disease-prevention strategy,
treatment with msAb–N9-P2 significantly
inhibited the platelet-rich thrombi burden

as well as vascular fibrosis in vivo
(Figures 6E and E9).

Pulmonary endothelial apoptosis and
sloughing are reported for monocrotaline-
treated rats (26), which we studied next as a
negative-control in vivomodel on the basis
of our findings in vitro indicating that
pulmonary endothelial NEDD9 was required
for modulating NEDD9-dependent
platelet–HPAEC interactions. In disease
prevention and reversal studies (Figure E6),
we observed, respectively, that pulmonary
arterial PECAM-1 was decreased
significantly in monocrotaline-treated rats
compared with normal control rats (606 13
vs. 636 17 vs. 4376 25 AU; n5 3;
P, 0.0001). In line with this finding,

msAb–N9-P2 had no significant effect on the
platelet-rich thrombi burden,
cardiopulmonary hemodynamics, or right-
ventricular fibrosis in monocrotaline-treated
rats (Figure E10).

NEDD9 Is Increased in Patients
with CTEPH
Compared with healthy (rejected donor)
control lungs, a graded increase in vascular
fibrosis was observed for acute deep vein
thrombosis and pulmonary embolism and
CTEPH pulmonary endarterectomy
specimens (Figure 7A). Immunofluorescence
analyses showed a directionally similar
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pattern of expression across control donor
lung, deep vein thrombosis or pulmonary
embolism, and CTEPH samples for HIF-1a
and NEDD9, as well as P-selectin and
NEDD9 (Figure 7A). Analyzing the
pulmonary embolism and deep vein
thrombosis and CTEPH specimens
collectively, NEDD9 correlated strongly with
P-selectin (r5 10.86; P5 0.004) and HIF-
1a (r5 10.89; P5 0.04) (Figure E11).

These data were consistent with our
findings in HPAECs isolated from patients
with CTEPH, which expressed increased
HIF-1a and NEDD9 compared with control
donor HPAECs (Figure 7B).
Immunofluorescence analyses of HPAECs
from patients with CTEPH also confirmed
increased NEDD9 expression using
msAb–N9-P2 (Figure 7C). Akin to older
reports indicating that
CTEPH is associated with a prothrombotic
endothelium (27), platelet–endothelial
adhesion was increased in HPAECs from
patients with CTEPH compared with control
donor HPAECs under basal conditions as
well as after stimulation of healthy donor
platelets with TRAP (Figure E12A). Despite

enhanced thrombogenicity in HPAECs from
patients with CTEPH, msAb–N9-P2
inhibited TRAP-stimulated platelet adhesion
to these cells significantly (Figure 7D). In
plasma from patients with CTEPH, increased
platelet activation and NEDD9 concentration
were observed compared with age-matched
and sex-matched healthy control volunteers
(Figures 7E and Figure E12B). An illustrative
summary of these data is provided
in Figure E13.

Discussion

These data demonstrate HIF-1a–dependent
upregulation of NEDD9 expression on the
extracellular surface of HPAECs. A
functional NEDD9 peptide participates in a
previously unrecognized protein–protein
interaction with platelet P-selectin. The
sequence of this NEDD9 peptide was used to
develop a novel anti-NEDD9 Ab (msAb–N9-
P2), and msAb–N9-P2 inhibited the
adhesion of activated platelets to HPAECs
under conditions of hypoxia or

inflammation in vitro, prevented the acute
formation of platelet–endothelial aggregates
and pulmonary hypertension in vivo, and
decreased chronic thromboembolic
remodeling in rats in vivo. Expression of
NEDD9 was increased in endarterectomy
specimens from patients with CTEPH, and
msAb–N9-P2 inhibited adhesion of
activated platelets to pulmonary artery
endothelial cells ex vivo from patients with
CTEPH. Overall, our findings identify
NEDD9 as a modifiable mediator of
platelet–endothelial interactions, with
relevance to pulmonary vascular diseases
characterized by hypoxia, activated platelets,
and thromboembolic remodeling.

These data expand NEDD9 binding
targets to include P-selectin, which, to our
knowledge, has not been shown previously.
We focused on P-selectin because it is an
established mediator of pulmonary arterial
thrombosis (28, 29), supported further by
our histomicrographs showing increased
NEDD9 and P-selectin in endarterectomy
specimens. The mechanisms implicated in P-
selectin biofunctionality vary (30); however,
in one report, P-selectin binding affinity was
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determined by a critical tyrosine residue in
its counter receptor (23), and it is notable
that the NEDD9 peptides targeted by P-
selectin in this study included YxxP motifs.
Microscale thermophoresis yielded a Kd for
NEDD9–P-selectin binding akin to those of
other clinically relevant platelet–endothelial
protein–protein interactions, including
glycoprotein IIb/IIIa–vonWillebrand Factor
(31) and P-selectin–P-selectin glycoprotein
ligand-1 (32). Importantly, inhibition of P-
selectin glycoprotein ligand-1 induces major
pulmonary vascular injury (33), suggesting
NEDD9may be an attractive alternative
therapeutic target to limit pathogenic
platelet–pulmonary endothelial aggregates.

