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The western honey bee (Apis mellifera) is one of the most
important insects kept by humans, but high colony losses are
reported around the world. While the effects of general
climatic conditions on colony winter mortality were already
demonstrated, no study has investigated specific weather
conditions linked to biophysical processes governing colony
vitality. Here, we quantify the comparative relevance of four
such processes that co-determine the colonies’ fitness for
wintering during the annual hive management cycle, using a
10-year dataset of winter colony mortality in Austria that
includes 266 378 bee colonies. We formulate four process-based
hypotheses for wintering success and operationalize them with
weather indicators. The empirical data is used to fit simple and
multiple linear regression models on different geographical
scales. The results show that approximately 20% of winter
mortality variability can be explained by the analysed weather
conditions, and that it is most sensitive to the duration
of extreme cold spells in mid and late winter. Our approach
shows the potential of developing weather indicators based
on biophysical processes and discusses the way forward for
applying them in climate change studies.

1. Introduction
Thewestern honey bee (Apis mellifera) is an economically important
human-kept insect. Next to honey, beeswax, pollen, propolis and
royal jelly, honey bees provide a significant ecosystem service: the
pollination of wild plants and agricultural crops. For more than a
decade, the health status and mortality of managed bee colonies
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have been monitored thoroughly in Austria [1–4]. The best-investigated topic is colony mortality during

wintering, which also has a significant economic importance [5]. It is surveyed using international
standards [6]. The winter months in temperate zones are a critical period for bee colonies: since foraging
is not possible, they need to sustain themselves from food stored in the hive. Breeding activity is reduced
to a minimum, so worker bees live for months instead of weeks [7]. Wintering is a complex process and
is influenced by an abundance of biotic and abiotic factors [8,9]. A field study of winter 2015/2016 in
Austria provided evidence for the significance of infestation with the parasitic mite Varroa destructor [10].
Other factors that have been proven to impact wintering are beekeeping practices and operation size,
queen replacement, Varroa control or the availability of melliferous plants [6,11–13]. Related to the latter,
the impacts of landscape composition and especially agriculture on honey bee overwintering in Austria
were investigated by Kuchling et al. [14].

Although colonies can adapt to temperature changes due to thermoregulation [15], the weather has
multiple effects on honey bees’ foraging and behaviour [16–18], on wintering ability [19] and on Varroa
control [20]. Until now, there are surprisingly few empirical studies that investigate the correlations
between winter mortality and meteorological conditions throughout the year [21–23]. One study
quantified these correlations with a large dataset, using 6 years of beekeeper survey data from Austria
and monthly averages of temperature, precipitation, global radiation and wind speed [24]. Another
study suggested monthly temperature and precipitation averages as co-determinants for the impacts
of Varroa control methods, using a 5-year dataset of winter colony mortality [21]. While both present
an estimation of the sensitivity of winter mortality to annual and monthly average conditions, they do
not include any biophysical considerations of the connections between weather and bee colony vitality.

This study aims to close that gap by examining four biophysical processes related to colony fitness for
wintering. The processes investigated take place over the course of the whole year: foraging conditions
during the flowering period [22,23], cold weather in autumn to signal the start of wintering [8], weather-
dependent hive hygiene in winter [25,26] and extreme cold spells as a threat to hive-internal food supply
during mid and late winter, the colonies’ most precarious time of the year [22,24]. Quantifying and
comparing the relevance of these processes for winter survival constitute our main study goals.

We introduce four working hypotheses that define the relations between the biophysical processes
and certain weather conditions. Each hypothesis includes an assumption about the direction of the
correlation with colony winter mortality.

1.1. Forage during the flowering period
To build up strong colonies and sufficient food stores, floral resources in the bees’ environment need to be
exploited. Favourable weather conditions are required to leave the hive for forage flights. The more days
with such favourable weather occur during the flowering period, the more food/energy the colony is
able to gather and store and the better prepared it is for the winter [23,27–29]. As honey stores are
usually replaced with sugar supplements before wintering, forage conditions affect the spring/summer
colony build-up and development, which could affect wintering. We therefore hypothesize the
correlation of this biophysical process with winter mortality to be negative.

1.2. Cold snaps in autumn trigger wintering
The timing of colonies to start wintering matters for overwintering success. It is assumed that the process
of wintering is indirectly triggered i.e. by decreasing temperatures in autumn [30]. If warm periods
stretch into late autumn or early winter, sudden cold spells could hit underprepared colonies. Cold
spells with adequate duration and intensity during late autumn trigger colony wintering at the right
time, reducing the likelihood of colony loss over winter. We assume a negative correlation of cold
snaps in autumn with honey bee colony winter mortality.

1.3. Hive hygiene in early winter
During the winter months, food stores are consumed by long-lived winter bees. Since bees do not defecate
inside the hive to reduce pathogen dispersion, their faeces accumulate in their rectum. Regular snaps of
warm weather during the coldest months help bees to leave the hive and defecate. The more regular
these mild winter weather conditions occur, the better the hygiene of the hive can be maintained,
increasing the bees’ vitality [26]. Such snaps of warm weather also facilitate the movement of the winter
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cluster to the food stores (see below). We therefore assume a negative correlation of regular warm weather
conditions during winter with colony mortality.

