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Abstract

Tuta absoluta is one of the most damaging pests of tomato crops worldwide. Damage due

to larvae may cause up to 100% loss of tomato production. Use of natural enemies to control

the pest, notably predatory mirids such as Nesidiocoris tenuis and Macrolophus pygmaeus,

is increasingly being promoted. However, considering the potential damage caused to toma-

toes by these omnivorous predators in the absence of T. absoluta, an alternative solution

could be required to reduce tomato damage and improve the predators’ performance. The

use of companion plants can be an innovative solution to cope with these issues. The pres-

ent study aimed to determine the influence of companion plants and alternative preys on the

predators’ performance in controlling T. absoluta and protecting tomato plants. We evalu-

ated the effect of predators (alone or combined) and a companion plant (sesame (Sesamum

indicum)) on T. absoluta egg predation and crop damage caused by N. tenuis. The influence

of an alternative prey (Ephestia kuehniella eggs) on the spatial distribution of predators was

also evaluated by caging them in the prey presence or absence, either on tomato or sesame

plants or on both. We found that the presence of sesame did not reduce the efficacy of N.

tenuis or M. pygmaeus in consuming T. absoluta eggs; hatched egg proportion decreased

when N. tenuis, M. pygmaeus, or both predators were present. More specifically, this pro-

portion was more strongly reduced when both predators were combined. Sesame presence

also reduced necrotic rings caused by N. tenuis on tomato plants. Nesidiocoris tenuis pre-

ferred sesame over tomato plants (except when food was provided only on the tomato

plant) and the upper part of the plants, whereas M. pygmaeus preferred tomato to sesame

plants (except when food was provided only on the sesame plant) and had no preference for

a plant part. Combination of predators N. tenuis and M. pygmaeus allows for better cover-

age of cultivated plants in terms of occupation of different plant parts and better regulation of
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T. absoluta populations. Sesamum indicum is a potential companion plant that can be used

to significantly reduce N. tenuis damage to tomatoes.

Introduction

The South American tomato pinworm, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae), is a

key pest of tomato crops (Solanum lycopersicum L.) worldwide [1–7]. In the absence of effec-

tive management methods, serious damage owing to larval feeding activity [8–10] can lead to

up 80–100% production loss [1]. In general, the spraying of chemical insecticides in high

quantities remains a preferred pest management method and ensures better tomato produc-

tion [11, 12]. Unfortunately, this practice promotes selection of resistant pest populations [13,

14], can generate detrimental side effects on the environment, affects beneficial arthropods

[15–20] and is not always effective against T. absoluta because of resistance developed to sev-

eral active substances [21, 22]. The development of more appropriate methods for better man-

agement of T. absoluta is increasingly becoming a priority [1, 2].

Integrated management programs against T. absoluta seek to keep damage below the level

of economic damage to tomatoes. A key component of such programs is biological control [1,

23]. Among the possibilities of biological control, a number of natural enemies proved to

reduce pest damage in glasshouse tomato crops [24–26]. Biological control practices have long

emphasized the role of specialized natural enemies, whose dynamics are closely related to

those of a target pest [27, 28]. However, the presence of pest complexes in the agroecosystems

limits the effectiveness of specialized predators. For this reason, there has been a growing inter-

est for generalist predators because of their high adaptation and widespread success compared

to other more specialized natural enemies [29].

Generalist predators, e.g. Macrolophus pygmaeus Rambur, Nesidiocoris tenuis Reuter

(Hemiptera: Miridae), Dicyphus tamaninii Wagner, and D. errans Wolff, are considered

important biological control agents against several tomato crop pests such as mites, whiteflies,

thrips, aphids, and pinworms [2, 8, 30, 31]. These species often coexist in agroecosystems (e.g.,

M. pygmaeus and N. tenuis) [32] and are able to switch successfully to the predation of the eggs

of T. absoluta, an invasive pest, shortly after its introduction in the Mediterranean region [31–

35]. However, M. pygmaeus is not always effective when used alone against T. absoluta because

it seems to have other preferences (for example whiteflies) [33, 34]. As for N. tenuis, it causes

necrotic rings due to its repeated feeding around stems and flowers often requiring the use of

insecticide to reduce population density [36, 37].