The network analyses provided key data
in silico implicating NEDD9 involvement in
hypoxia, fibrosis, and thrombosis, which are
three endophenotypes underlying
pulmonary vascular thrombotic remodeling
(34). Indeed, a continuum in pulmonary
vascular fibrosis, endothelial
hypoxia–inducible factor-1a, clot extent, and
NEDD9 expression was observed across
negative control, pulmonary embolism, and
CTEPH specimens. This parallels older
reports showing that vascular remodeling
correlates positively with persistent
hypoxemia and HIF-1a cell positivity after
endarterectomy (7, 35). In a second disease-
relevant experimental system, msAb–N9-P2

inhibited platelet–endothelial adhesion
induced by the proinflammatory CTEPH
cytokine IL-6.

These observations suggest that chronic
overexpression of pulmonary endothelial
NEDD9 due to hypoxic and/or inflammatory
vascular injury after pulmonary embolism
may offer novel mechanistic insight
underpinning the phenotype transition to
CTEPH (Figure E13). However, the
pathogenesis of CTEPH is complex and
undoubtedly extends beyond the effects of
hypoxic and/or inflammatory signaling on
NEDD9 (36, 37). For example, platelet access
to an intact endothelium appeared necessary
for preventing NEDD9-mediated pulmonary
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arterial thrombi in vivo. Topological
characteristics of thrombus that affect its
clearance and variability in collagen-
dependent clot stabilization are also likely to
influence NEDD9-dependent and NEDD9-
independent mechanistic drivers of the
CTEPH pathophenotype.

There were 1,812more hypoxia-
regulated, HIF-1a–dependent genes unique
to human brain microvascular endothelial
cells compared with HPAECs. Cell
type–specific hypoxia-response patterns may,
thus, be useful for understanding

mechanisms that differentially affect
platelet–endothelial adhesion in the
pulmonary versus cerebral circulations. We
also observed that hypoxia increased NEDD9
protein expression in saphenous vein
endothelial cells and HPAECs but not in
brain microvascular endothelial cells,
implying that NEDD9-modulating therapies
may correspond to different off-target side-
effect profiles across vascular beds. These
findings present an opportunity to explore
endothelial dysfunction in prothrombotic
clinical phenotypes characterized by hypoxia,

such as acute respiratory distress syndrome
and ischemic stroke, which are central to
critical care medicine (38).

P-selectin–independent mechanisms
involving NEDD9 that could affect
pulmonary vascular thrombosis were not
studied here, and future research should
focus on established thrombotic treatment
targets such as integrins or glycoprotein IIb/
IIIa (39). Similarly, the effect of SMAD3
(mothers against decapentaplegic homolog
3) on hemostasis was not a focus of this
study, although SMAD3 was connected to
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NEDD9 in the hypoxia fibrosome and
SMAD3 upregulates plasminogen activator
inhibitor-1 (10, 40). Our findings affirm
older reports suggesting microRNA-145 is a
HIF-1a target that regulates NEDD9
transcription (21); however, alternative
molecular mechanisms that regulateNEDD9
transcription may exist. For example, SOX13
andHDAC1were HIF-1a–dependent genes,
transcription factors predicted to target
NEDD9, and established already in the
pathobiology of pulmonary vascular disease
(41). Uncoupling between NEDD9mRNA
and protein concentrationmay occur because
of post-transcriptional events affecting
NEDD9 degradation, as shown previously (10,
42). Exploring themolecular mechanisms that
accounted for this phenomenon in hypoxia-
treated brainmicrovascular endothelial cells is
needed andmay identify additional hypoxia-
sensitive vasoactive signaling pathways that are
cell-type specific.

The inclusion of patients with CTEPH
biospecimens in network analyses is likely to
offer particularly valuable insight on disease-

specific signaling pathways, and
understanding NEDD9 biofunctionality in
platelet–endothelial adhesion could be
enhanced by using systems that incorporate
dynamic (flow) conditions. Dedicated
analysis of platelet interactions with
neutrophils, which express NEDD9 (43) and
are known to modulate pulmonary
microthrombi formation (particularly sickle
cell disease) (44) and platelet sequestration, is
warranted. Data showing that msAb–N9-P2
reverses thrombotic pathophenotypes are
needed before characterizing the full clinical
translational potential of our findings.

In conclusion, this study identifies
NEDD9 as a previously unrecognized
mediator of platelet–endothelial adhesion
and expands the range of protein–protein
interactions involved in the pathobiology of
cardiopulmonary diseases. We also show that
NEDD9-mediated platelet–endothelial
interactions are modifiable
pharmacologically, which was accomplished
through the development of a novel anti-
NEDD9 Ab targeting the extracellular

NEDD9 peptide that binds P-selectin.
Overall, these data illustrate a novel
prothrombotic pathogenetic molecular
mechanism that is relevant to diseases
characterized by hypoxia, activated platelets,
and endothelial dysfunction, including
CTEPH.�
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