1.4. Extreme cold spells in winter
Intense and persistent cold spells in mid and late winter can disrupt the food supply inside the hive, as
bees require certain minimum temperatures to break the winter cluster and move to the food. At this time
of the year, food demand is increased due to the start of egg-laying and brood rearing. High frequency of
occurrence and long duration of cold spells could cause increased colony loss rates. Here, we assume the
correlation with honey bee colony winter mortality to be positive.

The four hypotheses are operationalized as four weather indicators (two of which consist of two
variables, for a total of six variables) and evaluated with empirical data. We use 10 years of beekeeper
survey data on honey bee colony losses and meteorological observations from the Austrian weather
service ZAMG [31]. Single and multivariate regression analyses are conducted to investigate the
correlations at the country level and for Austrian political districts. Quantifying the comparative
relevance of the selected weather conditions for colony winter mortality on a district scale could
provide useful assistance in hive management for local beekeepers.
Sci.8:210618
2. Material and methods
The following section is structured into two subsections. First, the empirical data used to assess the working
hypotheses is presented: a 10-year dataset of honey bee colony wintering in Austria and a gridded
observational weather dataset. Second, the methods of data processing and analysis are described. Four
weather indicators consisting of six variables are defined to operationalize the hypotheses and detect
specific weather conditions in the meteorological dataset. Then the statistical approaches used to prepare
the data and evaluate the hypothesis are explained.

2.1. Data

2.1.1. Survey on honey bee colony losses in winter

Data on winter mortality of honey bee colonies presented in this paper originates from an ongoing survey
that started in 2008. All beekeepers in Austria were invited to submit at the end of winter the number of
wintered colonies, the number of lost colonies during winter and, among other details, their location (or
their main location in case of multiple apiary venues) [4]. Location was recorded as municipality and zip
code and transformed to GPS coordinates. All datasets were used, regardless of the number of apiaries
per operation. The survey considers loss due to queen problems, mortality (dead colonies, empty hives)
and natural disasters. The latter is not included in this analysis [13]. In total, the survey yielded 12 779
responses representing 266 378 colonies over all of Austria in the period of 2011 to 2020.

2.1.2. Gridded observational weather data

Weather data was obtained from a gridded observational dataset developed by the Austrian weather
service ZAMG. The dataset SPARTACUS provides meteorological data on a 1 × 1 km grid,
interpolated from about 150 homogenized station data series. The data features a daily temporal
resolution and is available from 1961 onwards [31]. The following variables from the SPARTACUS
dataset were used to calculate the weather indicators employed in this study: daily minimum and
maximum temperature, daily mean temperature and daily precipitation sums. Temperature variables
are measured between 19.00 CET of the previous day and 19.00 CET of the following day;
precipitation sums are counted from 07.00 CET until 07.00 CET of the next day.

2.2. Methods

2.2.1. Mortality rates

In a first step, GPS coordinates of the respondents’ locations are geolocated as point data in QGIS [32].
The points are then aggregated to polygons of the 94 political districts in Austria. This scale is an
intermediate between NUTS3 level [33] and municipal level. A more detailed spatial attribution of
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apiaries is not realized because the survey only allows the specification of one location per respondent,

but apiaries are sometimes distributed over multiple municipalities. Also, aggregating to district level
rather than working directly with survey results on point level reduces inaccuracies in individual
survey responses. Choosing the polygons based on political boundaries presents an example of the
modifiable areal unit problem (MAUP) [34], which describes statistical bias stemming from
the arbitrarily chosen unit of spatial aggregation. Here, this bias is accepted as a trade-off for the
relevance of our results for public authorities operating within these administrative units.

Bee colony mortality rates are calculated as percentages of lost colonies per district. For each district,
an average mortality rate of the survey period (2011–2020) is calculated, including only years with at least
five responses (= valid data). In addition, to reduce the leverage of outliers, district averages are only
computed if at least 5 years with valid data are available for the respective district. Differences from
the average mortality rate were calculated for each year with valid data (i.e. more than five
responses). Using absolute percentage points as a difference measure is problematic because of
sizeable discrepancies in the distribution of mortality rates between districts. Therefore, mortality
anomalies were normalized to standard scores according to Formula 1: Calculation of standard scores
for colony mortality rates.

Mzi,j ¼
Mi,j � Mmi

M si
,

Mzi,j: z� score of mortality in district i and year j,

Mi,j: Mortality rate in district i and year j,

Mmi: Average mortality rate in district i
and Msi: Standard deviation of mortality rates in district i:

Using normalized standard scores rather than absolute differences increases the comparability of
mortality rates between districts. This measure serves as the dependent variable in the statistical
analysis described below.
2.2.2. Weather indicators

The hypotheses are operationalized in the form of four weather indicators that define the relevant
patterns in the meteorological data. Two indicators consist of two variables, bringing the total count
of variables to six. In the following, all six variables are referred to as ‘indicators’ for simplicity.

Days with optimal flying conditions. Counted are the days between 1 March and 31 October with daily
mean temperatures above 10°C and precipitation sums below 1 mm (dry days). This indicator is similar
to the ‘flying hours’ defined by van Esch et al. [22]. It counts the total number of days where bees can
forage for food in clear weather conditions during the flying season.

Cold spells in late autumn. Counted are periods of at least 7 consecutive days between 15 October and
15 December that start with a day with a minimum temperature below −5°C. Each day of the period has
a mean temperature of at most 3°C. If the average daily minimum temperature of the hitherto period
exceeds −3°C, it is interrupted. The indicator consists of two variables: total number of days in cold
spells and maximum duration of cold spells per year. Such cold spells should occur in the defined
time frame to trigger wintering.