In such a context, the combination of companion or service plants with predators has

become a newly adopted option to optimize the efficacy of the latter and reduce N. tenuis dam-

age on cultivated plants. Companion or service plants can serve as an appropriate refuge when

the crop environment is unfavorable, for example, in the absence of prey or pesticide use [38,

39]. They could act as a mini-breeding system in fields [38], diversify habitats, reduce the fre-

quency of encounters between predators and thus reduce antagonistic effects [40]. Therefore,

special attention should be paid to companion plants such as the sesame plant Sesamum indi-
cum L. (Pedaliaceae) in pest management systems. With or without prey, N. tenuis prefers this

plant for its reproduction rather than tomato, cucumber, eggplant, or pepper [41]. In the pres-

ence of sesame, N. tenuis causes much less damage to tomato plants while preying on T. abso-
luta eggs [42]. The combined action of natural enemies can have synergistic or additive effects

that enhance pest control [43–47]. Antagonistic effects can also be observed when natural ene-

mies share the same prey [48]. Sesame as a companion plant is a potential option to be
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evaluated with N. tenuis and M. pygmaeus both in the laboratory and in agricultural systems in

order to limit the phytophagy of N. tenuis on tomato crops. If confirmed, such a system’s effec-

tiveness could enhance integrated pest management programs. Some authors [49] still believe

that an effective biocontrol agent must be species-specific to the prey or host. However, an

assemblage of generalist predators can be effective in decreasing populations densities of both

native and exotic pest species [50–52].

In this assemblage, the impact of the alternative prey should be considered, as this factor

can negatively or positively influence predator behavior and pest control [34, 53, 54]. Alterna-

tive prey may divert predation pressure by reducing the risk of predation on the focal prey [55,

56] depending on predator preferences [53, 54]. Conversely, predation on the alternative prey

may stimulate predator populations to respond numerically and consume more individuals of

the target prey [54, 57]. Thus, the presence of alternative prey allows generalist predators to

rapidly establish themselves in agroecosystems before the arrival of pests [54, 58]. This limits

the growth of pest populations after they have colonized the crop [59].

Evaluation of such a system involves monitoring the behavior of associated individuals (i.e.,

N. tenuis and M. pygmaeus), including monitoring their distribution within plants, their pref-

erence, intraguild predation (IGP), etc.

In this study, the objectives were to assess the effect of a companion plant (sesame) and the

use of two predators (i) on the predation rates of T. absoluta eggs, (ii) on N. tenuis damage to

tomato plants and (iii) to determine the influence of an alternative prey (lepidopteran eggs) on

the spatial distribution of the predators.

We expected that (1) the combination of both predators in the presence of sesame would

increase T. absoluta egg predation, (2) the presence of companion plants would diversify habi-

tats and reduce the phytophagy of N. tenuis on tomato plants and (3) the presence of alterna-

tive prey would not affect the behavior of predators in relation to their distribution within

plants.

Materials and methods

Biological material

Tomato (cv. Nano) and sesame (cv. T-85 Humera) plants used for insect rearing and experi-

ments were planted in plastic pots (9 x 9 x 10 cm) in the laboratory. They were maintained in

controlled conditions (24 ± 2˚C, 40 ± 10% R.H. and 16:8 L:D) until they reached a height of 15

to 20 cm (4- to 5-weeks-old).

A T. absoluta colony was maintained on young tomato plants in laboratory (24 ± 2˚C,

40 ± 10% R.H. and 16:8 L:D). It originated from 65 individuals collected in 2009 on green-

house tomato plants in the South of France, and at least 50 individuals collected in tomato

fields were added yearly. Tuta absoluta eggs were obtained by introducing eight tomato plants

in cages and adding five adult pairs of the pinworm for 48 hours in the cages. The eggs laid

were then counted, and 40 were kept per plant. Plants with eggs were moved to new cages

holding predators and/or companion plants.