Mild winter weather.Counted are the number of 9-day moving windows in January and February in which
favourable conditions for hygiene flights occur. A window is counted if it contains at least 2 days with a
maximum temperature of at least 5°C and precipitation sums of below 1 mm (dry days). The indicator
checks for the regular occurrence of such favourable conditions during early and mid-winter. Depending on
whether it is a leap year, 51 or 52 such 9-day moving windows are possible in that time frame. The window
length was varied between 5 and 10 days in preliminary tests, with 9-daywindows producing the best results.

Cold spells in winter.Counted are periods of at least 10 consecutive days in January, February andMarch
with a maximum temperature of below 2°C. If the average daily mean temperature of the hitherto period
exceeds 0°C the period is interrupted. This indicator also consists of two variables: total number of days in
cold spells andmaximumduration of cold spells per year. Prolonged cold spells in mid and latewinter lead
to hive-internal food shortages, resulting in an increase in colony loss rates.

The six indicators feature an annual time resolution (e.g. number of days with optimal flying
conditions per year, maximum duration of winter cold spells per year). These annual values were
averaged over the period 1981–2010, which constitutes the climatological standard normal [35] until
the end of the year 2020. Instead of absolute indicator values, anomalies (absolute differences) from
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the climatological period 1981–2010 are used to analyse the relations between weather and bee colony

mortality. Using annual absolute values is problematic because some indicators feature a discrete
spectrum (e.g. late autumn and winter cold spells). Furthermore, most indicators are temperature
dependent and therefore highly correlated with elevation. Using anomalies is a common methodological
approach in climatological studies to manage this elevation dependency.

Although apiculture inAustria does extend to areaswell above 1000 m.a.s.l., it does not occur frequently at
such altitudes. Thus, elevations above 1200 m.a.s.l. were masked out from the gridded weather data and not
included in the subsequent analysis. For each district and year, the area median of all masked weather data is
calculated. It serves as the independent variable for the statistical analysis described in the next section.
Electronic supplementary material, table S.1 provides the correlation structure of the six weather indicators.
rnal/rsos
R.Soc.Open
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2.3. Regression analysis
Simple and multiple linear regression with stepwise predictor selection was applied to the whole dataset
and to subsets of the data. Other feasible methods include tree-based machine learning algorithms, but
for testing and comparing each hypothesis, a less complex and less automated approach was selected.
Before the analysis, diagnostic tests were performed to check whether the data satisfies the assumptions
of linear regression analysis (normal distribution of the dependent variable, homoscedasticity of
residuals). The independent variables are not highly correlated, as shown in the electronic
supplementary material, table S.1, except for the two sub-indicators ‘cold spells in late autumn’ and ‘cold
spells in winter’. They feature a correlation of 0.97 and 0.94, respectively.

The Austrian-wide analysis examines the relation betweenmortality rates and indicators for all districts
and years, resulting in 700 valid data points (70 districts with valid data × 10 years). The simple linear
regression method models the influence of one predictor on the dependent variable (mortality).
Naturally, multiple indicators can have combined effects on mortality. Therefore, in addition to simple
linear regression, a multivariate linear regression analysis is performed. Due to the high correlation of
the two sub-indicator pairs mentioned above, this model includes only one of each sub-indicator,
resulting in four weather predictors for the Austrian dataset. Formula 2: Linear regression model for
single or multiple predictors, shows the generic equation for single and multiple linear regression models.

Y ¼ aþ bn � xn þ 1,
Y: Predicted value for dependent variable

a: Intercept on y� axis
bn: Regression coefficients of n independent variables,

xn: Model inputs of n independent variables,
and 1: Residual error:

Toprovide relevant results for local beekeepers, bothanalyses are alsoperformedon thedistrict level.Models
are only fitted when at least 5 years of valid mortality data are available, and the weather data show some
variability over time (σ> 0). Regression coefficients, R2-values and p-values are calculated for all districts that
fulfil the data requirements. The analysis yields each indicator’s predictive skill in the district domain.

Multivariate models are fitted with a stepwise algorithm implemented in the statistical software R
[36,37]. It fits the model by adding and dropping predictors, starting with a defined set and minimizing
the Akaike information criterion (AIC) [38]. Thus, an optimized multiple linear regression model is
obtained for each district where the algorithm can determine the AIC. In addition to the comparison of
single indicators’ relevance, stepwise predictor selection adds combined (additive) effects to the models
on district level. A drawback of this downscaling is the small number of data available for each district.
Statistical analysis of only 5–10 data points is subject to large uncertainties and overfitting. In the
following sections, we will review and quantify this caveat and present reasons for confidence in the
results despite small sample sizes.

Electronic supplementary material, table S.2 presents an overview of the statistical analyses carried
out in this study, summarizing the scope, parameters and sample size of each model.
3. Results
Climatological means were calculated for the six weather indicators and are displayed as maps in
figure 1. Regions above 1200 m.a.s.l. are masked out because only lower elevations were considered
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Figure 1. Climatological means of the period 1981–2010 for the six selected climate indicators. Regions above 1200 m.a.s.l. are masked
out (grey colour). (a) Days with optimal flying conditions during the flying season (March–October). (b) The maximum duration of cold
spells in late autumn (October–December). (c) Total number of days in late autumn cold spells (October–December). (d ) Mild winter
weather in January and February (percentage of counted 9-day windows per possible number of 9-day windows). (e) The maximum
duration of frost waves in winter (January–March). ( f ) Total number of days in frost waves in winter (January–March).
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relevant for apiculture in Austria and included in the subsequent analysis. As each indicator is either
temperature dependent or temperature and precipitation dependent, elevation is a vital factor for the
patterns seen on the maps. While the most favoured regions for the indicator ‘days with optimal
flying conditions’ lie in Vienna, the eastern part of Lower Austria (Marchfeld) and the northern
Burgenland (‘Seewinkel’ region, bordering Lake Neusiedl), the highest share of mild winter weather
occurs in the southeastern part of Styria (Grazer Becken) and most regions of Burgenland. Winter cold
spell indicators show the coldest regions on the southeastern border of the Alps, and northern Austria
(‘Waldviertel’ in Lower Austria, ‘Hausruck’ region and northern Upper Austria). For cold spells in
late autumn, the eastern pre-Alps and areas north and south of the main Alpine ridge show the
highest values. In general, the climatological plots of the six indicators give a good representation of
the most advantaged apicultural regions of Austria.

Mean mortality rates were calculated for the study period (2011–2020) and aggregated to Austrian
political districts (figure 2a). Only years and districts with valid data are shown (see the Methods
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Figure 2. Honey bee colony winter mortality rates in Austria. (a) Mean mortality rates per district over the study period 2011–2020.
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included.
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section). The mean mortality rate for wintered bee colonies over the whole of Austria is 17.1%, with a
minimum of 9.4% and a maximum of 27.1%. Higher mortality rates generally occur in the eastern
part of Austria, especially in the northeast. The central Alpine regions, parts of Upper Austria and
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western Tyrol feature lower mortality rates on average. Figure 2b–e shows the difference from the mean

mortality rate for each district, displayed as standard deviations for the 4 years 2012, 2015, 2016 and 2018.
These years have the highest (2012, 2015) and lowest (2016, 2018) absolute mortality rates within the
study period, averaged over Austria. Each of the 4 years shows quite similar standard deviations for
most districts.

Some background information about the scope of the survey is provided in the electronic
supplementary material, figure S.1 that displays the total number of survey responses over all years
for each district, while electronic supplementary material, figure S.2 shows the number of years with
valid data per district. Electronic supplementary material, figure S.3 presents the correlation
coefficients between the mortality rate time series of each district and the country-wide mortality rate
time series. With an average correlation coefficient of 65% and only three districts that are negatively
correlated, it reveals a quite homogeneous development of mortality rates over the 10 survey years.
This is consistent with the uniform pattern of mortality standard deviations seen in figure 2b–e.

The results from the Austrian-wide simple linear regression analysis are presented in figure 3. The
equation of the trend line as well as the adjusted coefficient of determination of the linear model
(R2-value, adjusted to the number of data points used for model fitting) and its significance ( p-value)
are annotated in the figure. All trend lines concur with the respective hypothesis’s assumed
correlation with bee colony winter mortality. The models for optimal flying conditions, mild winter
weather and cold spells in late autumn (both maximum duration and number of days in cold spells)
all feature negative regression coefficients (decreasing trend). The models for maximum duration and
number of days in winter cold spells show positive coefficients (increasing trend). All country-wide
models are statistically significant ( p-value < 0.05) except for the indicator ‘number of days in late
autumn cold spells’. R2-values range between 0.00 for ‘number of days in late autumn cold spells’
and 0.06 for ‘maximum duration of winter cold spells’. The other indicators, ranked after decreasing
R2-values, are ‘number of days in winter cold spells’ (0.05), ‘mild winter weather’ (0.03), ‘optimal
flying conditions’ (0.02) and ‘maximum duration of cold spells in late autumn’ (0.01).

Combined effects of the six weather indicators on colony winter mortality were analysed with
multiple linear regression analysis. A multivariate model including four indicators (only the
‘maximum duration’ sub-indicators for late autumn and winter cold spells were selected) was fitted
for all valid data points in Austria. The combined model has an adjusted R2-value of 0.09, meaning it
can explain approximately 10% of the country-wide variance in mortality rates. The model is
statistically highly significant (p-value of 1.865 × 10−14) with 695 degrees of freedom (n = 700).

The results of the district-level analysis are shown in figure 4. Each panel displays the regression
results for one of the six weather indicators. Colours serve as a two-dimensional scale: their hue
indicates an increasing (green) or decreasing (orange) slope of the regression trend line. Positive
correlations mean that an increase of indicator (anomaly) values cause an increase in mortality rates,
and negative correlations mean that an increase of indicator values cause a decrease in mortality rates.
The colours’ saturation signifies the statistical significance of the fitted model as expressed by the
p-value. p-values higher than 0.1 are considered not statistically significant and are shown in more
desaturated colours. The colours give notice whether the indicators’ related hypothesis is confirmed
by the districts’ data. The R2-values noted in the lower left corner of the panels only include districts
that match the assumed correlation of the indicators’ underlying hypothesis. The results of the
district-level regression analysis are summarized in table 1.