The predators N. tenuis and M. pygmaeus were provided by Koppert Biological Systems,

France and reared on a tomato plant in cages covered with a fine nylon mesh (30 x 30 x 60

cm). Predators were fed with eggs of E. kuehniella Zeller (Lepidoptera: Pyralidae) and diluted

honey. The E. kuehniella eggs were replaced every two days and provided as libitum. All the

experiments were carried out at the French National Institute of Agronomic, Food and Envi-

ronment Research (INRAE), Sophia Antipolis in the same laboratory conditions (24 ± 2˚C,

40 ± 10% R.H. and 16:8 L:D).
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Influence of a companion plant and predators on Tuta absoluta predation

and tomato protection

The predator activity was determined by the ability of N. tenuis and M. pygmaeus to reduce the

T. absoluta egg hatching rate after 9 days in the presence or absence of a sesame plant (S). In

this experiment, tomato plants with T. absoluta eggs were used in all treatments. The propor-

tion of hatched eggs on tomato plants was therefore assessed according to the presence of both

predators combined (N-M) or individually (N or M) and with or without the companion plant

(S). Thus 7 combinations were made with tomato plants containing T. absoluta eggs in differ-

ent cages (30 x 30 x 60 cm covered with fine nylon mesh). These treatments were composed of

(1) both predators with sesame (N-M&S); (2) both predators without sesame (N-M); (3) N.

tenuis with sesame (N&S); (4) M. pygmaeus with sesame (M&S); (5) N. tenuis without sesame

(N); (6) M. pygmaeus without sesame (M) and (7) sesame (S).

Each treatment involved 6 repetitions with one control at each repetition (the sesame plant

only). A total of 48 tomato plants and 32 sesame plants were used. For treatments with both

predator species, one couple of each species was released in the cages. In contrast, treatments

with only one species included two couples of that species. Forty-eight hours later, predators

were removed from the different cages. Egg hatching was monitored during 9 days and eggs

that did not hatch during this period were considered consumed by the predators [42]. The

number of T. absoluta larvae was counted to determine the hatching reduction. The hatching

reduction rate was calculated by comparing the number of larvae that emerged with the initial

number of eggs (40 eggs), corrected by the average egg mortality observed in the control

according to the formula: RE = 100 × [1-(Ex/Et)] where Ex is the average number of eggs

hatched during the treatment and Et is the average number of eggs hatched in the control.

Nesidiocoris tenuis phytophagy

The phytophagy on the tomato plants was assessed by counting the number of necrotic rings

on the main stem, young shoots, leaves and leaf petioles [37, 42] induced by N. tenuis. The

number of necrotic rings was assessed in the presence or absence of the second predator M.

pygmaeus (M) and with or without the sesame plant (S) as a companion plant. The necrotic

rings counts were made 3 days after the predators were removed from the cages. Six replicates

with a control at each replicate (sesame plant only) were performed for each treatment. A total

of 48 tomato plants and 32 sesame plants were used to assess the phytophagy. The experiments

were carried out at 24 ± 2˚C, 40 ± 10% R.H. and 16:8 L:D.

Effect of food presence on spatial distribution of predators

In this study we evaluated the impact of the presence of food on the spatial distribution of N.

tenuis and M. pygmaeus developing on tomato (T) and sesame (S) plants with or without E.

kuehniella eggs (E). Four combinations were made in different cages (30 x 30 x 60 cm covered

with fine nylon mesh) including (1) Eggs on both plants (T&S-E); (2) Eggs only on the tomato

plant (T-E); (3) Eggs only on the sesame plant (S-E) and (4) Both plants without eggs (T&S).

For all treatments, both predators and plants were simultaneously present in the cages and

only the position of food (E. kuehniella eggs) varied (on the tomato and/or on the sesame

plant). An average of 100 eggs of E. kuehniella were deposited on the leaves with a fine brush.

At each observation, the distribution of predators on the different plants (lower, medium and

upper parts of the plant) in the cage was noted. The upper, medium and lower parts were rep-

resented respectively by the first, second and third foliar stage of the plants and the proportion

of each predator was monitored per day over 48 hours. A first observation was made in the
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morning (7:00 to 11:00 a.m.) and the second in the afternoon (4:00 to 7:00 p.m.), reported as

the periods of high activity of M. pygmaeus [60]. For each treatment (T&S-E; T-E; S-E and

T&S), 6 replicates were performed with 10 adult individuals per replicate (5 adults of N. tenuis
and 5 adults of M. pygmaeus). These experiments were conducted under the same laboratory

conditions described previously.

Statistical analyses

All statistical analyses were carried out using R software (R Development Core Team, version

3.3.3). A separate Generalized Linear Model (GLM) with a binomial error distribution was

used to test for the effects of the presence of M. pygmaeus (absence or presence), the presence

of N. tenuis (absence or presence) and the presence of sesame as a companion plant (absence

or presence) on the proportion of hatched T. absoluta eggs. The effects of the presence of M.

pygmaeus (absence or presence and the presence of sesame as a companion plant (absence or

presence)) on the number of necrotic rings caused by N. tenuis was analyzed using GLM with

a Poisson error distribution. A series of linear models (LMs) were used to test for the effects of

predatory species, prey availability on the crop plant (tomato plant alone or supplemented

with alternative prey), prey availability on the companion plant (sesame plant alone or supple-

mented with alternative prey), and/or the plant part (lower, medium, upper) on (i) the propor-

tion of predators found on the tomato plants (vs. the sesame plant), and (ii) the number of

predators found on the different parts of the tomato and sesame plants. The use of LMs for

these tests was appropriate since the dependent variables and the model residuals followed a

normal distribution when using a Shapiro–Wilk test and a visual interpretation of quantile–

quantile plots. Since at least 2 factors had a significant effect on each response variable, and

multi-comparison tests were performed considering each treatment independently (’mult-

comp’ package, Tukey method).

Results

Influence of companion plant and predators on Tuta absoluta predation

and tomato protection

The proportion of hatched eggs of T. absoluta varied significantly depending on the simulta-

neous presence or not of N. tenuis and M. pygmaeus (Table 1, Fig 1). It was twice lower in the

presence of N. tenuis or M. pygmaeus compared to the condition without predators (Fig 1).

When both predators were present simultaneously, this proportion was four times lower com-

pared to the treatment without predators. The presence of sesame did not modulate the egg

hatching (Table 1).

Nesidiocoris tenuis phytophagy

The number of necrotic rings caused by N. tenuis on tomato plants significantly depended on

the presence of either M. pygmaeus or sesame (Table 1, Fig 2). Without M. pygmaeus, the num-

ber of necrotic rings was 3.3 times lower in presence of sesame than in absence of the compan-

ion plant. When both predators were present simultaneously, the number of necrotic rings

was 4.4 lower in presence of sesame than in absence of the companion plant. The number of

necrotic rings was 2 times higher in presence of both predators compared to the treatment

when M. pygmaeus was absent.
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Effect of food presence on spatial distribution of predators

The proportion of predators on the tomato plant vs. the sesame plant varied significantly

according to the predator species, the prey availability on the host crop plant and the prey

availability on the companion plant (Table 1, Fig 3). Nesidiocoris tenuis preferred tomato when

the prey was only on tomato (proportion of N. tenuis on tomato = 69%). In contrast, the pro-

portion of N. tenuis was lower when the prey was on both plants (39%), only on sesame (30%)

or without prey on both plants (35%). Macrolophus pygmaeus preferred tomato than sesame

plant when prey was present on both plants, only on tomato or in absence of prey on both

Table 1. Results of the linear (F value) and Generalized Linear Model (χ2 deviance).

Variable to explain Explanatory variables F value or χ2 deviance P value

Presence of N. tenuis 294.6 < 0.001

Proportion of hatched eggs Presence of M. pygmaeus 310.0 < 0.001

Presence of sesame 0.5 0.484

Number of necrotic rings Presence of M. pygmaeus 5.0 0.025

Presence of sesame 15.4 < 0.001

Proportion of predators Predator species 74.4 < 0.001

on tomato plant Prey availability on crop plant 37.4 < 0.001

Prey availability on companion plant 29.0 < 0.001

Predator species 19.7 / 20.5 < 0.001 / < 0.001

Number of predators Prey availability on crop plant 8.8 / 11.2 0.004 / 0.001

(on tomato / on sesame) Prey availability on companion plant 8.8 / 8.7 0.004 / 0.004

Plant part 18.1 / 41.9 < 0.001 / < 0.001

https://doi.org/10.1371/journal.pone.0257925.t001

Fig 1. Proportion of hatched eggs of Tuta absoluta according to the presence or absence of Nesidiocoris tenuis
and/or Macrolophus pygmaeus and the presence or absence of sesame plant. The ‘+’ indicates the presence and the

‘-’ indicates the absence. Boxplot followed by the same lower case letter did not differ significantly.

https://doi.org/10.1371/journal.pone.0257925.g001

PLOS ONE Combination of generalist predators with a companion plant: What benefit in biological control?