For 60–78% of valid districts, the data matches the expected correlation of the indicators’ underlying
hypothesis. The district-level analysis reveals geographical patterns of indicator relevance. For example,
the two ‘cold spells in winter’ indicators match assumed correlations in districts in the central Alpine
regions, in northeastern Austria and Vorarlberg, while the effects are diminished in more peripheral
districts. The other indicators that are assumed to be negatively correlated with winter mortality
produce better models in the lowlands and pre-Alpine regions, and worse models in the high Alps of
central Austria. To highlight these patterns, figure 5 maps the single indicator with the highest
adjusted R2-value per district. Green colour marks districts where the indicator ‘optimal flying
conditions’ showed highest R2-values, dark and light purple signify cold spells in late autumn
(maximum duration and number of days), orange colour shows mild winter weather and dark/light
blue represents winter cold spell indicators (maximum duration and number of days). In general,
extreme cold spells in winter are more relevant in the central Alps, while the effects of warmer
climates on winter mortality predominate in the lower lying regions of Austria.

For the district St. Poelten (Land) in Lower Austria, which offers a high average R2-value over all
indicators (0.33) and a complete set of survey data, the time series of mortality rates and indicator



y = –0.013× + 0.101 
R2 = 0.02
p-value = 1 ×10–4–2

–1

0

1

2

–20 0 20 40

m
or

ta
lit

y 
(s

.d
.)

–2

–1

0

1

2

–2

–1

0

1

2

–2

–1

0

1

2

–2

–1

0

1

2

–2

–1

0

1

2

–20 –10 0 10

–20 –10 0 10

–20 –10 0 10 –20 –10 0 10

–20 –10 0 10 20 30

m
or

ta
lit

y 
(s

.d
.)

m
or

ta
lit

y 
(s

.d
.)

indicator (anomaly from 1981 to 2010)indicator (anomaly from 1981 to 2010)

y = –0.017× + –0.074 
R2 = 0.01
p-value = 0.0133

y = –0.016× + 0.072
R2 = 0.03
p-value = 0

y = –0.011× + –0.061
R2 = 0
p–value = 0.0726

y = 0.029× + 0.104
R2 = 0.06
p-value = 0

y = 0.023× + 0.142
R2 = 0.05
p-value = 0

(e) ( f )

(b)(a)

(c) (d )

Figure 3. Scatterplots of indicator (x-axis) versus mortality rate (y-axis) anomalies for all years and districts with valid data. Linear
regression trend lines are shown as blue dashed lines; the grey area shows the 95% confidence interval. The model’s coefficients,
significance ( p-value) and R2 values are annotated in the graph. Increasing (decreasing) trend lines signify a positive (negative)
correlation between the indicator and mortality rates. (n = 700). (a) Days with optimal flying conditions. (b) The maximum
duration of late autumn cold spells. (c) Days in late autumn cold spells. (d ) Mild winter weather. (e) The maximum duration
of winter cold spells. ( f ) Days in winter cold spells.
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values are plotted in figure 6. Mortality is again shown in standard deviations from the mean of the
survey period, and indicator values are normalized between 0 and 1 by dividing each value by the
maximum of the series. The plot displays the three indicators with the highest R2-values for
St. Poelten (Land). Colour hues for indicator time series are similar to the ones shown in figure 4,
meaning that green hues are positively correlated with mortality and red/orange hues are negatively
correlated. Figure 6 shows that the indicators behave quite as expected from the hypotheses’ assumed
correlations, with green lines moving in sync with mortality rates and red lines in the opposite
direction. Time-series plots of three other districts with good R2-values and complete data are shown
in electronic supplementary material, figure S.4.

Electronic supplementary material, figure S.5 provides some additional analysis of the regression
results. The plot shows the slope of each indicators’ regression trend line as a function of mean
indicator values, averaged over the study period 2011–2020. Each data point represents a district. The
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number of cases varies slightly (see column ‘no. of districts with valid data’ in table 1), because in some
districts, indicators did not fulfil the data quality requirements. A flat trend line of this function indicates
a linear relationship between the indicator and mortality, meaning that mortality would increase/
decrease at the same rate for all Austrian regions. On the other hand, a sloped trend line means an
indicator-dependent change of rate of mortality increase or decrease. This effect can be seen for the
‘winter cold spells’ indicators and is more pronounced for the ‘mild winter weather’ indicator, albeit
in the opposite direction. Mild winter weather seems to have a nonlinear component, meaning that
mortality rates decrease more strongly the more windows of mild winter weather occur. These
relations can only be interpreted for the value range occurring in Austria. See ‘Discussion’ section for
more details.

Finally, multivariate regression with stepwise predictor selection was performed at the district level.
Figure 7 visualizes the statistical significance of the models. Models of districts shown in green are
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significant, and of districts coloured red are not significant (p-value < 0.1). Districts coloured grey signify
that no predictors had a significant correlation with mortality. The number of districts with valid results
decreases to 46 (58%). The median adjusted R2-value of red- and green-coloured districts increases to
0.39. Eleven districts show an R2-value higher than 0.7. Leave-one-out cross-validation resulted in a
median R2-value of 0.18 for all districts with valid results, indicating model overfit for the multiple
regression models. The regression coefficients consistently match the assumed correlation for most or
all the indicators’ underlying hypotheses. The full table of model and cross-validation results for each
district is provided in the electronic supplementary material, table S.3.
4. Discussion
Agriculture is undoubtedly one of the most susceptible sectors to climatic changes [39–41]. While
agricultural intensification, especially the ever-increasing use of pesticides, is held accountable for the
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worldwide decline of insect populations [42–44], the effects of climate change on insect decline are less
clear-cut. Some poikilothermic insects (whose body temperature depends on that of the environment)
are assumed to profit from global warming [45]. Biella et al. [46] demonstrated that environmental
changes (warmer winters) resulted in the natural range expansion of the bumblebee Bombus
haematurus. For other bumblebee species, limitations in habitat due to climate change have been
proven to result in a decrease of abundance or even extinctions [47,48]. Main flight time of four
important bumblebee species in Europe extends with higher temperatures [49]. Kammerer et al. [50]
studied wild-bee abundance in the Mid-Atlantic United States. They found that some wild-bee
species show neutral and positive relationships with predicted climate patterns. They further
demonstrated that for wild-bee communities in spring and summer/autumn, climatic predictors
were more important than landscape.

On the other hand, the influence of weather and climate change on honey bee colonies is often
proposed, but poorly studied [51–53]. This paper presents an empirical study on winter colony
mortality of honey bees, and the second one for Austria [24]. It proposes four hypotheses about the
relations between weather conditions and winter colony loss, based on biophysical processes
throughout the year. These hypotheses were evaluated with single and multiple linear regression
analysis, using data from a 10-year beekeeper survey and gridded meteorological observations. It is
the first study to present weather indicators based on biophysical processes related to colony winter
mortality in daily resolution on a 1 × 1 km grid.

The average mortality rates of wintered bee colonies per district varied approximately between 10%
and 30% over the last 10 years in Austria. High colony losses have previously been explained with two
strong drivers, pathogen pressure and hive management [4,10]. A few districts with generally low
participation rates in the annual surveys showed particularly high average loss rates. Therefore, a
slight bias is suspected for beekeepers to participate in the colony loss survey when they experience
unusually high loss rates rather than when they are normal or low. To alleviate the leverage of this
‘participation bias’ on the mean loss rates, a minimum number of required responses as well as a
minimum number of years with sufficient responses per district were introduced in this analysis.

2014/2015 was the winter with the highest overall mortality rate in Austria. This finding is confirmed
by Brodschneider et al. [2], who report that this winter also entailed the highest colony loss rates in the
neighbouring Czech Republic. Often, years with high mortality rates are followed by years with quite
low mortality rates because weaker colonies died off, as seen in the consecutive winters 2014/2015
and 2015/2016. The districts generally show very homogeneous standard deviations of mortality rates
for most of the surveyed years (electronic supplementary material, figure S.3), hinting at large-scale
effects influencing colony mortality. However, this pattern does not seem to extend to larger
geographical scales. Gray et al. [13] and Brodschneider et al. [12,13] present varying mortality rates
over Europe for the winter 2017/2018, with Austria being one of few countries with a relatively
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homogeneous pattern. The reason for this country-wide consistency of mortality rates can only be

speculated at this point.
The assumed correlations of our four hypotheses are confirmed by the empirical data. The Austrian-

wide models all concur with the expected trends but show a rather weak quality of fit with
R2-values < = 0.06 for the single-predictor models and 0.09 for the multiple regression model. The
data reveals a lot of noise (figure 3), since rather short time series of nearly 100 different districts are
evaluated together. Moreover, these low R2-values suggest that other factors like agricultural
practices, pests and diseases and hive management are missing in the models [9,14,22,54]. Some of
those factors are again weather-dependent, making a clear distinction between direct and indirect
weather effects difficult [55,56]. In the following paragraphs, the hypotheses’ ramifications for
winter mortality are discussed in the order of model performance in the country-wide domain,
ranked from best to worst.

The assumed positive correlation of ‘extreme cold spells in winter’ with mortality is most clearly
supported by the regression model results. Specifically, the models with an annual maximum duration
of cold spells in mid and late winter featured the highest explanatory power. Extreme cold in late
winter can lead to an isolation of bees from food stores and thereby to colony loss due to starvation, a
common cause for winter loss [1,57]. At this time of the year, food demand is already increasing
because of the start of breeding [58]. Our findings join an increasing number of studies that
substantiate the negative effect of low temperatures in mid to late winter on colony survival. In
Wallonia, Belgium, van Esch et al. [22] reported the number of days with frost in February and March
as the second most critical factor for successful wintering of honey bees, right after V. destructor
infestation levels. The first empirical study of colony winter mortality and weather conditions in
Austria found that extremely low temperatures in February foremost determined mortality rates [24].
It also noted that an exact temporal attribution of mortality rates with specific meteorological
conditions is not possible because the time of colony loss is not recorded in the survey.

The predictor ‘mild winter weather’ yielded the second best-performing models. The indicator
combines information about temperature and precipitation in January and February. While other
studies report that high mortality rates correlate with warmer and wetter [21], respectively, dryer [24]
monthly average conditions in December and January, their findings are only comparable to a limited
extent. The ‘mild winter weather’ indicator aims at frequently occurring warm and dry conditions on
a daily basis and could theoretically produce high values even in relatively cold and wet months.
These mild conditions are assumed to have several positive effects on colony vitality, three of which
we mention here. First, they allow the bees to leave the hive for hygiene flights. This is an important
procedure not only to prevent the spread of diseases [25] but also defecation when food quality is
suboptimal. The dates of the first hygiene flights in winter were investigated by Sparks et al. [26] who
noted a substantial shift to earlier first flight dates during the period 1985–2009 in Poland. No data on
first flight dates for Austria has been published yet, but one author’s personal observation noted
hygiene flights even at the start and middle of winter in some of the last few years. Second, mild
temperatures in winter enable the bees to cross from one bee lane (free space between the honeycomb
cells) to the next. This is essential so the winter cluster (bees clustering together to a close ball to keep
themselves warm) is not cut off from food stores [59]. Finally, it is important for bees to collect water
during winter, which they gather at very low ambient temperatures [60].