PLOS ONE | https://doi.org/10.1371/journal.pone.0257925 September 30, 2021 6 / 16

https://doi.org/10.1371/journal.pone.0257925.t001
https://doi.org/10.1371/journal.pone.0257925.g001
https://doi.org/10.1371/journal.pone.0257925


plants with the proportions of 69, 80 and 69%, respectively. This proportion was low (less than

50%) when the prey was only on sesame plant.

The number of predators established on the tomato and sesame plants varied significantly

according to the predator species, the prey availability on the host crop plant, the prey

Fig 2. Number of necrotic rings caused by Nesidiocoris tenuis on the tomato plant according to the presence or

absence of Macrolophus pygmaeus and the presence or absence of sesame plant. The ‘+’ indicates the presence and

the ‘-’ indicates the absence. Boxplot followed by the same lower case letter did not differ significantly.

https://doi.org/10.1371/journal.pone.0257925.g002

Fig 3. Proportion of predators (Nesidiocoris tenuis or Macrolophus pygmaeus) on tomato vs sesame plants

according to the presence or absence of Ephestia kuehniella eggs on the tomato or the sesame plant. The ‘+’

indicates the presence and the ‘-’ indicates the absence. Boxplot followed by the same lower case letter did not differ

significantly.

https://doi.org/10.1371/journal.pone.0257925.g003

PLOS ONE Combination of generalist predators with a companion plant: What benefit in biological control?

PLOS ONE | https://doi.org/10.1371/journal.pone.0257925 September 30, 2021 7 / 16

https://doi.org/10.1371/journal.pone.0257925.g002
https://doi.org/10.1371/journal.pone.0257925.g003
https://doi.org/10.1371/journal.pone.0257925


availability on the companion plant and the part of plant (Table 1, Fig 4A and 4B). Nesidiocoris
tenuis significantly preferred the upper part of the tomato and sesame plants compared to the

medium and lower parts, whereas no difference was observed between the medium and the

lower parts (Fig 4A). The presence of N. tenuis on the lower part of the tomato or sesame plant

did not vary according to prey availability on the tomato or sesame plant. The number of N.

tenuis individuals observed on the medium part of the tomato plant was higher when the alter-

native prey was provided only on the tomato plant than when the alternative prey was present

only on the sesame plant. By contrast, the number of N. tenuis individuals on the medium part

of the sesame plant did not vary according to availability of the alternative prey. Finally, the

presence of N. tenuis on the upper part of the tomato varied according to prey availability as a

higher number of individuals were observed on tomato plants when the alternative prey was

provided only on the tomato plant compared to when alternative food was provided on the

sesame plant, on both plants or was not provided. When considering the upper part of the ses-

ame plant, the number of individuals observed was higher when the alternative prey was pro-

vided only on the sesame plant or on both plant species than when alternative food was

provided only on the tomato plant.

The number of M. pygmaeus did not vary among the different tomato or sesame plant parts

(Fig 4B). The number of individuals in the lower part of the tomato plant was higher when no

alternative prey was provided compared to when alternative prey was provided on the sesame

plant only and on both plant species. By contrast, the number of M. pygmaeus individuals did

not vary when they were developed on the lower part of sesame. The number of individuals

was similar in the different treatments (when alternative prey was provided on the tomato

plant, on the sesame plant, on both plants or was not provided) for predators in medium part

of the plants. Finally, the number of individuals in the upper part of the tomato plant was

higher when the alternative prey was provided on the tomato plant only or on both plant spe-

cies than when the alternative prey was provided on the sesame plant only or was not provided

at all. By contrast, the number of individuals in the upper part of the sesame plant was higher

when the alternative prey was provided on the sesame plant than when the alternative prey

was provided on the tomato plant only.

Discussion

Competition for the same prey in coexisting predators is expected to increase phytophagy of

omnivorous predators, induce intraguild predation, and increase their effectiveness as biologi-

cal control agents. However, the combined action of coexisting predators was also reported to

be beneficial in controlling pests. In such a context, we evaluated the impact of the presence of

a companion plant on predator localization, effectiveness in controlling pests and reducing

damage to cultivated plants. Intraguild predation occurs when two species that share a com-

mon prey resource also engage in trophic interaction with each other (e.g., predation) [61–63].

The results of our study did not provide evidence of intraguild predation between the preda-

tors N. tenuis et M. pygmaeus. This could be due to several factors such as the stage (adult) of

the individuals in competition, the presence of other food sources (plants), the duration of the

competition (2 days) or the complexity of the habitat (sesame + tomato). Indeed, the relative

size and higher mobility of individuals is an important determinant of predator-predator

interaction [64, 65]. For example, adult females of N. tenuis are known to inflict a high mortal-

ity rate only on young nymphs but not on adults of M. pygmaeus in the absence of alternative

prey [66]. In addition, the ability of predators to consume food resources (plants) other than

the shared resource (prey) can reduce competitive interaction and promote coexistence [32,

65, 67].
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In our study we observed a much lower hatching rate of T. absoluta eggs when both preda-

tors were present together than when only one predator species was released. This could be

due to competition for the same prey (T. absoluta eggs), the voracity of predators or the distri-

bution of predators on all plant parts. Such behaviors could initially reduce egg hatching but

also improve crop protection against this pest. Walzer et al. [68] indicated that bean protection

against Tetranycus urticae Koch (Acari: Tetranychidae) was improved when the predators Phy-
toseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) and Neoseiulus californicus McGregor

Fig 4. A. Number of Nesidiocoris tenuis on the different parts of the tomato or sesame plants depending on the

presence or absence of Ephestia kuehniella eggs on the tomato or the sesame plant. The ‘+’ indicates the presence and

the ‘-’ indicates the absence. Boxplot followed by the same lower or upper case letter did not differ significantly with

respect to plant species (tomato and sesame, respectively). B. Number of predators Macrolophus pygmaeus on the

different parts of the tomato or sesame plants depending on the presence or absence of Ephestia kuehniella eggs on the

tomato or the sesame plant. The ‘+’ indicates the presence and the ‘-’ indicates the absence. Boxplot followed by the

same lower or upper case letter did not differ significantly with respect to plant species (tomato and sesame,

respectively).

https://doi.org/10.1371/journal.pone.0257925.g004
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(Acari: Phytoseiidae) coexisted. Also, the complementary occupation by both predators of dif-

ferent parts of the plant i.e., N. tenuis in the upper part and M. pygmaeus on all parts could

increase their efficacy on the whole plant. Moreover, according to Lucas and Alomar [69], the

level of whitefly predation was higher in the lower part of the plant when D. tamaninii and M.

pygmaeus coexisted than when there was only one species. Moreno-Ripoll et al. [70] recom-

mended the combined use of Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae), M.

pygmaeus and N. tenuis in order to improve Bemisia tabaci Gennadius (Hemiptera: Aleyrodi-

dae) biological control. In a review study on generalist predators, Symondson et al. [29]

showed a significant reduction of pests (Mollusca, Diptera, Lepidoptera, Coleoptera, Acari,

Hemiptera and others) under experimental conditions by these predators in 79% of 52 studies

consulted and yield increased significantly for 65% of the 26 cases where effects on plants were

measured. Our results also provide evidence that the presence of a companion plant such as S.

indicum does not influence mirid predation on T. absoluta eggs (consistent with Biondi et al.

[42]). Sesame could therefore have a positive impact on the biological control of T. absoluta by

N. tenuis and M pygmaeus. The positive influence of this plant in improving the biocontrol

performance of predatory mirid Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) was

already demonstrated on rice pests including Nilaparvata lugens Stål (Hemiptera: Delphaci-

dae), Marasmia Patnalis Bradley (Lepidoptera: Pyralidae) and Cnaphalocrocis medinalis Gue-

née (Lepidoptera: Crambidae) [71].