Foraging conditions during the flowering period were determined by the number of days with
optimal flying conditions. The indicator ranked third in model performance. It is quite interesting that
weather conditions occurring several months before the start of wintering have an impact on colony
mortality [23]. This connection was also found by Switanek et al. [24], van Esch et al. [22], who
defined a similar measure for optimal flying conditions, and Beyer et al. [21], who associated cooler
and wetter conditions in July with higher mortality rates. And yet, an alleviating effect on colony
winter mortality cannot only be directly attributed to the supply foraged by the bees during the
flowering period. Usually the food stock is harvested by beekeepers, and if the colony cannot gather
sufficient supplies for winter it can be fed [8]. Rather we surmise that many days with optimal
foraging conditions lead to colonies experiencing an active summer with a functional and short
succession of summer bee generations. This development presumably has a positive effect on colony
vitality through autumn and winter. On the other hand, a high number of weather-related
disturbances during the foraging period can disrupt breeding cycles, causing worse conditions for
colonies even months before wintering [28,29].

The effects of properly timed cold snaps in late autumn to trigger wintering showed the lowest
quality of fit in our model results. Reasons for less skilful models might be that delayed wintering
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simply did not cause enough noticeable problems during the study period. Moreover, the indicator

definition might not be sufficiently accurate to capture the correct triggering events. Although the
period length of cold spells was obtained empirically by varying it and selecting the length with the
best model results, the temperature thresholds were deterministic. We propose extending the indicator
definition to include meteorological conditions before the cold spell event, similar to van Esch et al.
and Casson et al. [22,61]. That way, abrupt temperature changes can be detected more accurately.

The district-level analysis allowed for separate evaluation of models that matched the assumed
correlations of our hypotheses. The ‘maximum duration of winter cold spells’ indicator again showed
the highest relevance as a single predictor, with a median R2-value of approximately 0.2 over all
districts matching the assumed correlation. In addition, the analysis revealed spatial patterns of the six
indicators’ compared relevance. Cold spells in winter and late autumn are more relevant in the central
Alps, while optimal flying conditions and mild winter weather predominate in the eastern lowlands
and some Alpine valleys.

Stepwise predictor selection for multivariate regression models was performed for each district. The
data did not meet the stepwise algorithm’s criteria in approximately 45% of the districts, but rather high
model fits were achieved in the remaining 55%. Compared to the low R2-values of the single-predictor
models in the country and district domains, these results show evidence of overfitted models, which is
caused by the number of predictors approaching the number of observations. The effect of overfitting
was quantified by a leave-one-out cross-validation, resulting in a reduction of approximately 50% of
median R2-values for valid districts (see electronic supplementary material, table S.3). In other words,
when corrected for overfitting, the multivariate models on the district level exhibit an average quality
of fit similar to the single-predictor models including only the ‘maximum duration of winter cold
spells’ indicator. An approach to avoid overfitting would be fitting simpler models (e.g. with a small,
fixed set of predictors for all districts), but ultimately the problem stems from the still limited number
of available observations.

The regression results of such small samples need to be interpreted with caution, but there are also
reasons for confidence in our findings. First, the majority of district-level, single-predictor models fit the
assumed correlation of the underlying hypothesis. Second, indicators that performed better on the
country-wide scale also feature a higher number of statistically significant models with expected
correlations on the district level. Third, when plotting the time series of weather indicators and
mortality rates (as we show for selected districts in figure 6 and electronic supplementary material,
figure S.4), they quite consistently behave according to the expected correlations. Positively correlated
indicators are high when loss rates are high and vice versa. This relation is more pronounced for
statistically significant predictors. In summary, these points imply that the single-predictor district
models are somewhat trustworthy despite the small number of data points. A similar conclusion
regarding data limitations is reached by Calovi et al. [23].

The assumption of a linear relationship between indicators and mortality bears some additional note.
The correlations analysed in this study are valid for the range of indicator values that occur within
Austria and below 1200 m.a.s.l., although they might expand beyond that extent. Thresholds for
nonlinear relationships or even reversed correlations surely exist. To name a few examples, increasing
temperatures and extended dry periods improve foraging conditions at first, but are bound to have
negative impacts on the health and productivity of plant species foraged by bees at some point [62].
In the same manner, warmer winters cannot indefinitely reduce colony mortality. They lead to higher
populations of V. destructor [10] and in extreme cases, colonies could continue breeding through the
winter. If temperature changes induce shifts in growing seasons or activity periods of honey bees,
they can result in phenological mismatches [62–64]. Hence the assumed correlations and empirically
derived linear relations between weather conditions and honey bee colony mortality should only be
interpreted in the context of the analysed dataset. Caution is advised when transferring these
correlations to regions with higher elevation, different climate zones or future conditions under
climate change.

Another point that, to the best knowledge of the authors, has not been addressed in the literature so
far, is how the succession of seasonal weather conditions throughout the year impacts winter mortality.
The question is whether beneficial conditions in autumn or winter can compensate for bad flying
conditions in summer, and vice versa. With the four periods addressed by our biophysical indicators,
there are 16 possible combinations of beneficial (b) or detrimental (d) indicator values over the year
(e.g. ddbb, dbdb). An analysis of the mortality response to the different combinations could provide
insight into the systematic interdependencies between the indicators. They could possibly amplify
(positive feedback loop), attenuate (negative feedback loop) or be independent of each other. Such an
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analysis has not been attempted in the scope of this study and would benefit from a longer time series of

empirical data to cover as many combinations as possible.
In this study, we analysed the correlations between honey bee colony winter mortality and

biophysically based weather indicators. A previous empirical study in Austria presented a model that
predicts mortality rates on beekeeper level using monthly or annual averages of temperature,
precipitation, global radiation and wind speed [24]. The biophysical approach sharpens the focus of
the analysis in two ways: first, we use daily data instead of monthly or annual statistics, which allows
us to capture events that might be smoothed out by other conditions in the same month or year.
Second, the definitions of the indicators are directly related to biophysical processes relevant for
successful wintering. Here, we derived the processes and related thresholds from the literature, but
they could also be defined in a co-creation process with experienced beekeepers. Considering the
statistical limitations discussed above, the results can help adopt hive management practices to
proactively protect colonies against critical weather conditions [8,65]. However, when communicating
the results of this study to practitioners, care must be given to not infer causality from the correlations
that are analysed here.

Honey bee colony winter mortality is influenced by a multitude of (partly interacting) factors [9,61,66].
Here we only examine the direct and indirect effects of certain weather conditions. For the unexplained
variance of winter mortality rates in our models (approx. 80%), data regarding land use [14,22,54], hive
management practices, pests and diseases (e.g. Varroa) [10,55,67–69], available nutrients [70], phenology
[62–64,71], hive management strategies like requeening etc. [4,8,13] need to be taken into account. In
addition, bees exhibit an incredible adaptive capacity to different climatic conditions [64], i.e. due to
thermoregulation [15,60,72]. Aided by apicultural techniques and optimal site selection they are less
vulnerable to climate change than most other insects. Indeed, recent literature discusses honey
productivity gain under climate change in Germany [73]. While this may be also the case for more
Alpine locations in Austria, the adverse effects of rampant climate change on other important factors,
including higher virulence of diseases or the spread of new pests [56,67–69], will dampen the joy of
beekeepers over rising temperatures.
5. Conclusion
In this paper, we present a novel approach to quantify the effects of weather conditions on honey bee
colony winter mortality by defining weather indicators based on biophysical processes. We used data
from a standardized beekeeper survey carried out over 10 years in Austria.

Although the regression analysis of the empirical data validated the assumed correlations from our
hypotheses, the explanatory power of the models was rather low on different geographical scales. The
results showed an explained variance of approximately 10% for the multivariate model in the
country-wide domain, and an average of approximately 20% for the best-performing single predictor
and the multivariate models on the district scale. The indicator ‘maximum duration of extreme cold
spells in January, February and March’ was determined as the most significant weather-related factor
on both geographical scales.

The beekeeper survey data constitutes a rare data treasure that monitors the vitality of honey bee
colonies in Austria over a longer period. The biophysical approach could be extended by involving local
beekeepers into the definition or prioritization of indicators in transdisciplinary studies. To improve the
accuracy of the models, data on Varroa infestation and control, diseases, land use, exposure to pesticides
and phenological desynchronization could be included as explanatory factors. A systematic evaluation of
each factor’s individual contribution would supplement the findings of this study and benefit the science
on colony winter mortality. Another topic of interest is the interactions of colony winter mortality factors
over the seasonal cycle. Furthermore, future research should employ methods to examine nonlinearities
and tipping points in the relations between weather conditions and bee colony health to enable the
meaningful application of climate model data. This could increase our understanding of the impacts of
further climatic change on apiculture.

Data accessibility. The research data supporting this study is available via the Climate Change Centre Austria’s Data
Centre (https://data.ccca.ac.at/) under an open-access licence (CC-BY), with two exceptions: (a) the raw
meteorological dataset SPARTACUS of the Austrian Weather Service (ZAMG), which underlies a commercial
licence that prohibits redistribution. Some universities and other institutions have agreements with ZAMG that
allow the use of the data for research purposes, which was the case for this study. With the agreement of the
journal’s Editorial Office, the authors will not be able to make the dataset publicly available on this occasion, but
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encourage readers, referees and editors to contact the ZAMG customer service for data access requests: https://www.

zamg.ac.at/cms/en/climate/climate. (b) The data regarding the apiary site locations are not publicly available to
preserve the privacy of beekeeping operations. In the paper and online repository, only data aggregated to district
level is presented. Individual data are, however, available from the authors upon reasonable request. Should you
be interested, please contact the corresponding author. The data that is published via the CCCA Data Centre is
available under this URL: https://data.ccca.ac.at/group/weather-impacts-on-honey-bee-mortality-in-austria. It
consists of four datasets: the raw weather indicators [74], the processed weather indicators [75], the analysis results
[76], and the scripts used for computation, statistical analysis and visualization [77]. Detailed descriptions and
metadata are provided with the data. For the calculation of indicators, the open-source software NCL (NCAR
Command Language) was used [78]. GIS analysis was performed with QGIS [32]. Statistical analysis and
visualization was done in R [37].
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