Damage induced by N. tenuis on tomato plants was also mitigated by sesame plant pres-

ence: a higher number of necrotic rings was observed when predators were combined on the

tomato plant in the absence of a sesame plant. This could be due to competition for the same

prey causing a rapid drop in the availability of this prey and encouraging the repeated feeding

of mirids on the only food source present, i.e., the tomato plant. When the level of prey in the

crop is low, the phytophagy activity of N. tenuis may be of critical importance [36, 37]. Accord-

ing to Sanchez [72], the damage caused by N. tenuis to the tomato plant is inversely related to

the abundance of prey. Damage can also be explained by the predators’ need for plant-based

nutrients in order to optimize digestion and/or assimilation of its prey [73]. The intensity of

damage varies according to the availability of prey and the presence of a plant resource other

than a cultivated plant [65, 67]. This could explain our observation that the number of necrotic

rings was reduced when the sesame plant was added. This also implies that the presence of ses-

ame reduces the damage caused by N. tenuis to tomato plants. Indeed, N. tenuis prefers sesame

to tomato plants for its nutrition and development [41, 42, 74]. In other words, this predator

prefers to feed on sesame rather than on tomato plants when offered the choice, as was the

case in our study conditions. Sesame could be a better source of plant nutrients than tomato. A

study by Naselli et al. [75] showed that sesame plants emitted lower amounts of hydrocarbon

monoterpenes but higher levels of oxygenated terpenes than tomato plants. While hydrocar-

bon terpenes are known to have insect pest repellent properties [76], oxygenated monoter-

penes and Green Leaf Volatiles (GLV) compounds have been shown to play a role in attracting

predatory mirids [75, 77]. Also, in addition to having no influence on egg predation, sesame

considerably reduces N. tenuis damage to tomato plants. According to Gillespie and McGregor

[73] and Biondi et al. [42], this companion plant is a good food source that is effective in dis-

rupting the phytophagy activity of this mirid on the cultivated plant without influencing pre-

dation. In this study, N. tenuis preferred the sesame to the tomato plant (except when food was

provided only on the tomato plant) and preferred the upper part of the plants, whereas M. pyg-
maeus preferred the tomato to the sesame plant (except when food was provided only on the

sesame plant) and did not prefer a plant part. The presence of sesame did not reduce the effi-

cacy of N. tenuis or M. pygmaeus in consuming T. absoluta eggs (the proportion of hatched

eggs decreased when N. tenuis, M. pygmaeus or both predators were present) and clearly
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reduced the number of necrotic rings when N. tenuis or both predators were present

simultaneously.

In addition, the high proportion of N. tenuis on the sesame plant and of M. pygmaeus on

the tomato plant indicates that both predators have opposite preferences for plant species. This

is not a surprise because N. tenuis is considered an important pest in sesame cultivation in

India and Japan [41]. Nesidiocoris tenuis was more attracted to this plant than Dittrichia viscosa
for its reproduction [42]. According to Nakahishi et al. [41], sesame can be an insectary plant

for this predator. Macrolophus pygmaeus was more present on tomato than sesame. Tomato

plants could be a better food supplement than sesame for this mirid. In crops, this bug is

mainly observed on solanaceous plants, more particularly on tomatoes and eggplant. Macrolo-
phus pygmaeus develops well on tomato plants even when preys are absent [78]. The high pro-

portion of N. tenuis on the upper part of the plant and of M. pygmaeus on the entire plant also

indicates different preferences in terms of occupation of different parts of plants. Nesidiocoris
tenuis is usually present in the upper part of plants while M. pygmaeus explores the lower leaves

[32, 79]. The difference between our results and those of Perdikis et al. [32] on the distribution

of M. pygmaeus could be due to the relative size of the individuals and the number of individu-

als combined (16 nymphs) in their experience. Predators were distributed in our experimental

conditions such that both species encountered each other more often and could not avoid each

other completely. Moreover, in a similar experiment, Perdikis et al. [32] observed that one N.

tenuis and one M. pygmaeus could meet 5 times in 30 minutes for more than 3 seconds.

Although avoidance mechanisms are often not clearly identified [80], the avoidance of hetero

specific competitors is not always systematic [81]. Our results hint that by occupying different

parts of the plant neither predator was in competition. Generally, avoidance behavior occurs

between closely related species with a marked overlap in diet i.e., between species of specialized

predators [82]. Moreno-Ripoll et al. [66] showed that the distribution of these predators was

not modified when they were associated or not. The occupation of different strata on plants by

each species allows for better coverage of the plant by predators. This could therefore have

important implications for biological control as the potential activity of the predators thus dis-

tributed may be complementary [32, 69, 83, 84]. The results of the present study could enable

optimizing biological control methods against T. absoluta, although multiple other factors

should be considered to achieve fully effective and sustainable Integrated Pest Management

(IPM) strategies [18, 85, 86].
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